Fusion Chief Resigns Over Budget Cuts Nature L May, P.3)

Total Page:16

File Type:pdf, Size:1020Kb

Fusion Chief Resigns Over Budget Cuts Nature L May, P.3) Nature Vol. 294 3 December 1981 391 Fusion chief resigns over budget cuts Nature l May, p.3). sufficient to maintain a cost-of-living Mirror devices Mirror research was given further increase for the current financial year. support by the successful development at As with other federal agencies, however, the Lawrence Livermore Laboratory of it is the 1983 budget that is giving the tandem mirrors to plug the ends of a greatest cause for concern in Washington and tokamaks solenoid-containing plasma. As a result, it as the Administration seeks further was decided last year to expand the first substantial cuts in public spending to MFTF into a tandem mirror machine, reduce the federal deficit while increasing in conflict MFTF-B, scheduled for completion in the military budget. Washington about four years' time and to perform at OMB's decision to shift support from The head of fusion research programmes temperatures and confinement times the mirror programme to the TFTR "is a in the United States Department of Energy comparable to the performance of the precedent-setting decision taken without (DoE) has resigned in protest at the way in tokamak. an adequate hearing or technical which the Reagan Administration is This strategy is now coming apart under discussion", Dr Kintner said last week, proposing to allocate research funds the stringent budgetary pressures being adding that he had been unable to persuade between competing magnetic fusion applied by the Reagan Administration. DoE to appeal and that it was going "to projects. The first potential casualty is likely to be change the whole policy direction of His decision has apparently been the EBT "proof-of-principle" machine magnetic fusion research for the future". provoked by the decision of the Office of (EBT-P), proposed for construction by the "For the first time we had a policy which Management and Budget (OMB), in Carter Administration under contract with made sense for fusion. It did not argue that drawing up the recommendation that McDonnell Douglas, but cut from DoE's we should start competing with other President Reagan will present to Congress budget by Mr Reagan in March. Although forms of nuclear energy by a definite date, next January, to shift $25 million from Congress has reinstated the money in an but said we should first meet the short-term research into mirror devices being studied appropriations bill now sitting on the objective of knowing whether fusion is at the Lawrence Livermore National President's desk, which would provide $14 practical as an energy source. I worked for Laboratory in California to the Tokamak million for EBT-P in the current year, it five years to create cooperative Fusion Test Reactor (TFTR) at the seems unlikely that he will sign it. relationships and research strategies which Princeton Plasma Physics Laboratory in Overall, the 1982 budget for magnetic made sense. That is all dead." New Jersey. fusion does not look too bad. Although While the strategy of diversified research The most immediate impact, according this was reduced in March from the $506 support has been pursued within DoE, to Dr Edwin Kintner, who has been head of million proposed by President Carter to however, it has come under some criticism DoE's research programme since 1977, and $456 million - partly by eliminating funds from the nuclear industry and its who last week submitted his resignation as for a centre for magnetic fusion congressional supporters who would like to associate director of the Office of Energy engineering which DoE had previously see work proceed on an experimental Research, will be to delay by about three agreed to build under congressional tokamak reactor as quickly as possible and years completion of the expanded Mirror pressure to move faster on magnetic fusion feel that the DoE strategy may have been Fusion Test Facility (known as MFTF-B) in general - the latter figure is still overly cautious. David Dickson which many consider to be the principal competitor to the tokamak. But the Administration's decision has Cline stripped of research grants broader implications, for it effectively Washington In the light of their conclusion that he undermines a strategy which has been In a move clearly intended to warn other had violated both federal regulations for developed by the department under Dr scientists not to ignore restrictions laid the protection of human subjects and NIH Kintner to diversify magnetic fusion down by the federal government, Dr guidelines for use of recombinant DNA research away from too great a dependence Martin Cline of the University of Cali­ technology, the members of the committee on the success of the Princeton work. fornia in Los Angeles (UCLA) has been recommended - and the NIH director Support for such diversification was first stripped of one of four research grants he (then Dr Donald Fredrickson) accepted - endorsed by the Administration after a receives from the National Institutes of that special prior approval be required for report prepared for DoE by an ad hoc Health (NIH) because he carried out un­ all future grant applications from him for committee under the chairmanship of Dr authorized experiments on human patients research with either human subjects or JohnS. Foster of TRW Inc. in 1978. This that involved the use of recombinant DNA recombinant DNA (Nature4 June, p.369). pointed out that although the Princeton techniques. It was left to the advisory councils of tokamak programme was achieving The incident first came to light last various NIH institutes funding his research impressive scientific results, many autumn, when it was revealed that, while to decide what to do about existing grants. engineering problems remained before a treating patients in Israel and Italy suf­ Two of them, the National Cancer Institute viable power reactor could be built. fering from {3-thalassaemia, Dr Cline used and the National Institute of Arthritis, Concentrating purely on the tokamak, it bone marrow cells whose genetic material Diabetes and Digestive and Kidney said, constituted an "unnecessarily high had been altered by recombinant DNA Diseases, have taken no direct action. risk". It suggested that the United States techniques, even though he had previously The advisory council to the National should "pursue fusion on a broad front", told both his university and the two hos­ Heart, Lung and Blood Institute (NHLBI), primarily into mirror devices but also into pitals involved that he would not do so. however, decided on a harsher penalty than alternative designs. Earlier this year, an investigatory com­ merely impressing conditions on future After careful review, DoE selected two mittee established by NIH suggested applications. It recommended that Dr of these designs for increased support. One various conditions that should be applied Cline's current grant from the institute be was the reversed field pinch, a combination to future grants applications from Dr terminated on 31 March 1982, the end of of the tokamak and mirror designs. The Cline, who had already resigned as chief of its first year of support. other was the Elmo Bumpy Torus (EBT), the division of haematology /oncology at The grant, a total of $244,000, was to under development at the Oak Ridge UCLA, while retaining his university post have been spread over a period of three National Laboratory in Tennessee (see as professor of oncology. years, and covered research into the effec- 0028-0836181 I 490391-02$01.00 CI981 MacmillanJournalslld .
Recommended publications
  • 1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
    Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science.
    [Show full text]
  • Simulation of a High Speed Counting System for Sic Neutron
    Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 17-18, 2018 Analysis of Technical Issues for Development of Fusion-Fission Hybrid Reactor (FFHR) Doo-Hee Chang Nuclear Fusion Technology Development Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea *Corresponding author: [email protected] 1. Introduction • ~100 tokamaks in the worldwide since 1957 • Physics performance parameters achieved at or near The nuclear fission reactors remain public concerns lower limit of reactor relevance about the safety, waste and decommissioning • Large, world‐wide physics and technology (afterwards) that they produce. The most optimistic programs supporting ITER (initial operation in assessment predicts that fusion technology will not be 2025, but possible delay again) able to produce electricity on a commercial scale for at • ITER will achieve reactor‐relevant physics and least another four decades. There is a third nuclear technology parameters simultaneously, produce option led to a resurgence of interest, which combines 500 MWth and investigate very long‐pulse the aspects of fission and fusion technologies in the operation form of the fusion-fission hybrid reactor (FFHR) [1]. An (b) Many other confinement concepts (e.g. mirror, FFHR is a fusion reactor surrounded by a fission bumpy torus) have fallen by the wayside or remain blanket, containing the thorium, uranium, and on the backburner transuranic (TRU) elements, to increase output power, (c) A few other confinement concepts (e.g. stellarator, to breed
    [Show full text]
  • Experimental Study of Equilibrium in a Bumpy Torus
    x - .2. v 7 .d>. oml 0RNL/TM-9520 Experimental Study of Equilibrium in a Bumpy Torus S. Hiroe J. A. Cobble R. J. Colchin G. L. Chen K. A. Connor J. R. Goyer L. Solensten 5; ',•-•• i ' i P DISTRIBUTION OF THIS DOCUMENT IS UNUIftTTEB ORNL/TM—9520 DE86 014415 Pist. cH^W^O f,g Fusion Energy Division Experimental Study of Equilibrium in a Bumpy Torus S. Hiroe J. A. Cobble R. J. Colchin G. L. Chen Fusion Energy Division K. A. Connor, J. R. Goyer, L. Solensten Rensselaer Polytechnic Institute Troy, New York Date of Issue: June 1986 Prepared by the OAK RIDGE NATIONAL I-ABORAI OKY Oak Ridge, Tennessee 37831 operated by <lkT_ MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U. S. DEPARTMENT OF KNKRGY under Contract No. DE-AC05-840R21400 OlSTRlBUT,0«0FTHlSD0CU^T^^ CONTENTS ABSTRACT v I. INTRODUCTION 1 n. EXPERIMENTAL RESULTS 3 m. DISCUSSION 15 A. Formation of closed potential contours 15 B. Inward displacement of potential contours 22 C. Electrostatic beta limit 26 D. Force balance 28 E. Explanation of potential deformation 33 TV. CONCLUSION 37 ACKNOWLEDGMENTS 39 REFERENCES 41 iii ABSTRACT Plasma equilibrium in the ELMO Bumpy Torus (EBT)1 was studied experimentally by measurements of the electrostatic potential structure. Before an electron tail population is formed, the electric field is found, roughly speaking, to be in the vertical direction. The appearance of a high-energy electron tail signals the formation of a negative potential well, and the potential contours start to nest. The potential contours are shifted inward with respect to the center of the conducting wall.
    [Show full text]
  • Introduction to Fusion Energy Plasma Physics (K
    BOOK REVIEWS S',".'"" o book, tor review " based on the editor's 'P'"'""' ",,,d'", possible reader E interest and on the availability of the book to the editor. Occasional selections may include II. L><:5.NB; ns books on topics somewhat peripheral to the subject matter ordinarily considered acceptable. 1111. Controlled Nuclear Fusion - Fundamentals of Its experiments and design studies have evidently so consumed Utilization for Energy Supply the time of experienced workers that there is a great short­ age of rigorous but comprehensible review articles that Authors J. Raeder, K. Borass, R. Bunde, W. should serve as the basis for such a text. Danner, R. Klingelhofer, L. Lengyel, In summary, the book by Raeder et al. should serve as F. Leuterer, M. Soli a useful supplementary text for courses on controlled fusion and a useful enough reference to justify its purchase by Publisher John Wiley & Sons, Inc., Somerset, researchers and instructors active in the various fields of New Jersey (1986) tokamak research that it covers. Despite the recent publica­ tion of a number of very good efforts, the definitive, self­ Pages 316 (illustrated) contained, introductory text on fusion reactor design and a more widely useful reference work for tokamak researchers Price $100.00 remain to be written. Clifford E. Singer Reviewer Clifford E. Singer received his PhD at the University of California, Berkeley. He has worked on the theory and This book is a translation of Kontrol/ierte Kernfusion, applied physics ofplasma transport in tokamak experiments written in 1980. Despite the delay in translation, the book and reactors at Princeton Plasma Physics Laboratory (and remains a timely summary of many aspects of tokamak the University ofIllinois) since 1977.
    [Show full text]
  • Catastrophes in the Elmo Bumpy Torus
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1983 Catastrophes in the Elmo bumpy torus Alkesh R. Punjabi College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Plasma and Beam Physics Commons Recommended Citation Punjabi, Alkesh R., "Catastrophes in the Elmo bumpy torus" (1983). Dissertations, Theses, and Masters Projects. Paper 1539623739. https://dx.doi.org/doi:10.21220/s2-9amh-3v63 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because o f movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • CA ^ F FILE ^N^ ^Q? MBI II Bhb •*• INITIAL RESULTS from the NASA LEWIS BUMPY TOR US EXPERIMENT
    https://ntrs.nasa.gov/search.jsp?R=19740002565 2020-03-23T13:57:37+00:00Z 7 4 10678 NASA TECHNICAL NASA TM X-71468 MEMORANDUM oo ! i—i f 7 ^nA^ ^Q^ ? FMB I FILI I BhBE •*• X C g COPY < < INITIAL RESULTS FROM THE NASA LEWIS BUMPY TOR US EXPERIMENT by J. Reece Roth, Richard W. Richardson, and Glenn A. Gerdin Lewis Research Center Cleveland, Ohio 44135 ;!' TECHNICAL PAPER proposed for presentation at Annual Meeting of the Plasma 1r Physics Division of the American Physical Society Philadelphia, Pennsylvania, August 31 - November 3, 1973 INITIAL RESULTS FROM THE NASA LEWIS BUMPY TORUS EXPERIMENT BY J. REECE ROTH, RICHARD W. RICHARDSON*, AND GLENN A. GERDIN* CD £ NASA LEWIS RESEARCH CENTER t-i- CLEVELAND,: OHIO ABSTRACT Initial results have been obtained from low power operation of the NASA i Lewis Bumpy Torus experiment, in which a steady-state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. The magnet facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T, equally spaced in a toroidal array 1.52 m in major diameter. A 18 cm i.d. anode ring is located at each of the 12 midplanes and is maintained at high positive potentials by a dc power supply. Initial observations indicate electron temperatures from 10 to 150 eV, and ion kinetic temperatures from 200 eV to 1200 eV. Two modes of operation are observed, which depend on background pressure, and have different radial density profiles, Steady state neutron production has been observed.
    [Show full text]
  • Selection of a Toroidal Fusion Reactor Concept for a Magnetic Fusion Production Reactor 1
    Journal of Fusion Energy, Vol. 6, No. 1, 1987 Selection of a Toroidal Fusion Reactor Concept for a Magnetic Fusion Production Reactor 1 D. L. Jassby 2 The basic fusion driver requirements of a toroidal materials production reactor are consid- ered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor. KEY WORDS: Magnetic fusion production reactor; tritium production; fusion breeder; toroidal fusion reactor. 1. STUDY OBJECTIVES Section 2 of this paper establishes the basic requirements that the fusion neutron source must In this study we have identified the most viable satisfy. In Section 3, we compare various types of toroidal fusion driver that can meet the needs of a toroidal fusion concepts for which there has been at materials production facility to be operational in the least some significant development work.
    [Show full text]
  • Magnetic Fusion Technology 1St Edition Pdf Free Download
    MAGNETIC FUSION TECHNOLOGY 1ST EDITION PDF, EPUB, EBOOK Thomas J Dolan | 9781447169277 | | | | | Magnetic Fusion Technology 1st edition PDF Book Design concept of LHD However, due to transit disruptions in some geographies, deliveries may be delayed. Connect with:. Magnetic confinement is one of two major branches of fusion energy research , along with inertial confinement fusion. GA's applied computer science programs are aimed at improving data acquisition, management, analysis, visualization, and collaboration for scientific research at large scales. Boundary physics Search WorldCat to find libraries that may hold this journal. Injecting frozen pellets of deuterium into the fuel mixture can cause enough turbulence to disrupt the islands. Mathematical models can determine the likelihood of a rogue wave and to calculate the exact angle of a counter-wave to cancel it out. Transport V. The next chapters deal with the principles, configuration, and application of high-beta stellarator, fast-linear-compression fusion systems, and ELMO Bumpy torus, as well as the magnetic confinement of high-temperature plasmas. Conclusions and perspectives Power exhaust 5. The mega amp spherical tokamak Equilibrium and Stability IV. This would require the pinch current to be reduced and the external stabilizing magnets to be made much stronger. Stellarators have seen renewed interest since the turn of the millennium as they avoid several problems subsequently found in the tokamak. Thermonuclear weapon Pure fusion weapon. Summary and conclusion Summary Part Four. First built in the UK in , and followed by a series of increasingly large and powerful machines in the UK and US, all early machines proved subject to powerful instabilities in the plasma.
    [Show full text]
  • RESULTS from the ELMO BUMPY^TORUS in a THEORETICAL CONTEXT C. L. Hedrick, R. A. Dandl, R. A. Dory, H. 0. Eason, G. E. Guest, G. R
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UNT Digital Library RESULTS FROM THE ELMO BUMPY^TORUS IN A THEORETICAL CONTEXT C. L. Hedrick, R. A. Dandl, R. A. Dory, H. 0. Eason, G. E. Guest, G. R. Haste, H. Ikegami, E. F. Jaeger, N. H. Lazar, D. G. McAlees, D. H. McNeill, D. B. Nelson, L. W. Owen Oak Ridge National Laboratory, Oak Ridge, Tennessee USA Abstract: Theoretical and experimental results from the ELMO Bumpy Torus will be discussed with particular emphasis on macroscopic stability and transport. The ELMO Bumpy Torus (EBT) is a steady state device [1] composed of a linked set of twenty four 2-to-l mirrors, arranged to form a torus with plasma heated by microwave power. The plasma has two basic components; a mirror confined, high beta, hot electron plasma, forming hollow annuli between each pair of coils; and a moderate temperature toroidal plasma that threads each of the electron annuli. Experiments carried out dur- ing the past year have demonstrated the validity of the basic EBT premise: that plasma currents produced by the high-beta hot-electron annuli can provide macroscopically stable plasma confinement by creating average minimum-B. EBT has also exhibited confinement of particles and energy for 10's of milliseconds, high plasma purity, and no perceptible difficulties with field errors or convective cells. This paper summarizes the princi- pal experimental and theoretical features of the EBT research program. Stability Three distinct, reproducible modes of operation, the C-, T- and M-Modes are observed at successive lower ambient gas pressure.
    [Show full text]
  • Where Are We Going? the Need for an Integrated View of In-Vessel Technology and the Path Forward Discussion
    Where are we going? The need for an integrated view of in-vessel technology and the path forward Comment to FESAC Priorities Panel by RE Nygren, Sandia National Laboratories, 16august2012 Problem statement: Critical skill sets and the knowledge base needed to build in-vessel components for fusion are vanishing from the program due to retirements and redirected scope. Also vanishing in the physics-dominated program is a critical perspective from engineers and technologists about what is real and achievable in the future. The continuing wait for a significant expansion of R&D in materials (i.e., all of fusion nuclear technology) brings a very real threat of losing the experience base in the program needed for an informed well-led transition to a future stronger program in materials and technology. Recommendation: FES should develop and fund a limited set of R&D activities that engage a cadre of “experienced elders” to work with young researchers (future leaders) in two ways. 1. design and build in-vessel components - One idea is a US-supplied plasma facing component with refractory armor for an Asian tokamak. A less ambitious activity would be He-cooled refractory mockups for testing in a foreign facility. (US recently terminated this test capability.) Many countries have stated their interest in this type of activity. China, Japan, Korea, India have done so in discussions on bilateral exchanges. The EU and Russia already have an active program. 2. design studies on next device - Establish one or more design studies for the next machine(s) after ITER. Initially develop a self-consistent set of requirement for exhausting heat (may require an innovative divertor and new approach for protecting the first wall), heating and fueling the plasma, self-sufficient breeding of tritium, and systems for starting up, maintaining and shutting down the plasma.
    [Show full text]
  • Nasa Tm X-73429 G
    NASA TECHNICAL NASA TM X-73429 MEMORANDUM 0% C-." (NASA-TM-X-73429) ALTERNATIVE APPROACHES TO N76-23999 FUSION (-NASA) 54 p HC $4.50- CSCL 201 Unclas ____-____ __ G3/75 __28145 . ALTERNATIVE APPROACHES TO FUSION by J. Reece Roth Lewis Research Center Cleveland, Ohio 44135 Invited lecture for a course on controlled fusion sponsored by the IEEE Nuclear and Plasma Sciences Society Austin, Texas, May 26-28, 1976 CM ol r~° G %C0 VI.,> INTRODUCTION The scope of this lecture is restricted to magnetic confinement concepts which may provide back-up or second- generation alternatives for the Tokamak fusion reactor,-and which have been reduced to practice in the form of operating experimental apparatus. The Tokamak concept has been covered in previous lectures. 'The principal alternatives to Tokamak, theta pinches, open-ended geometries, and their modifications, will be covered in other lectures in this series. Inertial confinement schemes based on fusion microbombs which are ignited by irradiating fuel pellets with lasers or relativistic particle beams will also be covered in other lectures, as will the laser light pipe concept. The purpose of this lecture is to describe alternative plasma con­ finement schemes in such a way that the basic principles of each device can be understood and associated with its name, Desirable characteristics of an advanced fusion reactor will be presented, and the present Tokamak reactor conceptual designs will be examined in light of these criteria. Fusion reactions occur only at kinetic temperatures measured in tens of millions of degrees Kelvin. There are two recognized ways in which fusion reactions can be confined in the steady state, each employing a different field of force for confinement.
    [Show full text]
  • Ca9110926 ALTERNATE FUSION CONCEPTS
    ///////// •'•7//.' Canadian Fusion Fuels Technology Project ca9110926 ALTERNATE FUSION CONCEPTS: STATUS AND PLANS CFFTP-G-9009 October 1990 P.J. Gierszewski, A.A. Harms* and S.B. Nickerson' ALTERNATE FUSION CONCEPTS: STATUS AND PLANS CFFTP-G-9009 October 1990 P.J. Gierszewski, A.A. Harms* and S.B. Nickerson' McMaster University Ontario Hydro Research Division CFFTP-G-9009 Prepared by: P.J. GierszewskiO Fusion Systems Engineer Fuel Systems & Materials Development Canadian Fusion Fuels Technology Project Reviewed by: Manager Fuel Systems & Materials Development Canadian Fusion Fuels Technology Project Approved by: D.P. Dautovich Program Manager Canadian Fusion Fuels Technology Project ACKNOWLEDGEMENTS We are grateful to the research groups at Los Alamos National Laboratory CTR Division (HDZP, CPRF, ZT-40, FRX-C, CTX), Spectra Technologies (LSX), Naval Research Laboratory (ZFX), University of Maryland (MS), Oak Ridge National Laboratory (ATF), Imperial College (HZP), Institut Gas lonizzati (RFX) and University of Stuttgart (DPF), who showed us their facilities, clarified the key issues, and discussed their results and program plans. We also particularly wish to thank D. Rej (LANL), A. Robson (NRL), R. Krakowski (LANL), P. Stangeby (UTIAS), J. Linhart (U. Pisa), M. Peng (ORNL) and G. Miley (U. Illinois) who kindly reviewed specific sections of the report. ALTERNATE FUSION CONCEPTS STATUS AND PLANS Table of Contents 1. Introduction 1 2. Advanced Tokamaks 3 3. Stellarator 11 4. Spherical Torus 18 5. Reversed-Field Pinch 24 6. Dense Z-Pinch 32 7. Field-Reversed Configuration 38 8. Spheromak 45 9. Ignition Experiments and Reactors 9.1 Ignition 52 9.2 Reactors 53 Appendix A: Other Concepts 62 A.1 Colliding Beam Fusion (Migma) 62 A.2 Electrostatic Confinement 63 A.3 Muon-Catalyzed Fusion 64 A.4 Spherical Pinch 64 A.5 Dense Plasma Focus 65 A.6 Linear Systems 66 A.7 Miscellaneous Concepts 67 Appendix B: Inertial Confinement 75 1.
    [Show full text]