Fritz-Haber-Institut Der Max-Planck-Gesellschaft Berlin Reports
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanoparticles of Lanthanide and Transition Metal Oxysulfides : from Colloidal Synthesis to Structure, Surface, Optical and Magnetic Properties Clement Larquet
Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthesis to structure, surface, optical and magnetic properties Clement Larquet To cite this version: Clement Larquet. Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthe- sis to structure, surface, optical and magnetic properties. Material chemistry. Sorbonne Université, 2018. English. NNT : 2018SORUS432. tel-02950055 HAL Id: tel-02950055 https://tel.archives-ouvertes.fr/tel-02950055 Submitted on 27 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 397 : Physique et chimie des matériaux Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Nanoparticles of lanthanide and transition metal oxysulfides: from colloidal synthesis to structure, surface, optical and magnetic properties Par M. Clément Larquet Thèse de doctorat de Sorbonne Université Dirigée par Clément Sanchez et Andrea Gauzzi Présentée et soutenue publiquement le 25 septembre 2018 Devant un jury composé de : Mme. Elsje Alessandra Quadrelli Directrice de recherches - CPE Lyon Rapporteur M. Stéphane Jobic Directeur de recherches - IEMN Rapporteur Mme. Catherine Louis Directrice de recherches - SU Examinatrice Mme. Asma Tougerti Chargée de recherches – Univ. -
The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids—Seeing Nanomaterials As They Are
nanomaterials Review The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids—Seeing Nanomaterials as They Are Daria Semenova 1 and Yuliya E. Silina 2,* 1 Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected] 2 Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany * Correspondence: [email protected] or [email protected]; Tel.: +49-681-302-64717 Received: 23 October 2019; Accepted: 19 November 2019; Published: 23 November 2019 Abstract: The functional properties of organic-inorganic (O-I) hybrids can be easily tuned by combining system components and parameters, making this class of novel nanomaterials a crucial element in various application fields. Unfortunately, the manufacturing of organic-inorganic nanohybrids still suffers from mechanical instability and insufficient synthesis reproducibility. The control of the composition and structure of nanosurfaces themselves is a specific analytical challenge and plays an important role in the future reproducibility of hybrid nanomaterials surface properties and response. Therefore, appropriate and sufficient analytical methodologies and technical guidance for control of their synthesis, characterization and standardization of the final product quality at the nanoscale level should be established. In this review, we summarize and compare the analytical merit of the modern analytical methods, viz. Fourier transform infrared spectroscopy (FTIR), RAMAN spectroscopy, surface plasmon resonance (SPR) and several mass spectrometry (MS)-based techniques, that is, inductively coupled plasma mass spectrometry (ICP-MS), single particle ICP-MS (sp-ICP-MS), laser ablation coupled ICP-MS (LA-ICP-MS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), liquid chromatography mass spectrometry (LC-MS) utilized for characterization of O-I nanohybrids. -
Ringberg Meeting “Bounding the Aerosol Effective Radiative Forcing”
Ringberg meeting “Bounding the aerosol effective radiative forcing” 26 February – 2 March 2018, Schloss Ringberg, Kreuth, Germany Goal: The aim1 is to exclude unlikely strong and weak aerosol forcings (e.g. provide arguments why the aerosol forcing cannot be more negative than -1.5 Wm-2, or why it cannot be positive). We aim for likelihood rather than certainty. Each participant is invited to submit a 1-page list of theses about likely/unlikely aerosol to the group ([email protected]) before the workshop. Concept: One presenter per session - prepares a limited number of theses that quantify or constrain forcings/mechanisms - all participants are invited to submit theses to the presentations - theses can (should) be corroborated briefly by explanations/graphics/references - presenters distribute the theses until late January so participants can prepare for the discussions At the meeting, one rapporteur per session - moderates the plenum discussions and - takes notes for the wrap-up discussions on Friday A large part of the discussions will be in breakout groups: - three breakout groups with 10-12 participants each; - distribution will be randomly selected and change each time, and - a rapporteur per breakout group per session will also be randomly appointed Location: Ringberg Castle (www.schloss-ringberg.de). Participants are expected to cover their own expenses (travel to Munich + 2 hr train from airport / 1 hr from railway station plus 126 € / night including all meals) and be in residence for the duration of the workshop. If financial restrictions might prevent you from coming please let us know and we will look for ways to help offset some or all of the costs. -
Recombinant DNA Technology and Click Chemistry: a Powerful
Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization Mohamed Hamed Misbah1, Mercedes Santos1, Luis Quintanilla1, Christina Günter2, Matilde Alonso1, Andreas Taubert3 and José Carlos Rodríguez-Cabello*1 Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2017, 8, 772–783. 1G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de doi:10.3762/bjnano.8.80 Belén 19, 47011 Valladolid, Spain, 2Institute of Earth and Environmental Sciences, University of Potsdam, D-14476 Potsdam, Received: 27 November 2016 Germany and 3Institute of Chemistry, University of Potsdam, D-14476 Accepted: 07 March 2017 Potsdam, Germany Published: 04 April 2017 Email: This article is part of the Thematic Series "Hybrid nanomaterials: from the José Carlos Rodríguez-Cabello* - [email protected] laboratory to the market". * Corresponding author Associate Editor: M. Stenzel Keywords: © 2017 Misbah et al.; licensee Beilstein-Institut. calcium phosphate; elastin-like recombinamers; hydroxyapatite; License and terms: see end of document. mineralization; SNA15 Abstract Understanding the mechanisms responsible for generating different phases and morphologies of calcium phosphate by elastin-like recombinamers is supreme for bioengineering of advanced multifunctional materials. The generation of such multifunctional hybrid materials depends on the properties of their counterparts and the way in which they are assembled. The success of this assembly depends on the different approaches used, such as recombinant DNA technology and click chemistry. In the present work, an elastin-like recombinamer bearing lysine amino acids distributed along the recombinamer chain has been cross-linked via Huisgen [2 + 3] cycloaddition. The recombinamer contains the SNA15 peptide domains inspired by salivary statherin, a peptide epitope known to specifically bind to and nucleate calcium phosphate. -
Clefs CEA N°60
No. 60 clefsSummer 2011 Chemistry is everywhere No. 60 - Summer 2011 clefs Chemistry is everywhere www.cea.fr No. 60 Summer 2011 clefs Chemistry is everywhere Chemistry 2 Foreword, by Valérie Cabuil is everywhere I. NUCLEAR CHEMISTRY Clefs CEA No. 60 – SUMMER 2011 4 Introduction, by Stéphane Sarrade Main cover picture Dyed polymers for photovoltaic cells. 6 Advances in the separation For many years, CEA has been applying chemistry of actinides, all aspects of chemistry, in all its forms. Chemistry is at the very heart of all its by Pascal Baron major programs, whether low-carbon 10 The chemical specificities energies (nuclear energy and new energy technologies), biomedical and of actinides, environmental technologies or the by Philippe Moisy information technologies. 11 Uranium chemistry: significant P. Avavian/CEA – C. Dupont/CEA advances, Inset by Marinella Mazzanti top: Placing corrosion samples in a high-temperature furnace. 12 Chemistry and chemical P. Stroppa/CEA engineering, the COEX process, by Stéphane Grandjean bottom: Gas sensors incorporating “packaged” NEMS. P. Avavian/CEA 13 Supercritical fluids in chemical Pictogram on inside pages processes, © Fotolia by Audrey Hertz and Frédéric Charton Review published by CEA Communication Division 14 The chemistry of corrosion, Bâtiment Siège by Damien Féron, Christophe Gallé 91191 Gif-sur-Yvette Cedex (France) and Stéphane Gin Phone: + 33 (0)1 64 50 10 00 Fax (editor’s office): + 33 (0)1 64 50 17 22 14 17 Focus A Advances in modeling Executive publisher Xavier Clément in chemistry, by Philippe Guilbaud, Editor in chief Jean-Pierre Dognon, Didier Mathieu, 21 Understanding the chemical Marie-José Loverini (until 30/06/2011) Christophe Morell, André Grand mechanisms of radiolysis and Pascale Maldivi by Gérard Baldacchino Deputy editor Martine Trocellier [email protected] Scientific committee Bernard Bonin, Gilles Damamme, Céline Gaiffier, Étienne Klein, II. -
Joshua Telser Curriculum Vitae
JOSHUA TELSER CURRICULUM VITAE Department of Biological, Physical, and Health Sciences voice: 1 312 341 3687 Roosevelt University fax: 1 312 341 4358 430 S. Michigan Ave. E-mail: [email protected] Chicago, IL 60605-1394 USA Website: http://blogs.roosevelt.edu/jtelser/ EDUCATION: Northwestern University, Evanston, IL; USPHS/NIH Postdoctoral Fellow, September 1984 – September 1986. Postdoctoral advisor: Prof. Brian M. Hoffman. University of Florida, Gainesville, FL; Ph.D. in Inorganic Chemistry, December 1984. University of Illinois, Urbana, IL; graduate student in Inorganic Chemistry, 1980 – 1983. Thesis advisor: Prof. Russell S. Drago (deceased). Cornell University, Ithaca, NY; A.B. in Chemistry (with distinction), May 1980. WORK EXPERIENCE: 9/95 – present: Associate Professor of Chemistry, Roosevelt University, Chicago/Schaumburg, IL; Chemistry Program Coordinator, 1998 – 2000. Assistant Chair, Department of Biological, Chemical and Physical Sciences, 2005 – 2012; 2016 – 2018; Assistant Chair, Department of Biological, Physical, and Health Sciences, 2018 – present. 9/90 – 9/95: Assistant Professor of Chemistry. Taught General Chemistry I and II (CHEM 201, 202), Organic Chemistry Survey (CHEM 210), Inorganic Chemistry (CHEM 341/441), Organometallic Chemistry (CHEM 319/419), Bioinorganic Chemistry (BCHM/CHEM 344/444), and Analytical, Organic, Inorganic, and Physical Chemistry Laboratory courses (CHEM 203, 210, 347, 325), Chemistry Seminar (CHEM 393/493). Research in paramagnetic resonance and magnetic properties of inorganic and biological systems. 9/89 – 9/90: Research Associate, Department of Biochemistry, University of Chicago, Chicago, IL. Research on enzyme catalysis using nitroxide spin-labeled substrates and vanadyl-nucleotide complexes. 4/88 – 9/89: Research Investigator, Contrast Media Department, Squibb Institute for Medical Research, New Brunswick, NJ. -
20 Jahre Helmholtz-Gemeinschaft
2 3 INHALT 49 Im Gespräch – Vorsitzende und Präsidenten von 1995–2015 50 Joachim Treusch 5 54 Detlev Ganten 58 Walter Kröll 7 Vorwort 62 Jürgen Mlynek 9 Die Helmholtz-Gemeinschaft in historischer Perspektive 121 Die Gemeinschaft und ihre 18 Forschungs zentren 66 Die Helmholtz-Gemeinschaft 122 Alfred-Wegener-Institut, Helmholtz-Zentrum im Porträt für Polar- und Meeresforschung 124 Deutsches Elektronen-Synchrotron DESY 70 Forschungsbereiche auf einen Blick 126 Deutsches Krebsforschungszentrum 72 Energie 128 Deutsches Zentrum für Luft- und Raumfahrt 80 Erde und Umwelt 130 Deutsches Zentrum für Neurodegenerative 88 Gesundheit Erkrankungen (DZNE) 96 Luftfahrt, Raumfahrt und Verkehr 132 Forschungszentrum Jülich 104 Materie 134 GEOMAR Helmholtz-Zentrum 112 Schlüsseltechnologien für Ozeanforschung Kiel 136 GSI Helmholtzzentrum für Schwerionenforschung 138 Helmholtz-Zentrum Berlin für Materialien und Energie 140 Helmholtz-Zentrum Dresden-Rossendorf 142 Helmholtz-Zentrum für Infektionsforschung 144 Helmholtz-Zentrum für Umweltforschung – UFZ 146 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung 148 Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt 150 Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ 152 Karlsruher Institut für Technologie 154 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch 156 Max-Planck-Institut für Plasmaphysik 159 Impressum 6 Liebe Leserinnen und Leser, 7 die Geschichte der Helmholtz-Gemeinschaft ist auch eine Geschichte der Forschung in der Bundesrepublik -
Cv Pascalfries.Pdf
Prof. Dr. Pascal Fries Tel: (+49) (0)69 96 769 500 Director Fax: (+49) (0)69 96 769 555 Ernst Strüngmann Institute (ESI) for Neuroscience in [email protected] Cooperation with Max Planck Society http://www.esi-frankfurt.de http://www.esi- Deutschordenstraße 46 frankfurt.de/research/fries-lab 60528 Frankfurt am Main CV Prof. Dr. Pascal Fries 10 June 2021 Citations Date of birth 28 January 1972 Education 2000 Ph.D. from Johann Wolfgang Goethe-University, Frankfurt, Medical School. Supervisor: Prof. Wolf Singer, Max Planck Institute for Brain Research, Frankfurt, Germany. 1998 M.D. from Johann Wolfgang Goethe-University, Frankfurt, Medical School, Frankfurt, Germany. Professional Since 2009 Director of the Ernst Strüngmann Institute (ESI) for experience Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany. Since 2008 Scientific Member of the Max Planck Society. Since 2008 Professor of Systems Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands. 2001 - 2009 Principal Investigator, F.C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands. 1999 - 2001 Postdoctoral Research Fellow with Dr. Robert Desimone, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland. 1998 - 1999 Postdoctoral Research Fellow with Prof. Wolf Singer, Max Curriculum Vitae | Prof. Dr. Pascal Fries 1 Planck Institute for Brain Research, Department of Neurophysiology, Frankfurt, Germany. 1998 - 1999 Residency at the Johann Wolfgang Goethe-University, Frankfurt, Medical School, Department of Psychiatry, Frankfurt, Germany. Awards and Honors 2020 2020 Web of Science Highly Cited Researcher (formerly known as “ISI highly Cited of Thomson Reuters). 2019 2019 Web of Science Highly Cited Researcher 2018 2018 Web of Science Highly Cited Researcher 2017 2017 Web of Science Highly Cited Researcher 2016 2016 Web of Science Highly Cited Researcher 2008 Boehringer Ingelheim FENS (Federation of European Neuroscience Societies) Research Award. -
William T. Petuskey
WILLIAM T. PETUSKEY ADDRESS Department of Chemistry & Biochemistry; Arizona State University Box 871604; Tempe, AZ 85287-1604 CONTACTS 602-965-6358 (ph); 480-965-8293 (fx); 480-307-3402 (cell) [email protected] (e-mail) SPECIALTY Chemistry of Materials: physical chemistry, ceramic materials, glass-ceramic nanocomposites. magnetic nanoferrites, electrical ceramics, chemical vapor deposition, low temperature synthesis of dense and nanoporous oxides EDUCATION Massachusetts Institute of Technology Sc.D. Ceramic Science; Advisor: Prof. H. Kent Bowen 1973-1977 University of Utah B.S., Materials Science and Engineering 1969-1973 PROFESSIONAL EMPLOYMENT Arizona State University Knowledge Enterprise Development Director, Advanced Materials Initiative 2016-present Associate Vice President, Science, Engineering and Technology 2012 – 2016 Department of Chemistry & Biochemistry (now School of Molecular Sciences) Chairman 2006 – 2012 Associate Chairman 2002 – 2006 Professor 1996 – present Assistant Chairman 1986 –1990 Associate Professor 1983 – 1996 School of Materials, Professor 2006 – 2010 Science and Engineering of Materials Graduate Program, Co-Director 1998 – 2006 Tokyo Institute of Technology Research Laboratory of Engineering Materials, Guest Professor 1990 – 1991 University of Illinois at Urbana/Champaign Department of Ceramic Engineering, Assistant Professor 1978 – 1983 Technischen Universität Hannover (now Universität Hannover, Germany) Institüt für Physikalische Chemie und Elektrochemie, Postdoctoral Fellow 1977 – 1978 Supervisor: Prof. Dr. H. Schmalzried Massachusetts Institute of Technology, Research Assistant 1973 – 1977 University of Utah, Research Assistant 1969, 1972 – 73 PROFESSIONAL AND HONORARY SOCIETIES AAAS, American Ceramic Society, American Chemical Society, Royal Society of Chemistry, Tau Beta Pi, Keramos 12/31/2016 Publications of WILLIAM T. PETUSKEY "Chemical Stability and Degradation of MHD Electrodes," H. K. Bowen, J. W. Halloran, W. -
Copolymerization Preparation of Cationic Cyclodextrin Chiral Stationary Phases for Drug Enantioseparation in Chromatography
Copolymerization preparation of cationic cyclodextrin chiral stationary phases for drug enantioseparation in chromatography Ren-Qi Wang ( [email protected] ) Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Siu-Choon Ng ( [email protected] ) Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Teng-Teng Ong Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Ke Huang Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Weihua Tang Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education of China), Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China Method Article Keywords: chiral separation, chiral stationary phases, cyclodextrin, radical copolymerization Posted Date: June 6th, 2012 DOI: https://doi.org/10.1038/protex.2012.023 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/11 Abstract We described a facile and effective protocol wherein radical copolymerization is employed to covalently bond cationic β-cyclodextrin \(β-CD) onto silica particles with extended linkage, resulting in a chiral stationary -
Curriculum Vitae
CURRICULUMVITAE Ralf S. Klessen Ruprecht-Karls-Universität Heidelberg Universitätsprofessor Zentrum für Astronomie (ZAH) Dr. rer. nat. Institut für Theoretische Astrophysik (ITA) Albert-Ueberle-Str. 2, 69120 Heidelberg Germany Tel: +49-6221/54-8978 Fax: +49-6221/54-4221 E-Mail: [email protected] Homepage: http://www.ita.uni-heidelberg.de/∼ralf Personal Data: German, born 18th February 1968, married, four children Wilhelm-Blum-Straße 12–14, 69120 Heidelberg Education and Working Experience: 9/14 — 6/15 Sabbatical Stay at UC Santa Cruz and Stanford University 9/12 — 8/14 Dean of Study, Faculty for Physics and Astronomy 11/11 — Member of the Interdisciplinary Center for Scientific Computing (IWR) 1/10 — 8/10 Sabbatical Stay at Stanford University and UC Santa Cruz 11/07 — 10/12 Managing Director of the Institute for Theoretical Astrophysics 8/08 — 12/13 Deputy Director of the Center of Astronomy at Heidelberg University 4/06 — Professor (W3) of Theoretical Astrophysics at Heidelberg University 4/04 Appointment as Privatdozent at Potsdam University 3/03 — 1/04 Habilitation at Potsdam University 1/02 — 3/06 Head of the Emmy Noether Research Group in “Theory of Star Forma- tion” at the Astrophysical Institute Potsdam 10/00 — 12/01 Otto Hahn Fellow at Lick Observatory, Santa Cruz, sponsored by the Max Planck Society 9/98 — 8/00 Postdoctoral position at Leiden Observatory, The Netherlands 11/94 — 6/98 Dissertation at the University of Heidelberg. Thesis research at the Max Planck Institute for Astronomy, Heidelberg. Title of thesis: “Fragmenta- tion of Molecular Clouds: The Initial Phases of a Stellar Cluster”. -
Meeting Program
Meeting Program 2nd Nano@IAState Meeting - Friday, August 3rd, 2018 Iowa State University, Scheman Building •Meeting Overview Nano@IAState is a single day meeting to bring together ISU, Ames Lab and industrial scientists and researchers working on the synthesis and characterization of nanomaterials and applications of nanoscience. The meeting is open to ISU and Ames Lab graduate and undergraduate students, staff and faculty, and members of local industry. •Sponsors We are grateful to the following sponsors whose generous contributions have made the meeting possible: Iowa State University Research Park, The Department of Materials Science and Engineering, The Ames Laboratory, ISU VP Research, The College of Engineering, The College of Liberal Arts and Sciences, The Department of Chemistry, The Department of Chemical and Biological Engineering and The Department of Physics and Astronomy. •Presentation Information Contributed oral Presentations will have a total duration of 15 minutes, including a few minutes for Questions from the audience. The boards for Poster Presentations will be 4' x 4'. Please make sure your poster is 4' wide or narrower. Poster boards will be available in the morning in the second floor Scheman Lobby. Please bring your posters in the morning so that you can hang them up early. •Organizing Committee Aaron Rossini - Chemistry - [email protected] Matthew Panthani - Chemical and Biological Engineering - [email protected] Martin Thuo - Materials Science and Engineering - [email protected] Zhe Fei - Physics - [email protected]