Quantifying Hurricane Wind Speed with Undersea Sound
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HURRICANE KENNETH (EP132017) 18–23 August 2017
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE KENNETH (EP132017) 18–23 August 2017 Robbie Berg National Hurricane Center 26 January 2018 NASA-NOAA SUOMI NPP ENHANCED INFRARED SATELLITE IMAGE OF HURRICANE KENNETH AT 1034 UTC 21 AUGUST 2017 WHILE AT PEAK INTENSITY Kenneth was a category 4 hurricane (on the Saffir-Simpson Hurricane Wind Scale) over the eastern North Pacific Ocean that did not affect land. Hurricane Kenneth 2 Hurricane Kenneth 18–23 AUGUST 2017 SYNOPTIC HISTORY Kenneth formed from the interaction of two tropical waves which moved off the west coast of Africa on 29 July and 2 August. The first wave moved across the Atlantic Ocean and northern South America at low latitudes and reached the eastern North Pacific Ocean on 8 August. At that point, the wave became more convectively active, but it moved only slowly westward for the next week due to its position south of Hurricane Franklin over the Bay of Campeche. In the meantime, the second tropical wave spawned Hurricane Gert over the western Atlantic, with the southern portion of the wave reaching the eastern North Pacific waters on 12 August. With the subtropical ridge rebuilding over the Gulf of Mexico, the second wave moved at a faster speed toward the west and reached the first tropical wave on 16 August (Fig. 1). The interaction of the two waves caused the development of a low by 1200 UTC 17 August about 530 n mi southwest of Manzanillo, Mexico. Convective banding became more organized and persistent through the day, and the low was designated as a tropical depression by 0600 UTC 18 August about 585 n mi south- southwest of the southern tip of the Baja California peninsula. -
Baseline Assessment Study on Wastewater Management Belize
Caribbean Regional Fund for Wastewater Management Baseline Assessment Study on Wastewater Management Belize December 2013 Revised January 2015 Baseline Assessment Study for the GEF CReW Project: Belize December 2013 Prepared by Dr. Homero Silva Revised January 2015 CONTENTS List of Acronyms....................................................................................................................................................iii 1. Introduction ........................................................................................................................................................ 1 2. The National Context ....................................................................................................................................... 3 Description of the Country .................................................................................................................. 4 Geographic Characteristics ................................................................................................................. 6 Economy by Sectors ............................................................................................................................ 9 The Environment .............................................................................................................................. 13 Land Use, Land Use Changes and Forestry (LULUCF) ....................................................................... 20 Disasters .......................................................................................................................................... -
MASARYK UNIVERSITY BRNO Diploma Thesis
MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories. -
Preparedness and Mitigation in the Americas
PREPAREDNESS AND MITIGATION IN THE AMERICAS Issue No. 79 News and Information for the International Disaster Community January 2000 Inappropriate Relief Donations: What is the Problem? f recent disasters worldwide are any indication, Unsolicited clothing, canned foods and, to a lesser the donation of inappropriate supplies remains extent, pharmaceuticals and medical supplies, I a serious problem for the affected countries. continue to clog the overburdened distribution networks during the immediate aftermath of highly-publicized tragedies. This issue per- sists in spite of health guidelines issued by the World Health Organization, a regional policy adopted by the Ministries of Health of Latin America and the Caribbean, and the educational lobbying efforts of a consortium of primarily European NGOs w w w. wemos.nl). I N S I D E Now the Harvard School of Public Health has partially addressed the issue in a com- prehensive study of U.S. pharmaceutical News from d o n a t i o n s (w w w. h s p h . h a r v a r d . e d u / f a c u l t y / PAHO/WHO r e i c h / d o n a t i o n s / i n d e x . h t m). Although the 2 study correctly concluded that the "problem A sports complex in Valencia, Venezuela, which served as the main temporary shel- Other ter for the population displaced by the disaster, illustrates what happens when an may be more serious in disaster relief situa- Organizations enormous amount of humanitarian aid arrives suddenly in a country. -
Bonnie 19-30 August 1998
PRELIMINARY REPORT Hurricane Bonnie 19-30 August 1998 Lixion A. Avila National Hurricane Center 24 October 1998 Bonnie was the third hurricane to directly hit the coast of North Carolina during the past three years. a. Synoptic History The origin of Bonnie was a large and vigorous tropical wave that moved over Dakar, Senegal on 14 August. The wave was depicted on visible satellite imagery by a large cyclonic low- to mid-level circulation void of deep convection. The wave caused a 24-h surface pressure change of -3.5 and -4.0 mb at Dakar and Sal respectively. There was a well established 700 mb easterly jet which peaked at 50 knots just before the wave axis crossed Dakar, followed by a well marked wind-shift from the surface to the middle troposphere. The overall circulation exited Africa basically just north of Dakar where the ocean was relatively cool. However, a strong high pressure ridge steered the whole system on a west- southwest track over increasingly warmer waters and convection began to develop. Initially, there were several centers of rotation within a much larger circulation and it was not until 1200 UTC 19 August that the system began to consolidate and a tropical depression formed. Although the central area of the tropical depression was poorly organized, the winds to the north of the circulation were nearing tropical storm strength. This was indicated by ship observations and high resolution low-cloud wind vectors provided in real time by the University of Wisconsin. T h e depression was then upgraded to Tropical Storm Bonnie based on these winds and satellite intensity estimates at 1200 UTC 20 August. -
Regional Association IV (North and Central America and the Caribbean) Hurricane Operational Plan
W O R L D M E T E O R O L O G I C A L O R G A N I Z A T I O N T E C H N I C A L D O C U M E N T WMO-TD No. 494 TROPICAL CYCLONE PROGRAMME Report No. TCP-30 Regional Association IV (North and Central America and the Caribbean) Hurricane Operational Plan 2001 Edition SECRETARIAT OF THE WORLD METEOROLOGICAL ORGANIZATION - GENEVA SWITZERLAND ©World Meteorological Organization 2001 N O T E The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. (iv) C O N T E N T S Page Introduction ...............................................................................................................................vii Resolution 14 (IX-RA IV) - RA IV Hurricane Operational Plan .................................................viii CHAPTER 1 - GENERAL 1.1 Introduction .....................................................................................................1-1 1.2 Terminology used in RA IV ..............................................................................1-1 1.2.1 Standard terminology in RA IV .........................................................................1-1 1.2.2 Meaning of other terms used .............................................................................1-3 1.2.3 Equivalent terms ...............................................................................................1-4 -
2017 North Atlantic Hurricane Season Review
2017 North Atlantic Hurricane Season Review RMS REPORT Executive Summary THE 2017 NORTH ATLANTIC HURRICANE SEASON will be remembered as one of the most active, damaging, and costliest seasons on record. The 2017 season saw 17 named storms, with 10 of these storms (Franklin through Ophelia) reaching hurricane strength and occurring consecutively within a hyperactive period between August and October. The season will be remembered for its six major hurricanes and specifically for the impacts of three of these storms: Harvey, Irma, and Maria. Hurricane Harvey, the first U.S. major hurricane (Category 3 or greater on the Saffir-Simpson Hurricane Wind Scale) to make landfall since Hurricane Wilma in 2005, made landfall near Rockport, Texas, as a Category 4 storm in late August, thus ending the contiguous U.S. major hurricane landfall drought at 4,323 days. Harvey brought record-breaking rainfall to southeast Texas that resulted in widespread catastrophic and unprecedented inland flooding across the Houston metropolitan area, damaging more than 300,000 structures. The RMS best estimate is that the insured loss from Hurricane Harvey will likely be between US$25 and US$35 billion. This estimate represents the insured loss associated with wind, storm surge, and inland flood damage across Texas and Louisiana. Florida saw its first Category 4 hurricane landfall since 2004 when Hurricane Irma made landfall over the Florida Keys in mid-September. The system later came ashore near Naples, Florida as a Category 3 storm, causing widespread wind damage and flooding across the state. Before impacting Florida, Irma tracked through the Caribbean as a Category 5 hurricane and caused extensive devastation on many islands, ultimately ranking as the strongest hurricane on record to impact the Leeward Islands. -
Upper-Ocean Influences on Hurricane Intensification Modeling Christopher Gerard Desautels
Upper-Ocean Influences on Hurricane Intensification Modeling by Christopher Gerard DesAutels Submitted to the Department of Earth Atmospheric and Planetary Sciences in partial fulfillment of the requirements for the degree of Professional Masters in Geosystems at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY ay 2000 @ Christopher Gerard IesAutels, MM. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author . D ......ent. of arth Atmospheric Department.\ of arth Atmospheric and Planetary Sciences May 5, 2 0001o Certified by 'I~' ' Dr. Kerry Emanuel Professor Thesis Supervisor Accepted by .................................. Dr. Ronald G. Prinn Head, Department of Earth Atmospheric and Planetary Sciences Upper-Ocean Influences on Hurricane Intensification Modeling by Christopher Gerard DesAutels Submitted to the Department of Earth Atmospheric and Planetary Sciences on May 5, 2000, in partial fulfillment of the requirements for the degree of Professional Masters in Geosystems Abstract Hurricane intensification modeling has been a difficult problem for the atmospheric science community. Complex models have been built to simulate the process, but with only a certain amount of success. A model developed by Dr. Kerry Emanuel is much simpler compared to previous studies. The Emanuel model approaches hurricane intensification as an ocean-controlled process where the upper-ocean heat content limits intensification. It is shown that this ocean-based model can produce very accurate results when the true structure of the ocean can be determined. The Ocean Topography Experiment (TOPEX) provides an opportunity for the model to be tested through the use of satellite altimetry. -
Hurricanes and Tropical Storms in the Netherlands Antilles and Aruba
METEOROLOGICAL SERVICE NETHERLANDS ANTILLES AND ARUBA 1 CONTENTS Introduction. 3 Meteorological Service of the Netherlands Antilles and Aruba.. 4 Tropical cyclones of the North Atlantic Ocean. 5 Characteristics of tropical cyclones. 6 Frequency and development of Atlantic tropical cyclones.. 7 Classification of Atlantic tropical cyclones. 8 Climatology of Atlantic tropical cyclones.. 10 Wind and Pressure. 10 Storm Surge. 10 Steering. 11 Duration of tropical cyclones.. 11 Hurricane Season. 12 Monthly and annual frequencies of Atlantic tropical cyclones. 13 Atlantic tropical cyclone basin, areas of formation.. 14 Identification of Atlantic tropical cyclones. 15 Hurricane preparedness and disaster prevention. 16 Hurricane climatology of the Netherlands Antilles. 18 The Leeward (ABC) Islands. 18 The Windward (SSS) Islands. 20 Hurricane Donna and other past hurricanes. 20 Hurricane Luis. 20 Hurricane Lenny. 22 Disaster preparedness organization in the Netherlands Antilles and Aruba. 25 References. 27 Attachment I - Tropical cyclones passing within 100 NM of 12.5N 69.0W through December 31, 2009.. 28 Attachment II - Tropical cyclones passing within 100 NM of 17.5N 63.0W through December 31, 2009. 30 Attachment III - International Hurricane Scale (IHS). 36 Attachment IV - Saffir/Simpson Hurricane Scale (SSH). 37 Attachment V - Words of warning.. 38 Last Updated: April 2010 2 Introduction The Netherlands Antilles consist of five small islands, located in two different geographical locations. The Leeward Islands or so-called "Benedenwindse Eilanden", Bonaire and Curaçao near 12 degrees North, 69 degrees West along the north coast of Venezuela, and the Windward Islands or so-called "Bovenwindse Eilanden", Saba, St. Eustatius and St. Maarten near 18 degrees north, 63 degrees west in the island chain of the Lesser Antilles. -
2017 Climate Summary
& ~ Hurricane Season Review ~ St. Maarten experienced catastrophic damage during the passage of Hurricane Irma on September 6th 2017. Meteorological Department St. Maarten Airport Rd. # 114, Simpson Bay (721) 545-4226 www.meteosxm.com MDS Climatological Summary 2017 The information contained in this Climatological Summary must not be copied in part or any form, or communicated for the use of any other party without the expressed written permission of the Meteorological Department St. Maarten. All data and observations were recorded at the Princess Juliana International Airport. This document is published by the Meteorological Department St. Maarten, and a digital copy is available on our website. Prepared by: Sheryl Etienne-LeBlanc Published by: Meteorological Department St. Maarten Airport Road #114, Simpson Bay St. Maarten, Dutch Caribbean Telephone: (721) 545-4226 Website: www.meteosxm.com E-mail: [email protected] www.facebook.com/sxmweather www.twitter.com/@sxmweather MDS © April 2018 Page 2 of 34 MDS Climatological Summary 2017 Table of Contents Introduction.............................................................................................................. 4 Island Climatology……............................................................................................. 5 About Us……………………………………………………………………………..……….……………… 6 2017 Hurricane Season Summary…………………………………………………………………………………………….. 8 Local Effects...................................................................................................... 9 Summary -
`Table of Contents
Socio-economic, Terrestrial and Physical Environment Setting `Table of Contents 4.0 SOCIO-ECONOMIC, TERRESTRIAL AND PHYSICAL ENVIRONMENT SETTING ...... 4-1 4.1 Onshore Environment ........................................................................................... 4-1 4.1.1 Socio-economic Environment .................................................................................... 4-1 4.1.1.1 Community Physical Infrastructure and Services ........................................... 4-1 4.1.1.2 Employment and Labour ................................................................................. 4-3 4.1.1.3 Summary ....................................................................................................... 4-10 4.1.2 Terrestrial Environment ............................................................................................ 4-10 4.2 Nearshore Environment ...................................................................................... 4-11 4.2.1 Atmospheric Environment ........................................................................................4-11 4.2.1.1 Climate Overview .......................................................................................... 4-11 4.2.1.2 Air Temperature ............................................................................................ 4-15 4.2.1.3 Wind Climatology .......................................................................................... 4-18 4.2.1.4 Precipitation and Severe Weather ............................................................... -
Hurricane.Pdf
AUGUST 2009 N O T E S A N D C O R R E S P O N D E N C E 2481 NOTES AND CORRESPONDENCE Inertial Particle Dynamics in a Hurricane THEMISTOKLIS SAPSIS AND GEORGE HALLER Massachusetts Institute of Technology, Cambridge, Massachusetts (Manuscript received 23 June 2008, in final form 8 February 2009) ABSTRACT The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally attracting slow manifold in the phase space of particle motions. Use of the inertial equation enables the visualization of three-dimensional inertial Lagrangian coherent structures (ILCS) on the slow manifold. These ILCS govern the asymptotic behavior of finite-size particles within a hurricane. A comparison of the attracting ILCS with conventional Eulerian fields reveals the Lagrangian footprint of the hurricane eyewall and of a large rainband. By contrast, repelling ILCS within the eye region admit a more complex geometry that cannot be compared directly with Eulerian features. 1. Introduction a. Prior work on coherent structures in hurricanes Our focus here is the dynamics of inertial (i.e., small Although the prediction of hurricane tracks has consid- but finite) particles in the three-dimensional flow field of erably improved over the past decades, there is still sub- Hurricane Isabel (cf. Fig. 1). Inertial particles in a fluid stantial room for improvement in hurricane intensity are typically modeled as small spherical objects whose forecasting (Houze et al.