The Eastern Alps: Result of a Two-Stage Collision Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Structure of the Alps: an Overview 1 Institut Fiir Geologie Und Paläontologie, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
Carpathian-Balkan Geological pp. 7-24 Salzburg Association, XVI Con ress Wien, 1998 The structure of the Alps: an overview F. Neubauer Genser Handler and W. Kurz \ J. 1, R. 1 2 1 Institut fiir Geologie und Paläontologie, Hellbrunnerstr. 34, A-5020 Salzburg, Austria. 2 Institut fiir Geologie und Paläontologie, Heinrichstr. 26, A-80 10 Graz, Austria Abstract New data on the present structure and the Late Paleozoic to Recent geological evolution ofthe Eastem Alps are reviewed mainly in respect to the distribution of Alpidic, Cretaceous and Tertiary, metamorphic overprints and the corresponding structure. Following these data, the Alps as a whole, and the Eastem Alps in particular, are the result of two independent Alpidic collisional orogens: The Cretaceous orogeny fo rmed the present Austroalpine units sensu lato (including from fo otwall to hangingwall the Austroalpine s. str. unit, the Meliata-Hallstatt units, and the Upper Juvavic units), the Eocene-Oligocene orogeny resulted from continent continent collision and overriding of the stable European continental lithosphere by the Austroalpine continental microplate. Consequently, a fundamental difference in present-day structure of the Eastem and Centrai/Westem Alps resulted. Exhumation of metamorphic crust fo rmed during Cretaceous and Tertiary orogenies resulted from several processes including subvertical extrusion due to lithospheric indentation, tectonic unroofing and erosional denudation. Original paleogeographic relationships were destroyed and veiled by late Cretaceous sinistral shear, and Oligocene-Miocene sinistral wrenching within Austroalpine units, and subsequent eastward lateral escape of units exposed within the centrat axis of the Alps along the Periadriatic fault system due to the indentation ofthe rigid Southalpine indenter. -
Present-Day Uplift of the European Alps Evaluating Mechanisms And
Earth-Science Reviews 190 (2019) 589–604 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Present-day uplift of the European Alps: Evaluating mechanisms and models T of their relative contributions ⁎ Pietro Sternaia, ,1, Christian Sueb, Laurent Hussonc, Enrico Serpellonid, Thorsten W. Beckere, Sean D. Willettf, Claudio Faccennag, Andrea Di Giulioh, Giorgio Spadai, Laurent Jolivetj, Pierre Vallac,k, Carole Petitl, Jean-Mathieu Nocquetm, Andrea Walpersdorfc, Sébastien Castelltorta a Département de Sciences de la Terre, Université de Genève, Geneva, Switzerland b Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France c Université Grenoble Alpes, CNRS, IRD, IFSTAR, ISTERRE, Université Savoie Mont Blanc, Grenoble 38000, France d Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti, Bologna, Italy e Institute for Geophysics, Department of Geological Sciences, Jackson School of Geosciences, The University Texas at Austin, Austin, TX, USA f Erdwissenschaften, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland g Dipartimento di Scienze, Università di Roma III, Rome, Italy h Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Pavia, Italy i Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy j Sorbonne Université, Paris, France k Institute of Geological Sciences, Oeschger Center for Climate Research, University of Bern, Switzerland l Geoazur, IRD, Observatoire de la Côte d'Azur, CNRS, Université de Nice Sophia-Antipolis, Valbonne, France m Institut de Physique du Globe de Paris, Paris, France ARTICLE INFO ABSTRACT Keywords: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical European Alps velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western Vertical displacement rate and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. -
Insights Into the Thermal History of North-Eastern Switzerland—Apatite
geosciences Article Insights into the Thermal History of North-Eastern Switzerland—Apatite Fission Track Dating of Deep Drill Core Samples from the Swiss Jura Mountains and the Swiss Molasse Basin Diego Villagómez Díaz 1,2,* , Silvia Omodeo-Salé 1 , Alexey Ulyanov 3 and Andrea Moscariello 1 1 Department of Earth Sciences, University of Geneva, 13 rue des Maraîchers, 1205 Geneva, Switzerland; [email protected] (S.O.-S.); [email protected] (A.M.) 2 Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex GU28 0LH, UK 3 Institut des sciences de la Terre, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland; [email protected] * Correspondence: [email protected] Abstract: This work presents new apatite fission track LA–ICP–MS (Laser Ablation Inductively Cou- pled Plasma Mass Spectrometry) data from Mid–Late Paleozoic rocks, which form the substratum of the Swiss Jura mountains (the Tabular Jura and the Jura fold-and-thrust belt) and the northern margin of the Swiss Molasse Basin. Samples were collected from cores of deep boreholes drilled in North Switzerland in the 1980s, which reached the crystalline basement. Our thermochronological data show that the region experienced a multi-cycle history of heating and cooling that we ascribe to burial and exhumation, respectively. Sedimentation in the Swiss Jura Mountains occurred continuously from Early Triassic to Early Cretaceous, leading to the deposition of maximum 2 km of sediments. Subsequently, less than 1 km of Lower Cretaceous and Upper Jurassic sediments were slowly eroded during the Late Cretaceous, plausibly as a consequence of the northward migration of the forebulge Citation: Villagómez Díaz, D.; Omodeo-Salé, S.; Ulyanov, A.; of the neo-forming North Alpine Foreland Basin. -
The Tectonic and Rheological Evolution of An
The tectonic and rheological evolution of an attenuated cross section of the continental crust: Ivrea crustal section, southern Alps, northwestern Italy and southern Switzerland M. R. HANDY Geologisches Institut, Universität Bern, Baltzerstrasse 1, 3012 Bern, Switzerland A. ZINGG Geologisches Institut, Universität Basel Bernoullistrasse 32, 4056 Basel Switzerland ABSTRACT The tectonic and rheological evolution of the southern Alpine The Ivrea crustal cross section in northwestern Italy and southern continental crust is reconstructed from structural, petrological, and Switzerland (Fig. 1) is an excellent area to test geophysical models of the radiometric studies in the Ivrea and Strona-Ceneri basement units. continental crust. The section actually consists of two basement units, the The deep crust of the southern Alps acquired its present compositional Ivrea zone and the Strona-Ceneri zone, which represent thinned lower to and metamorphic zonation during Paleozoic magmatism and amphib- intermediate continental crust of the southern Alps (reviews in Zingg, olite-to granulite-facies regional metamorphism. Inferred strength con- 1983; Boriani and Origoni Giobbi, 1984; Zingg and others, 1990). The trasts between lower crustal and upper mantle rocks in the Ivrea zone Permian-Mesozoic sedimentary cover of the Strona-Ceneri zone crops out are low at the high temperatures of regional metamorphism. Late to the south of the basement section (Fig. 1). The history of the Ivrea and Paleozoic transtension and basic to intermediate magmatism in all Strona-Ceneri zones is loosely subdivided into three tectonometamorphic crustal levels preceded extensional faulting associated with the forma- episodes (Fig. 2). Large-scale magmatism and regional metamorphism tion of a passive continental margin during early Mesozoic time. -
Rapid Formation and Exhumation of the Youngest Alpine Eclogites: a Thermal Conundrum to Barrovian Metamorphism
Earth and Planetary Science Letters 306 (2011) 193–204 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Rapid formation and exhumation of the youngest Alpine eclogites: A thermal conundrum to Barrovian metamorphism Andrew J. Smye a,⁎, Mike J. Bickle a, Tim J.B. Holland a, Randall R. Parrish b, Dan J. Condon b a Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK b NERC National Isotope Geoscience Laboratories, Kinglsey Dunhem Centre, Keyworth, Nottingham, NG12 5GG, UK article info abstract Article history: Eclogite facies metamorphic rocks provide critical information pertaining to the timing of continental collision Received 15 December 2010 in zones of plate convergence. Despite being amongst Earth's best studied orogens, little is understood about Received in revised form 28 March 2011 the rates of Alpine metamorphism within the Eastern Alps. We present LA–MC–ICPMS and ID–TIMS U–Pb Accepted 29 March 2011 ages of metamorphic allanite from the Eclogite Zone, Tauern Window, which when coupled with rare earth Available online 30 April 2011 element analysis and thermobarometric modelling, demonstrate that the European continental margin was – fi Editor: R.W. Carlson subducted to between 8 and 13 kbar (30 45 km) by 34.2±3.6 Ma. These data de ne: (i.) an upper limit on the timing of eclogite facies metamorphism at 26.2±1.8 kbar (70–80 km) and 553±12 °C, (ii.) plate velocity −1 Keywords: (1–6 cm·a ) exhumation of the Eclogite Zone from mantle to mid-crustal depths, and (iii.) a maximum eclogite duration of 10 Ma (28–38 Ma) for juxtaposition of Alpine upper-plate and European basement units and Barrovian metamorphism subsequent conductive heating thought to have driven regional Barrovian (re)crystallisation at ca. -
Geological Excursion BASE-Line Earth
Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17 -
Figures Are Shown in Italics; Tables in Bold Accretion 307 Accretion Wedge
Index Figures are shown in italics; tables in bold accretion 307 geochemistry 10–18 accretion wedge 132, 189, 286, 330 geodynamics 32–36 Apennine 421, 429, 430, 431, 432, 433 intrusive history 28–32 actinolite 290 lithology 6 Adriatic (Apulian) Plate 5–36, 134, 146, 157, 403 magmatic evolution 9–18 Adula nappe 4, 264, 266–271 metamorphic age 7–9 deformation 377–383 metamorphism 18–28 lithology and structure 369–371 age 27–28 petrology 371–377 Alpine 35–36 Tertiary subduction 365–387 pre-Alpine 23–27 age data 2, 8, 9, 70 structural evolution 18–28 Austroalpine basement 14–17,27 post-collision 28–32 Carpathians 103–106 Avalonia 5 Rieserferner pluton 29 Tauern Window 94–97 backthrust 425, 430 age of deformation backthrusting 252, 253, 274, 365, 367, 368 Dinarides 353–354 Barrovian metamorphism (HT metamorphism) 371, Monte Rosa nappe 265–266 373–377, 394, 396 Valstrona di Omega 46, 48, 54, 59–61, 62 basalt, sub-greenschist facies 298–300 age of magmatic rock–suite 12–13 biostratigraphy 335–359 age of metamorphism 424 bituminite reflectance 285, 294, 295 age, nannofossil 337–339, 348, 350 blueschist 118, 120, 128, 129, 134, 424, 400 age, petrology and isotopic age 117–136 Carpathians 101, 104, 105, 106, 110 age, Eocene–Miocene revised 335–359 boudinage 50, 52, 53 Ahorn shear zone 199–204, 206–216 Brenner Fault 197, 214 Ahrntal Fault 199, 214 Brianc¸onnais ALCAPA see Alpine–Carpathian–Pannonian unit basement 400, 401 Alpine Austroalpine–Penninic suture 8 metamorphism 125, 129 Alpine deformation phases 211 subduction 132, 136, 383 Alpine Tethys -
The Eastern Alps: Result of a Two-Stage Collision Process
© Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Mil. Cteto-r. Goo GOG. ISSN 02hl 7-193 92 11999; 117 13-1 Wen Jui 2000 The Eastern Alps: Result of a two-stage collision process FRANZ NEUBAUER1, JOHANN GENSER1, ROBERT HANDLER1 8 Figures Abstract The present structure and the Late Paleozoic to Recent geological evolution of the Alps are reviewed mainly with respect to the distribution of Alpidic, metamorphic overprints of Cretaceous and Tertiary age and the corresponding ductile structure. According to these data, the Alps as a whole, and the Eastern Alps in particular, are the result of two independent Alpidic collisional orogenies: The Cretaceous orogeny formed the present Austroaipine units sensu lato (extending from bottom to top of the Austroaipine unit s. str., the Meliata unit, and the Upper Juvavic unit) including a very low- to eclogite-grade metamorphic overprint. The Eocene-Oligocene orogeny resulted from an oblique continent-continent collision and overriding of the stable European continental lithosphere by the combined Austroalpine/Adriatic continental microplate. A fundamental difference seen in the present-day structure of the Eastern and Central/ Western Alps resulted as the Austroaipine units with a pronounced remnants of a Oligocene/Neogene relief are mainly exposed in the Eastern Alps, in contrast to the Central/Western Alps with Penninic units, which have been metamorphosed during Oligocene. Exhumation of metamorphic crust, formed during Cretaceous and Tertiary orogenies, arose from several processes including subvertical extrusion due to lithospheric indentation, tectonic unroofing and erosional denudation. Original paleogeographic relationships were destroyed and veiled by late Cretaceous sinistral shear, Oligocene-Miocene sinistral wrenching along ENE-trending faults within eastern Austroaipine units and the subsequent eastward lateral escape of units exposed within the central axis of the Alps. -
Ivrea Mantle Wedge, Arc of the Western Alps, and Kinematic Evolution of the Alps–Apennines Orogenic System
Swiss J Geosci DOI 10.1007/s00015-016-0237-0 Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system 1 1 1 2 Stefan M. Schmid • Eduard Kissling • Tobias Diehl • Douwe J. J. van Hinsbergen • Giancarlo Molli3 Received: 6 June 2016 / Accepted: 9 December 2016 Ó Swiss Geological Society 2017 Abstract The construction of five crustal-scale profiles related to the lateral indentation of the Ivrea mantle slice across the Western Alps and the Ivrea mantle wedge towards WNW by some 100–150 km. (4) The final stage of integrates up-to-date geological and geophysical informa- arc formation (25–0 Ma) is associated with orogeny in the tion and reveals important along strike changes in the Apennines leading to oroclinal bending in the southern- overall structure of the crust of the Western Alpine arc. most Western Alps in connection with the 50° counter- Tectonic analysis of the profiles, together with a review of clockwise rotation of the Corsica-Sardinia block and the the existing literature allows for proposing the following Ligurian Alps. Analysis of existing literature data on the multistage evolution of the arc of the Western Alps: (1) Alps–Apennines transition zone reveals that substantial exhumation of the mantle beneath the Ivrea Zone to shal- parts of the Northern Apennines formerly suffered Alpine- low crustal depths during Mesozoic is a prerequisite for the type shortening associated with an E-dipping Alpine sub- formation of a strong Ivrea mantle wedge whose strength duction zone and were backthrusted to the NE during exceeds that of surrounding mostly quartz-bearing units, Apenninic orogeny that commences in the Oligocene. -
Alps the Role of the Periadriatic Line in the Tectonic Evolution of The
Geological Society, London, Special Publications The role of the Periadriatic Line in the tectonic evolution of the Alps S. M. Schmid, H. R. Aebli, F. Heller and A. Zingg Geological Society, London, Special Publications 1989; v. 45; p. 153-171 doi:10.1144/GSL.SP.1989.045.01.08 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 30 May 2007 © 1989 Geological Society of London The role of the Periadriatic Line in the tectonic evolution of the Alps S. M. Schmid, H. R. Aebli, F. Heller & A. Zingg SUMMARY: The Periadriatic Line and related lineaments formed as a result of post- collisional deformations which severely modified the Alpine chain. This post-late Oligocene deformation is the result of dextral transpression between the Adriatic sub-plate and the European foreland. Indentation of the western edge of the southern Alps caused uplift, related to backthrusting and associated deformations of the Lepontine region combined with E-directed escape of the central Alps. In the eastern Alps the response to dextral transpression is mainly by lateral escape along conjugate strike slip zones with minor or no vertical movements. Older deformations along this essentially late Alpine lineament can still be inferred locally and include: extension and transfer faulting in the late Palaeozoic to early Mesozoic, Cretaceous deformations, and Tertiary phases of compression (Eocene) and possibly extension (Oligocene). -
Field Trip - Alps 2013
Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010). -
Mapping of the Post-Collisional Cooling History of the Eastern Alps
1661-8726/08/01S207-17 Swiss J. Geosci. 101 (2008) Supplement 1, S207–S223 DOI 10.1007/s00015-008-1294-9 Birkhäuser Verlag, Basel, 2008 Mapping of the post-collisional cooling history of the Eastern Alps STEFAN W. LUTH 1, * & ERNST WILLINGSHOFER1 Key words: Eastern Alps, Tauern Window, geochronology, cooling, mapping, exhumation ABSTRACT We present a database of geochronological data documenting the post-col- High cooling rates (50 °C/Ma) within the TW are recorded for the tem- lisional cooling history of the Eastern Alps. This data is presented as (a) geo- perature interval of 375–230 °C and occurred from Early Miocene in the east referenced isochrone maps based on Rb/Sr, K/Ar (biotite) and fission track to Middle Miocene in the west. Fast cooling post-dates rapid, isothermal exhu- (apatite, zircon) dating portraying cooling from upper greenschist/amphibo- mation of the TW but was coeval with the climax of lateral extrusion tectonics. lite facies metamorphism (500–600 °C) to 110 °C, and (b) as temperature maps The cooling maps also portray the diachronous character of cooling within documenting key times (25, 20, 15, 10 Ma) in the cooling history of the Eastern the TW (earlier in the east by ca. 5 Ma), which is recognized within all isotope Alps. These cooling maps facilitate detecting of cooling patterns and cooling systems considered in this study. rates which give insight into the underlying processes governing rock exhuma- Cooling in the western TW was controlled by activity along the Brenner tion and cooling on a regional scale. normal fault as shown by gradually decreasing ages towards the Brenner Line.