Mechanisms of Speciation in Reptiles and Amphibians: a Synopsis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling and Partitioning the Nucleotide Evolutionary Process for Phylogenetic and Comparative Genomic Inference
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2007 Modeling And Partitioning The Nucleotide Evolutionary Process For Phylogenetic And Comparative Genomic Inference Todd Castoe University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Castoe, Todd, "Modeling And Partitioning The Nucleotide Evolutionary Process For Phylogenetic And Comparative Genomic Inference" (2007). Electronic Theses and Dissertations, 2004-2019. 3111. https://stars.library.ucf.edu/etd/3111 MODELING AND PARTITIONING THE NUCLEOTIDE EVOLUTIONARY PROCESS FOR PHYLOGENETIC AND COMPARATIVE GENOMIC INFERENCE by TODD A. CASTOE B.S. SUNY – College of Environmental Science and Forestry, 1999 M.S. The University of Texas at Arlington, 2001 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomolecular Sciences in the Burnett College of Biomedical Sciences at the University of Central Florida Orlando, Florida Spring Term 2007 Major Professor: Christopher L. Parkinson © 2007 Todd A. Castoe ii ABSTRACT The transformation of genomic data into functionally relevant information about the composition of biological systems hinges critically on the field of computational genome biology, at the core of which lies comparative genomics. The aim of comparative genomics is to extract meaningful functional information from the differences and similarities observed across genomes of different organisms. -
A Review of Sampling and Monitoring Methods for Beneficial Arthropods
insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems. -
And Resurrection of Anolis (Diaphoranolis) Brooksi 1Steven Poe and 2Mason J
Ofcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 11(2) [General Section]: 1–16 (e141). urn:lsid:zoobank.org:pub:31FA8B4B-718B-4440-AE19-9E1AC95524BD Description of two new species similar to Anolis insignis (Squamata: Iguanidae) and resurrection of Anolis (Diaphoranolis) brooksi 1Steven Poe and 2Mason J. Ryan 1,3Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Arizona Game and Fish Department, 5000 W. Carefree Highway, Phoenix, AZ 85086, USA Abstract.—The spectacular giant anole lizard Anolis insignis is widely distributed but infrequently collected outside of northern Costa Rica. We recently collected several individuals similar to Anolis insignis from localities in Panama and southern Costa Rica. These populations difer from type locality A. insignis in male dewlap color and morphology. We associate one set of these populations with Anolis (Diaphoranolis) brooksi Barbour from Darién, Panama, and describe two additional populations as new species. Keywords. Central America, Costa Rica, lizard, Panama, Reptilia, taxonomy Citation: Poe S and Ryan MJ. 2017. Description of two new species similar to Anolis insignis (Squamata: Iguanidae) and resurrection of Anolis (Diaphoranolis) brooksi. Amphibian & Reptile Conservation 11(2) [General Section]: 1–16 (e141). Copyright: © 2017 Poe and Ryan. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the ofcial and authorized publication sources are recognized and properly credited. The ofcial and authorized publication credit sources, which will be duly enforced, are as follows: ofcial journal title Amphibian & Reptile Conservation; ofcial journal website <amphibian- reptile-conservation.org>. -
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF. -
A New Computing Environment for Modeling Species Distribution
EXPLORATORY RESEARCH RECOGNIZED WORLDWIDE Botany, ecology, zoology, plant and animal genetics. In these and other sub-areas of Biological Sciences, Brazilian scientists contributed with results recognized worldwide. FAPESP,São Paulo Research Foundation, is one of the main Brazilian agencies for the promotion of research.The foundation supports the training of human resources and the consolidation and expansion of research in the state of São Paulo. Thematic Projects are research projects that aim at world class results, usually gathering multidisciplinary teams around a major theme. Because of their exploratory nature, the projects can have a duration of up to five years. SCIENTIFIC OPPORTUNITIES IN SÃO PAULO,BRAZIL Brazil is one of the four main emerging nations. More than ten thousand doctorate level scientists are formed yearly and the country ranks 13th in the number of scientific papers published. The State of São Paulo, with 40 million people and 34% of Brazil’s GNP responds for 52% of the science created in Brazil.The state hosts important universities like the University of São Paulo (USP) and the State University of Campinas (Unicamp), the growing São Paulo State University (UNESP), Federal University of São Paulo (UNIFESP), Federal University of ABC (ABC is a metropolitan region in São Paulo), Federal University of São Carlos, the Aeronautics Technology Institute (ITA) and the National Space Research Institute (INPE). Universities in the state of São Paulo have strong graduate programs: the University of São Paulo forms two thousand doctorates every year, the State University of Campinas forms eight hundred and the University of the State of São Paulo six hundred. -
Liolaemus Melanopleurus (Philippi, 1860) Lagartija De Flancos Negros
Área temática Nombre campo Información ingresada para dicho campo de la información Nomenclatura Reino* Animalia Phyllum o División* Chordata Clase* Reptilia Orden* Squamata Familia* Liolaemidae Género* Liolaemus Nombre científico* Liolaemus melanopleurus (Philippi, 1860) Autores especie* Philippi, 1860 Referencia descripción PHILIPPI, RA (1860) Viaje al desierto de Atacama hecho de orden del gobierno de especie* Chile en el verano 1853-54. Librería de Eduardo Anton, Halle en Sajonia. Nota taxonómica* Philippi (1860) describió esta especie como Proctotretus melanopleurus mencionando como terra typica al “Desierto de Atacama” sin nombrar una localidad específica. Este autor en la misma publicación describe a Proctotretus pallidus con especímenes recolectados en Paposo. Boulenger (1885) consideró a P. melanopleurus como sinónimo de Liolaemus darwinii, sin mencionar argumentos. Este mismo autor sinonimizó a P. pallidus con Liolaemus nigromaculatus (Boulenger, 1885). Tiedemann y Häupl (1980) propusieron que L. melanopleurus era un sinónimo de L. pallidus. Ortiz y Núñez (1986) rechazaron la propuesta de Tiedemann y Häupl (1980), dado que los ejemplares de L. pallidus que estos últimos autores revisaron provenían de Huasco y no de Paposo, y decidieron considerar a L. menalopleurus como una especie dudosa. Etheridge (1995) la consideró una especie válida y Núñez et al. (2000) vuelven a considerarla como una especie dudosa. Finalmente, Pincheira-Donoso y Núñez (2005) la consideran una especie válida y nuevos autores han mantenido esta propuesta hasta hoy (Troncoso-Palacios 2012, Demangel 2016, Mella 2017). Demangel (2016) sugiere que L. melanopleurus puede corresponder a una población no conocida afín a L. nigrocoeruleus (Marambio-Alfaro y Troncoso- Palacios 2014), proveniente probablemente de las cercanías de Caldera, no obstante, no existen estudios formales que sustenten esta propuesta. -
Correlates of Eye Colour and Pattern in Mantellid Frogs
SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris. -
New Sahonagasy Action Plan 2016-2020
New Sahonagasy Action Plan 2016-2020 1 New Sahonagasy Action Plan 2016 – 2020 Nouveau plan d’Action Sahonagasy 2016 – 2020 Edited by: Franco Andreone, IUCN SSC Amphibian Specialist Group - Madagascar Jeff S. Dawson, Durrell Wildlife Conservation Trust Falitiana C. E. Rabemananjara, IUCN SSC Amphibian Specialist Group - Madagascar Nirhy H.C. Rabibisoa, IUCN SSC Amphibian Specialist Group - Madagascar Tsanta F. Rakotonanahary, Durrell Wildlife Conservation Trust With assistance from: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance James P. Lewis, Amphibian Survival Alliance/Rainforest Trust Published by: Museo Regionale di Scienze Naturali (Turin, Italy) and Amphibian Survival Alliance (Warrenton, VA) Publication date: June 2016 Recommended citation: Andreone, F., Dawson, J.S., Rabemananjara, F.C.E., Rabibisoa, N.H.C. & Rakotonanahary, T.F. (eds). 2016. New Sahonagasy Action Plan 2016–2020 / Nouveau Plan d'Action Sahonagasy 2016–2020. Museo Regionale di Scienze Naturali and Amphibian Survival Alliance, Turin. ISBN: 978-88-97189-26-8 Layout by: Candace M. Hansen-Hendrikx, Amphibian Survival Alliance Translation into French: Mathilde Malas, Speech Bubbles, www.speechbubbles.eu Printed by: Centro Stampa Regione Piemonte, Turin Front cover: Spinomantis aglavei, Gonçalo M. Rosa Back cover: Mantella expectata, Gonçalo M. Rosa IUCN - International Union for Conservation of Nature Founded in 1948, The International Union for Conservation of Nature brings together States, government agencies and a diverse range of nongovernmental organizations in a unique world partnership: over 1,000 members in all spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. -
Species Summary
Podarcis gaigeae Region: 3 Taxonomic Authority: (Werner, 1930) Synonyms: Common Names: Lacerta taurica gaigeae Werner, 1930 Skyros Wall Lizard English Order: Sauria Family: Lacertidae Notes on taxonomy: This taxon was raised to species rank by Gruber (1986), with two subspecies, gaigeae and weiglandi (Grube and Schultze-Westrum 1971). Although this status was not recognised by Gasc et al. (1997), it is supported by additional genetic results (Harris and Arnold 1999). General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: This species is endemic to Greece where it occurs in the Skyros It is found in bushy vegetation or bare areas on some of the smaller archipelago and on Piperi Island in the northern Sporades Islands of islands. It is an egg-laying species. On some small islands cases of the Aegean Sea. It is a lowland species. gigantism in this species have been recorded. Conservation Measures: Threats: Its range is effectively protected on Piperi island, as there is a Although the species has a restricted range there appear to be no Mediterranean Monk Seal (Monachus monachus) population present, major threats at present. It is possible that the potential introduction of and access to the island is restricted. predators could threaten populations on some of the smaller islands. Species population information: It is a common species. Native - Native - Presence Presence Extinct Reintroduced Introduced Vagrant Country Distribution Confirmed Possible GreeceCountry: Native - Native - Presence Presence Extinct Reintroduced Introduced FAO Marine Habitats Confirmed Possible Major Lakes Major Rivers Upper Level Habitat Preferences Score Lower Level Habitat Preferences Score 3.8 Shrubland - Mediterranean-type Shrubby Vegetation 1 6 Rocky areas (eg. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
The Advertisement Call of the Relict Frog Tsingymantis Antitra from Madagascar
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2013 Band/Volume: 036 Autor(en)/Author(s): Rakotoarison Andolalao, Köhler Jörn, Glaw Frank, Vences Miguel Artikel/Article: The advertisement call of the relict frog Tsingymantis antitra from Madagascar 143-148 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 36 1 143-148 München, September 2013 ISSN 0341-8391 The advertisement call of the relict frog Tsingymantis antitra from Madagascar (Anura, Mantellidae) Andolalao Rakotoarison, Jörn Köhler, Frank Glaw & Miguel Vences Rakotoarison, A., Köhler, J., Glaw, F. & Vences, M. 2013. The advertisement call of the relict frog Tsingymantis antitra from Madagascar (Anura, Mantellidae). Spixiana 36 (1): 143-148. Tsingymantis is a monotypic relict lineage of mantellid frogs that inhabits an eroded limestone formation in the north of Madagascar. Herein we describe the formerly unknown advertisement call and provide information on morphological characters of two male voucher specimens. The call consists of a series of very short unpulsed notes repeated at regular intervals. It is not very intense and audible for humans only at a distance of less than around 10 metres from the calling male. We provide the first evidence for the presence of inconspicuous but clearly recogniz- able nuptial pads in reproductively active males and confirm the absence of femo- ral glands. Andolalao Rakotoarison, Département de Biologie Animale, Université d’Anta- nanarivo, BP 906, Antananarivo, 101 Madagascar; e-mail: [email protected] Jörn Köhler, Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany; e-mail: [email protected] Frank Glaw, Zoologische Staatssammlung München, Münchhausenstr. -
Does Relaxed Predation Drive Phenotypic Divergence Among Insular Populations?
doi: 10.1111/jeb.12421 Does relaxed predation drive phenotypic divergence among insular populations? A. RUNEMARK*, M. BRYDEGAARD† &E.I.SVENSSON* *Evolutionary Ecology Unit, Department of Biology, Lund University, Lund, Sweden †Atomic Physics Division, Department of Physics, Lund University, Lund, Sweden Keywords: Abstract antipredator defence; The evolution of striking phenotypes on islands is a well-known phenome- body size; non, and there has been a long-standing debate on the patterns of body size coloration; evolution on islands. The ecological causes driving divergence in insular crypsis; populations are, however, poorly understood. Reduced predator fauna is lizards; expected to lower escape propensity, increase body size and relax selection Podarcis; for crypsis in small-bodied, insular prey species. Here, we investigated population divergence; whether escape behaviour, body size and dorsal coloration have diverged as variance. predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than main- land lizards. Additionally, we found evidence for larger between-population variation in body size among the islet populations than mainland popu- lations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed preda- tion pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands. adjacent mainland localities.