<<

Mathematical Communications 13(2008), 303-309 303

Integral identities for sums

Anthony Sofo∗

Abstract. We consider some finite binomial sums involving the derivatives of the binomial coefficient and develop some iden- tities. In particular cases it is possible to express the sums in closed form.

Key words: integral representations, binomial coefficients, identi- ties, harmonic numbers

AMS subject classifications: 05A10, 11B65, 05A19

Received June 11, 2008 Accepted October 7, 2008

1. Introduction

The Beta function 1 β−1 Γ(α)Γ(β) B (α, β)= uα−1 (1 − u) du = for α, β > 0 Γ(α + β) 0 and the ∞ Γ(α)= uα−1e−udu 0 are useful tools that are employed in the summation of series. In this paper we will develop integral identities for sums of the form

p p dq nktn Q a, j n dj q ( ) n=1 where an j −1 Q a, j + ( )= j

(q) dq th is the binomial coefficient and let Q (a, j)= dj q (Q(a, j)) be the q derivative of the reciprocal binomial coefficient. There has recently been renewed interest in the ∗School of Computer Science and , Victoria University, PO Box 14428, Melbourne City, VIC 8001, Australia, e-mail: [email protected] 304 A. Sofo study of series involving binomial coefficients and a number of authors have obtained either closed form representation or integral representation for some of these series. The interested reader is referred to [1, 2, 3, 4, 5, 9, 10, 11, 12] and references therein. The following Lemma and Theorem are the main results presented in this paper.

2. Integral identity

The following Lemma deals with the derivatives of binomial coefficients. First we define N = {0, 1, 2, 3, ...} and note the polygamma functions ψ(k) (z) , k ∈ N are defined by dk+1 dk Γ (z) ψ(k) (z):= log Γ (z)= dzk+1 dzk Γ(z) 1 k [log(t)] tz−1 = − dt, 1 − t 0 and ψ(0) (z)=ψ (z) , denotes the digamma function, defined by d Γ (z) ψ (z)= log Γ (z)= . dz Γ(z) We also recall [7] the series representation for ψ (z) ∞ ψ z 1 − 1 − γ, ( )= r z r=0 +1 + n 1 where γ = lim r − log (n) = −ψ (1) ≈ 0.5772156649015328606065 is the n→∞ r=1 Euler-Mascheroni constant. ∞ ζ q, b 1 ( )= k b q k=0 ( + ) is the generalised Zeta function where any term with k + b = 0 is excluded. We also define the generalised Harmonic number in power k as n H(k) 1 n = jk j=1 and for convenience we put for i =1, 2, 3, 4, ... diP di an P (i) a, j 1 ( )= dj i = dj i r j (1) r=1 + an i 1 =(−1) i! i+1 r=1 (r + j) =(−1)ii![ζ (i +1,j+1)− ζ (i +1,j+1+an)] . Integral identities for sums 305

Lemma 1. a j ≥ ,n Let be a positive integer with 0 a positive integer and an j −1 Q a, j Q(0) a, j + . ( )= ( )= j Then,   −Q(a, j)P (a, j), where dQ  an Q(1) a, j P (a, j)=P (0)(a, j)= 1 for j>0 , ( )= dj =  r+j (2)  r=1 = −Q(a, j)[ψ (j +1+an) − ψ(j +1)] and for λ ≥ 2 dλQ Q(λ) a, j ( )= dj λ (3) λ−1 λ − − 1 Q(ρ) a, j P (λ−1−ρ) a, j . = ρ ( ) ( ) ρ=0

Proof. Let −1 an + j Γ(an +1)Γ(j +1) Γ(an +1) Q(a, j)= = = , (4) j Γ(an + j +1) an (r + j) r=1 taking logs of both sides and differentiating with respect to j we obtain the result (2). Now from (2) and for λ ≥ 2 dλQ dλ−1 λ−1 λ − Q(λ) a, j Q(λ) a, j −QP − 1 Q(ρ)P (λ−1−ρ) ( )= dj λ = ( )=dj λ−1 ( )= ρ ρ=0 and P (λ−1−ρ) (a, j)isgivenby(1). ✷ We list the following −1 an (1) an + j 1 Q (a, j)=− , j r + j  r=1  2 an j −1 an an Q(2) a, j +  1 1  ( )= j r j + 2 r=1 + r=1 (r + j)   an 3 an −1 1 1 an j  r+j +2 (r+j)3  (3) +  r=1 r=1  Q (a, j)=−  an an  j 1 1 +3 (r+j)2 r+j r=1 r=1 and   an an 2 1 1  6 (r+j)2 r+j   r=1 r=1  −1  an an an 2  (4) an + j   Q (a, j)=  1 1 1  . (5) j  +8 (r+j)3 r+j +3 (r+j)2   r=1 r=1 r=1   an 4 an  1 1 + r+j +6 (r+j)4 r=1 r=1 306 A. Sofo

In the special case when a =1andj =0wemaywrite (1) (1) Q (1, 0) = −Hn , (6a)  2 (2) (1) (2) Q (1, 0) = Hn + Hn , (6b)  3 (3) (1) (1) (2) (3) Q (1, 0) = Hn +3Hn Hn +2Hn (6c) and  4  2  2 (4) (1) (1) (2) (1) (3) (2) (4) Q (1, 0) = Hn +6 Hn Hn +8Hn Hn +3 Hn +6Hn , (7)

(k) where Hn are the generalised Harmonic numbers. We now state the following theorem. Theorem 1. Let a be a positive real number, t ∈ R , p =1, 2, 3, ..., k = 1, 2, 3, ..., q =1, 2, 3... and j ≥ 0, then p p V a, j, k, q, t nktn Q(q) a, j p ( )= n ( )(8) n=1   k p k 1 q tr r xar − x j−1 txa p−r − x q−1 dx = r ! r (1 ) (1+ ) (log(1 )) r=1 0   k p k 1 j tr r xar − x j−1 txa p−r − x q dx + r ! r (1 ) (1+ ) (log(1 )) r=1 0 where Q(q)(a, j) is defined by (3), and   r k r 1 − µ r − µ k r = r ( 1) µ ( ) ! µ=0 areStirlingnumbersofthesecondkind. Proof. Consider n p p t p n p tn Γ(j)Γ(an +1) = j an j n an j n=0 + n=0 Γ( + +1) j p p j tn B an ,j = n ( +1 ) n=0 p p 1 j tn xan − x j−1 dx = n (1 ) n=0 0 where B (·, ·) is the classical Beta function and Γ (·) is the Gamma function. By an allowable change of sum and integral we have n p p t 1 n j−1 p = j (1 − x) (1+txa) dx. an j n=0 + 0 j Integral identities for sums 307

d Now apply consecutively k- times the operator t dt (·), so that n p p nt 1 n j−1 p−1 = jpt xa (1 − x) (1+txa) dx, an j n=1 + 0 j

2 n p p n t 1 n j−1 p−1 = jpt xa (1 − x) (1+txa) dx an j n=1 + 0 j 1 j−1 p−2 +jp(p − 1) t2 x2a (1 − x) (1+txa) dx, ...... 0 ...... p k n   p n t k 1 n p k j−1 p−r = j tr r! xar (1 − x) (1+txa) dx. an j r r n=1 + r=1 0 j

(q) dq Applying the operator Q (a, j)= dj q (Q(a, j)) as defined in Lemma 1 we have that p p nk tn Q(q) a, j n ( ) n=1   k p k 1 q tr r xar − x j−1 txa p−r − x q−1 dx = r ! r (1 ) (1+ ) (log (1 )) r=1 0   k p k 1 j tr r xar − x j−1 txa p−r − x q dx + r ! r (1 ) (1+ ) (log (1 )) r=1 0   k ✷ where r are Stirling numbers of the second kind. Some interesting results follow for particular parameter values, which involve Harmonic numbers. Consider the following corollary. Corollary 1. Let a =1,t= −1.Then

p p dq nk − n Q ,j ( 1) n dj q ( (1 )) n=1     k p k r r s − p q − q − r r − s = !( 1) ( 1) r ! r ( 1) s q+1 (9) r=1 s=0 (p + j − s) 308 A. Sofo

Proof. From Theorem 1

p p dq nk − n Q ,j ( 1) n dj q ( (1 )) n=1   k p k 1 q − r r xr − x p+j−r−1 − x q−1 dx = ( 1) r ! r (1 ) (log (1 )) r=1 0   k p k 1 j − r r xr − x p+j−r−1 − x q dx, + ( 1) r ! r (1 ) (log (1 )) r=1 0 evaluating the we have   k p k r r q − q−1 − r r − s 1 = !( 1) ( 1) r ! r ( 1) s p j − r s q r=1 s=0 ( + + )   k p k r r jq − q − r r − s 1 , + !( 1) ( 1) r ! r ( 1) s q+1 r=1 s=0 (p + j − r + s) collecting like terms and renaming the counter s we obtain (9). ✷ Remark 1. For q =4,j=0, k =3and using (7)    4  2 p (1) (1) (2) (1) (3) Hn Hn Hn Hn Hn 3 n p  +6 +8  n (−1)   2  n (2) (4) n=1 +3 Hn +6Hn   −1296 + 9504p − 30235p2 + 54654p3 − 61280p4  +44016p5 − 20255p6 + 5770p7 − 926p8 +64p9    . =24 4 4 4  p (p − 1) (p − 2) (p − 3)

Moreover,    4  2 ∞ p (1) (1) (2) (1) (3) Hn Hn Hn Hn Hn 3 n p  +6 +8  n (−1)   2  n (2) (4) p=4 n=1 +3 Hn +6Hn 973 =24ζ (4) + . 2

3. Conclusion

We have applied the method of integral representation for binomial sums that also involve Harmonic numbers and in some cases expressed them in closed form. Integral identities for sums 309

References 2k −1 −n [1] N. Batir, Integral representations of some series involving k k and some related series, Appl. Math. Comp. 147(2004), 645-667. ∞ 3k −1 −n k [2] N. Batir, On the series k=1 k k x , Proceedings of the Indian Acad- emy of Sciences: Mathematical Sciences 115(2005), 371-381. [3] J. M. Borwein, R. Girgensohn, Evaluations of binomial series, Aequationes Mathematicae 70(2005), 25-36. [4] W. Chu, A binomial coefficient identity assiciated with Beuker’s conjecture on Ap´ery numbers, Electronic J. Combinat. 11(2004), #N15. [5] Z. De-Yin, Further summation formulae related to generalized harmonic num- bers,J.Math.Anal.Appl.335(2007), 692-706. [6] M. Kuba, H. Prodinger, C. Schneider, Generalized reciprocity laws for sums of Harmonic numbers, Integers, Electronic J. Comb. number theory. 8(2008), Art. 17. [7] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the of mathematical physics, Third Enlarged Edition, Die Grundlehren der mathematischen Wissenschaften Einzeldarstellungen mit besonderer Ber¨ucksichtigung der Anwendungsgebiete, Bd. 52, Springer, New York, 1966. [8] T. Sherman, Summation of Glaisher and Ap´ery-like series, available at http://math.edu.arizona.edu/~ura/001/sherman.travis/series.pdfs

[9] A. Sofo, Computational techniques for the summation of series,KluwerAca- demic/Plenum Publishers, 2003. [10] A. Sofo, General properties involving reciprocals of binomial coefficients,Jour- nal of Integer Sequences 9(2006), Art. 06.4.5. [11] A. Sofo, Some more identities involving rational sums, Applicable Analysis and Discrete Mathematics 2(2008), 56-66. ∞ 2k −1 −n [12] I. J. Zucker, On the series k=1 k k and related sums, Journal of Number Theory 20(1985), 92-102.