Introducing an Indigenous Non-Toxigenic Aspergillus Flavus Strain Isolated from Iraqi Corn Grains As a Bio-Control Agent to Redu

Total Page:16

File Type:pdf, Size:1020Kb

Introducing an Indigenous Non-Toxigenic Aspergillus Flavus Strain Isolated from Iraqi Corn Grains As a Bio-Control Agent to Redu University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2020 Introducing an Indigenous Non-toxigenic Aspergillus flavus Strain Isolated from Iraqi Corn Grains as a Bio-Control Agent to Reduce Aflatoxin Contamination in Corn Grains Ali Almatakeez University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Agricultural Science Commons, Cell Biology Commons, Plant Biology Commons, and the Plant Pathology Commons Citation Almatakeez, A. (2020). Introducing an Indigenous Non-toxigenic Aspergillus flavus Strain Isolated from Iraqi Corn Grains as a Bio-Control Agent to Reduce Aflatoxin Contamination in Corn Grains. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3759 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Introducing an Indigenous Non-toxigenic Aspergillus flavus Strain Isolated from Iraqi Corn Grains as a Bio-Control Agent to Reduce Aflatoxin Contamination in Corn Grains A dissertation submitted in partial fulfillment of the requirements for the degree of Doctoral of Philosophy in Cell and Molecular Biology by Ali Almatakeez University of Mosul Bachelor of Science in Biology, 1998 University of Mosul Master of Science in Plant Pathology, 2001 July 2020 University of Arkansas This dissertation is approved for recommendation to the Graduate Council . ______________________________ Burton H. Bluhm, Ph.D Dissertation Director ______________________________ _______________________________ John C. Rupe, Ph.D Jackson Lay Jr. Ph.D Committee Member Committee Member ___________________________________ Griffiths G. Atungulu, Ph.D Committee Member ABSTRACT Mycotoxin contamination of cereal crops, such as maize and sorghum, is a global concern because of the potential health effects on humans and animals. Although substantial research has been conducting regarding mycotoxin prevention and mitigation, little information is available about the association of mycotoxin-producing fungi with corn and sorghum grain in Iraq. Identifying and refining indigenous atoxigenic strains to reduce mycotoxin contamination of maize and sorghum has the potential to enhance the nutritional value of these grains while reducing economic losses. However, to our knowledge, this tactic has not yet been adopted by agricultural authorities and farmers in Iraq. To survey mycotoxigenic fungi associated with corn and sorghum grain in Iraq and identify potential biological control agents ‘customized’ for Iraqi production conditions, a collection of corn and sorghum grain samples were imported from Iraq. DNA-based diagnostic analyses were integrated with morphology-dependent methods to identify seedborne mycoflora in corn and sorghum samples collected from different regions in Iraq (north, central, and south). The most common fungal genera, i.e., Fusarium spp. , Alternaria spp. , Chaetomium spp. , Penicillium spp. , and Aspergillus spp. were found frequently in both kinds of grains. However, Exserohilum , Anthracosystis, Bipolaris, Sporisorium, Curvularia, Sarocladium, Humicola, Byssochlayms, and Stenocarpella were found associated with some samples, which is the first such reporting of these genera associated with corn in Iraq. Moreover, species borders of Aspergillus spp. and Fusarium spp. were delimited successfully through multi-locus sequence typing analysis of four conserved genes within each genera ( ITS , B-tub, CaM, and RPB-2 for Aspergillus spp. and EF-1ɑ, CaM , and H3 for Fusarium spp. ). Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of Iraqi corn and sorghum samples revealed that most samples were contaminated with relatively low levels of fumonisin-B1, ranging from 0.01-8.6 ppm. However, neither corn nor sorghum samples were contaminated with aflatoxin-B1. Also, analyses of mycotoxigenic potential of Aspergillus flavus (27 isolates) identified three non-toxigenic A. flavus isolates (A-1-9, A-4-54, and A-4-75), whereas the rest varied in aflatoxin-B1 production. However, all Fusarium species (86 isolates) produced fumonisin-B1 at different levels, ranging from high to low concentrations. This is potentially the first report of F. incarnatum and F. acuminatum (well-known as deoxynivalenol – DON- and T2 producers, respectively) producing fumonisin mycotoxins. Co-inoculation experiments between Iraqi native nontoxigenic isolates (A-1-9, A-4-54, and A-4-75) and native Iraqi toxigenic isolate (A-15-49) or the reference A. flavus NRRL 3357 substantiated the competitive ability of the Iraqi native nontoxigenic isolates to suppress aflatoxin biosynthesis in toxigenic strains. Aflatoxin-B1 was suppressed by approximately 99.2% compared to control treatments in which toxigenic isolates were inoculated individually. This is the first report of indigenous non-toxigenic A. flavus isolates from Iraq with documented biological control activity against toxigenic strains. Further investigations are required to evaluate the performance of these isolates in corn fields in Iraq. ACKNOWLEDGMENTS Foremost, praise to Allah the almighty for blessing me with the strength, patience, health, protection, and guidance that enabled me to reach this last stage of my Ph. D journey. Also, I would like to express my sincere appreciation to my wife (Eman) for bearing the hardships of being expatriated and in charge of unlimited home tasks. She supported me unconditionally, and always stills my spring with high spirits and cheerfulness. An extended thanks to my parents, brothers, and sisters in Iraq who never stopped praying to Allah to bring me academic success. I would also like to express my gratitude to my advisor, Dr. Burton H. Bluhm, for guiding me when facing obstacles, and to the professors of my advisory committee (Dr. John C. Rupe, Dr. Jackson Lay Jr., and Dr. Griffiths G. Atungulu) for their valuable advice and assistance during my studies. A special appreciation for Dr. Nadeem A. Ramadan who collected samples for my research with brotherly spirit and sent them to the US, overcoming stiff hurdles and a difficult situation in Iraq from 2014-2015. At this moment, many people that deserve to be acknowledged come to mind, especially my colleagues in the college (Mahmood, Haitham, Moafaq, Thaer and Adil), my best friends in life (Salih, Ashraf, Mahmood, Khalid, Hussein, Mohammed), and the list goes on. However, thanks to all of you for everything you have done, even it was just keeping me in your prayers. Lastly, my full appreciation for my children Alhasan, Mena, Mohammed, and Adam who graciously tolerated my roller coaster of emotions during these past few years. TABLE OF CONTENTS Chapter 1 Literature review .…………………………………………………………. 1 Global importance of corn and sorghum………………………………………………………….1 Plant pathogenic fungi.…………………………………...……………………………………….2 Impact of fungal pathogens on corn and sorghum grain.……………………………………….…4 Aspergillus flavus Link……………………………………………………………………………6 Aflatoxins………………………………………………………………………………………….8 The aflatoxin biosynthetic gene cluster…………………………………………………………...8 Significance of aflatoxin contamination…………………………………………………………10 Fusarium verticillioides (Sacc) Nirenberg…………………………………………………….....12 Fumonisins……………………………………………………………………………………….14 The fumonisin biosynthetic gene cluster………………………………………………………...15 Significance of fumonisin contamination………………………………………………………..17 Management of mycotoxins in maize grains…………………………………………………….19 Justification and objectives………………………………………………………………………22 References………………………………………………………………………………………..24 Chapter 2: Survey of fungi associated with corn and sorghum in Iraq……………………..39 Abstract…………………………………………………………………………………………..39 Introduction………………………………………………………………………………………40 Materials and methods…………………………………………………………………………...41 Sample collection………………………………………………………………………………...41 Isolation and preliminary identification of seed-borne fungi…………………………………....43 DNA extraction and analysis…………………………………………………………………….44 Preparation of fungal tissue……………………………………………………………………...44 Extraction of genomic DNA……………………………………………………………………..44 PCR and DNA analysis…………………………………………………………………………..45 Multi-locus sequence typing (MLST) of Aspergillus and Fusarium isolates……………………46 Construction of phylogenetic trees………………………………………………………………47 Results and discussion……………………………………………………..…………………….48 References………………………………………………………………………………………..63 Chapter 3: The mycotoxigenic potential of Aspergillus flavus and four Fusarium species isolated from corn and sorghum grain from Iraq …………………………………………….70 Abstract…………………………………………………………………………………………..70 Introduction…………………………………………………………………………………...….71 Materials and Methods……………………………………...……………………………………73 Optimization of mycotoxin extraction and analysis……………………………………………..73 Overview of analytical approach………………………………………………………..……….73 Preparation of analytical standards…………………………………………………………..…..73 Optimizing mycotoxin extraction parameters………………………………………………...….73 LC-MS/MS setting and analysis…………………………………………………………………74 Assessment the mycotoxin-content of corn and sorghum samples……………………………...74 Moisture content determination………………………………………………………………….74 Preparing samples for extraction………………………………………………………………...75 Mycotoxin extraction and LC-MS/MS analysis…………………………………………………75 Differentiation between toxigenic and atoxigenic isolates………………………………………75 Preparation of cracked
Recommended publications
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Diaporthe Rudis (Fr
    -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Diaporthe rudis (Fr. : Fr.) Nitschke 1870 Current Pest Rating: Z Proposed Pest Rating: C Kingdom: Fungi, Phylum: Ascomycota, Subphylum: Pezizomycotina, Class: Sordariomycetes, Subclass: Sordariomycetidae, Order: Diaporthales, Family: Diaporthaceae Comment Period: 05/19/2021 through 07/03/2021 Initiating Event: In July 2019, an unofficial sample of Arctostaphylos franciscana was submitted to CDFA’s Plant Pest Diagnostics Center by a native plant nursery in San Francisco County. CDFA plant pathologist Suzanne Rooney-Latham isolated Diaporthe rudis in culture from the stems. She confirmed her diagnosis with PCR and DNA sequencing and gave it a temporary Z-rating. Diaporthe faginea (Curr.) Sacc., (1882) and Diaporthe medusaea Nitschke, (1870) are both junior synonyms of D. rudis, and both have previously been reported in California (French, 1989). The risk to California from Diaporthe rudis is described herein and a permanent rating is proposed. History & Status: The genus Diaporthe contains economically important plant pathogens that cause diseases on a wide range of crops, ornamentals, and forest trees, with some endophytes and saprobes. Traditionally, Diaporthe species have been identified with a combination of morphology and host association. This is problematic because multiple species of Diaporthe can often be found on a single host, and a single species of Diaporthe can be associated with many different hosts. Using molecular data and modern systematics has been helpful in identifying and characterizing pathogens, especially for regulatory work. Diaporthe spp. can cause cankers, diebacks, root rots, fruit rots, leaf spots, blights, decay, and wilts. They are hemibiotrophs with both a biotrophic (requiring living plants as a source of nutrients) phase and a nectrotrophic (killing parts of their host and living off the dead tissues) phase.
    [Show full text]
  • Citrus Melanose (Diaporthe Citri Wolf): a Review
    Int.J.Curr.Microbiol.App.Sci (2014) 3(4): 113-124 ISSN: 2319-7706 Volume 3 Number 4 (2014) pp. 113-124 http://www.ijcmas.com Review Article Citrus Melanose (Diaporthe citri Wolf): A Review K.Gopal*, L. Mukunda Lakshmi, G. Sarada, T. Nagalakshmi, T. Gouri Sankar, V. Gopi and K.T.V. Ramana Dr. Y.S.R. Horticultural University, Citrus Research Station, Tirupati-517502, Andhra Pradesh, India *Corresponding author A B S T R A C T K e y w o r d s Citrus Melanose disease caused by Diaporthe citri Wolf is a fungus that causes two distinct diseases on Citrus species viz, the perfect stage of the fungus causes Citrus melanose, disease characterized by lesions on fruit and foliage and in the imperfect Melanose; stage; it causes Phomopsis stem-end rot, a post-harvest disease. It is one of the Diaporthe most commonly observed diseases of citrus worldwide. As the disease is occurring citri; in larger proportions and reducing marketable fruit yield hence, updated post-harvest information on its history of occurrence, disease distribution and its impact, disease pathogen and its morphology, disease symptoms, epidemiology and management are briefly reviewed in this paper. Introduction Citrus Melanose occurs in many citrus fungus does not normally affect the pulp. growing regions of the world and infects On leaves, the small, black, raised lesions many citrus species. It affects young are often surrounded by yellow halos and leaves and fruits of certain citrus species can cause leaf distortion. On the fruit, the or varieties when the tissues grow and disease produces a superficial blemish expand during extended periods of rainy which is unlikely to affect the overall yield or humid weather conditions.
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • AR TICL E Diaporthe Is Paraphyletic
    IMA FUNGUS · 8(1): 153–187 (2017)) doi:10.5598/imafungus.2017.08.01.11 Diaporthe is paraphyletic ARTICL Yahui Gao1, 2*, Fang Liu1*, Weijun Duan#, Pedro W. Crous4,5, and Lei Cai1, 2 E 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China 2\%/zV;*!!!$]A/{'| #+z<°[#* !*]A/ 4JH;%<\"# "/\+ 5X@]]]/'%]Hz;< University of Pretoria, Pretoria 0002, South Africa * Abstract: Previous studies have shown that our understanding of species diversity within Diaporthe (syn. Phomopsis) Key words: <$X+z; Ascomycota on these results, eight new species names are introduced for lineages represented by multiple strains and distinct Diaporthales % Phomopsis%/X+z Phomopsis [Diaporthe Diaporthe'V\<V phylogeny TEF1) phylogenetic analysis. Several morphologically distinct genera, namely Mazzantia, Ophiodiaporthe, Pustulomyces, taxonomy Phaeocytostroma, and Stenocarpella, are embedded within Diaporthe s. lat., indicating divergent morphological evolution. However, splitting Diaporthe into many smaller genera to achieve monophyly is still premature, and further collections and phylogenetic datasets need to be obtained to address this situation. Article info: Submitted: 25 March 2017; Accepted: 22 May 2017; Published: 1 June 2017. INTRODUCTION have been regularly observed on carrots in France, resulting in seed production losses since 2007 (Ménard et al. 2014). Species of Diaporthe are known as important plant Avocado (Persea americana), cultivated worldwide in tropical pathogens, endophytes or saprobes (Udayanga et al. 2011, and subtropical regions, is threatened by branch cankers Gomes et al. !*#% ' D. foeniculina and on many plant hosts, including cultivated crops, trees, and D. sterilis (Guarnaccia et al. 2016). Furthermore, species ornamentals (Diogo et al.!*!et al.
    [Show full text]
  • Checklist of Fusarium Species Reported from Turkey
    Uploaded – August 2011, August 2015, October 2017. [Link page – Mycotaxon 116: 479, 2011] Expert Reviewers: Semra ILHAN, Ertugrul SESLI, Evrim TASKIN Checklist of Fusarium Species Reported from Turkey Ahmet ASAN e-mail 1 : [email protected] e-mail 2 : [email protected] Tel. : +90 284 2352824 / 1219 Fax : +90 284 2354010 Address: Prof. Dr. Ahmet ASAN. Trakya University, Faculty of Science -Fen Fakultesi-, Department of Biology, Balkan Yerleskesi, TR-22030 EDIRNE–TURKEY Web Page of Author: http://personel.trakya.edu.tr/ahasan#.UwoFK-OSxCs Citation of this work: Asan A. Checklist of Fusarium species reported from Turkey. Mycotaxon 116 (1): 479, 2011. Link: http://www.mycotaxon.com/resources/checklists/asan-v116-checklist.pdf Last updated: October 10, 2017. Link for Full text: http://www.mycotaxon.com/resources/checklists/asan-v116- checklist.pdf Link for Regional Checklist of the Mycotaxon Journal: http://www.mycotaxon.com/resources/weblists.html Link for Mycotaxon journal: http://www.mycotaxon.com This internet site was last updated on October 10, 2017, and contains the following: 1. Abstract 2. Introduction 3. Some Historical Notes 4. Some Media Notes 5. Schema 6. Methods 7. The Other Information 8. Results - List of Species, Subtrates and/or Habitats, and Citation Numbers of Literature 9. Literature Cited Abstract Fusarium genus is common in nature and important in agriculture, medicine and veterinary science. Some species produce mycotoxins such as fumonisins, zearelenone and deoxynivalenol; and they can be harmfull for humans and animals. The purpose of this study is to document the Fusarium species isolated from Turkey with their subtrates and/or their habitat.
    [Show full text]
  • Identification and Characterization of Diaporthe Ambigua, D
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316199776 Identification and characterization of diaporthe ambigua, D. Australafricana, D. novem, and D. rudis causing a postharvest fruit rot in Kiwifruit Article in Plant Disease · July 2017 DOI: 10.1094/PDIS-10-16-1535-RE CITATIONS READS 8 452 6 authors, including: Gonzalo A Díaz Bernardo A. Latorre Universidad de Talca Pontificia Universidad Católica de Chile 53 PUBLICATIONS 257 CITATIONS 218 PUBLICATIONS 2,118 CITATIONS SEE PROFILE SEE PROFILE Mauricio Lolas-Caneo Enrique Ferrada Universidad de Talca Universidad Austral de Chile 35 PUBLICATIONS 171 CITATIONS 98 PUBLICATIONS 70 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Tillandsia landbeckii: microbiota asociada a una planta extrema. UTA Mayor 9711-15 View project Etiology and epidemiology of gray mold of kiwifruit in Chile. View project All content following this page was uploaded by Gonzalo A Díaz on 11 May 2018. The user has requested enhancement of the downloaded file. Plant Disease • 2017 • 101:1402-1410 • http://dx.doi.org/10.1094/PDIS-10-16-1535-RE Identification and Characterization of Diaporthe ambigua, D. australafricana, D. novem, and D. rudis Causing a Postharvest Fruit Rot in Kiwifruit Gonzalo A. D´ıaz, Laboratorio de Patolog´ıa Frutal, Departamento de Produccion´ Agr´ıcola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile; Bernardo A. Latorre, Departamento de Fruticultura y Enolog´ıa, Pontificia Universidad Catolica´ de Chile, Macul, Santiago, Chile; Mauricio Lolas and Enrique Ferrada, Laboratorio de Patolog´ıa Frutal, Departamento de Produccion´ Agr´ıcola, Facultad de Ciencias Agrarias, Universidad de Talca; and Paulina Naranjo and Juan P.
    [Show full text]
  • Diaporthe Passifloricola Fungal Planet Description Sheets 395
    394 Persoonia – Volume 36, 2016 Diaporthe passifloricola Fungal Planet description sheets 395 Fungal Planet 438 – 4 July 2016 Diaporthe passifloricola Crous & M.J. Wingf., sp. nov. Etymology. Name refers to Passiflora, the plant genus from which this Notes — On ITS Diaporthe passifloricola is 98 % (556/567) fungus was collected. similar to D. miriciae (BRIP 56918a; GenBank KJ197284.1) and Classification — Diaporthaceae, Diaporthales, Sordariomy­ 90 % (466/519)–93 % (402/430) similar to five sequences of cetes. ‘Phomopsis’ tersa deposited on GenBank (e.g. KF516000.1 and JQ585648.1). The his3 sequence is 100 % (380/380) identical Conidiomata (on pine needle agar; PNA) pycnidial, solitary, to D. absenteum (LC3564; GenBank KP293559.1) and 99 % black, erumpent, globose, to 250 µm diam, with short black (378/380) to the sterile Diaporthe ‘sp. 1 RG-2013’ (LGMF947; neck, exuding creamy droplets from central ostioles; walls GenBank KC343687.1), whereas the tub2 sequence is 99 % consisting of 3–6 layers of medium brown textura angula­ (513/517) to the sterile Diaporthe ‘sp. 1 RG-2013’ (LGMF947; ris. Conidiophores hyaline, smooth, 2–3-septate, branched, GenBank KC344171.1) and 99 % (589/595) to D. miriciae densely aggregated, cylindrical, straight to sinuous, 20–50 × (BRIP 56918a; GenBank KJ197264.1). Although alpha conidia 3–4 µm. Conidiogenous cells 7–20 × 1.5–2.5 µm, phialidic, of D. miriciae are similar in size ((6–)7.5(–9) × 2–2.5(–3) μm), cylindrical, terminal and lateral with slight taper towards apex, beta conidia are larger (20–35 × 1.0–1.5 μm) and conidio- 1–1.5 µm diam, with visible periclinal thickening; collarette not phores are shorter (10–20 × 1.5–3 μm) (Thompson et al.
    [Show full text]
  • Diaporthe Toxicodendri Sp. Nov., a Causal Fungus of the Canker Disease on Toxicodendron Vernicifluum in Japan Article
    Mycosphere 8(5): 1157–1167 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/5/6 Copyright © Guizhou Academy of Agricultural Sciences Diaporthe toxicodendri sp. nov., a causal fungus of the canker disease on Toxicodendron vernicifluum in Japan Ando Y1, Masuya H1, Aikawa T1, Ichihara Y2 and Tabata M1* 1 Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI), 92-25 Nabeyashiki, Shimo- kuriyagawa, Morioka Iwate 020-0123, Japan 2 Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto, Kyoto 612-0855, Japan Ando Y, Masuya H, Aikawa T, Ichihara Y, Tabata M 2017 – Diaporthe toxicodendri sp. nov., a causal fungus of the canker disease on Toxicodendron vernicifluum in Japan. Mycosphere 8(5), 1157–1168, Doi 10.5943/mycosphere/8/5/6 Abstract We describe for the first time the fungus Diaporthe toxicodendri sp. nov., which causes canker disease on the stems and twigs of Toxicodendron vernicifluum. We conducted a phylogenetic analysis using combined multigene sequence data from the rDNA internal transcribed spacer sequence and partial genes for calmodulin, histone H3, beta-tubulin, and translation elongation factor 1-alpha. The results indicate that D. toxicodendri occupies a monophyletic clade with high support. Although 10 species are phylogenetically closely related to D. toxicodendri, morphological characteristics of size of alpha conidia and lacking of beta and gamma conidia support the distinction of this fungus from those closely related species. No sexual morphic structures have yet been found for the species. The pathogenicity of this species was confirmed by the inoculation test to T.
    [Show full text]
  • Endophytic Fungi of Citrus Plants 3 Rosario Nicoletti 1,2,*
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 October 2019 doi:10.20944/preprints201910.0268.v1 Peer-reviewed version available at Agriculture 2019, 9, 247; doi:10.3390/agriculture9120247 1 Review 2 Endophytic Fungi of Citrus Plants 3 Rosario Nicoletti 1,2,* 4 1 Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, 81100 5 Caserta, Italy; [email protected] 6 2 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy 7 * Correspondence: [email protected] 8 9 Abstract: Besides a diffuse research activity on drug discovery and biodiversity carried out in 10 natural contexts, more recently investigations concerning endophytic fungi have started 11 considering their occurrence in crops based on the major role that these microorganisms have been 12 recognized to play in plant protection and growth promotion. Fruit growing is particularly 13 involved in this new wave, by reason that the pluriannual crop cycle implies a likely higher impact 14 of these symbiotic interactions. Aspects concerning occurrence and effects of endophytic fungi 15 associated with citrus species are revised in the present paper. 16 Keywords: Citrus spp.; endophytes; antagonism; defensive mutualism; plant growth promotion; 17 bioactive compounds 18 19 1. Introduction 20 Despite the first pioneering observations date back to the 19th century [1], a settled prejudice 21 that pathogens basically were the only microorganisms able to colonize living plant tissues has long 22 delayed the awareness that endophytic fungi are constantly associated to plants, and remarkably 23 influence their ecological fitness. Overcoming an apparent vagueness of the concept of ‘endophyte’, 24 scientists working in the field have agreed on the opportunity of delimiting what belongs to this 25 functional category; thus, a series of definitions have been enunciated which are all based on the 26 condition of not causing any immediate overt negative effect to the host [2].
    [Show full text]
  • Fusarium Oxysporum FORMAE SPECIALES ASSOCIATED with ORNAMENTAL PALMS
    DIAGNOSTICS, GENOMICS AND POPULATION STUDIES ON Fusarium oxysporum FORMAE SPECIALES ASSOCIATED WITH ORNAMENTAL PALMS By SUSHMA V. PONUKUMATI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Sushma V. Ponukumati To my family for their unconditional love and support ACKNOWLEDGMENTS I would like to express my gratitude to Dr. Monica Elliott, my advisor, for supporting me in my research in all possible ways. She always encouraged me to be a passionate, independent researcher and gave me freedom to explore new research fields. She helped me to develop the habits of logical thinking and proper planning. Dr.Elliott selfless time and care were sometimes all that kept me going during the writing of this dissertation. I would like to thank Dr. Jeffrey Rollins for inducing passion towards bioinfomatics and helping me understand the importance of critical thinking. I am also appreciative to Dr. Rollins for his constant guidance and dedication in his role as co-advisor. Profound gratitiude goes to my other Ph.D committee members, Dr. Mathew Smith and Dr. Robin Giblin Davis, for serving on my committee and for providing their time and expertise. Their advice and recommendations were valuable resources for my dissertation. I will always cherish Dr. Smith for his inspirational chats. Dr.Smith has been a good role model in teaching, who encouraged and expected students to think independently with a purpose regarding any experiment or project. I am also thankful to Dr. Robin Giblin Davis for his constant support and motivation.
    [Show full text]
  • Endophytic Fungal Communities of Bromus Tectorum: Mutualisms, Community Assemblages and Implications for Invasion
    ENDOPHYTIC FUNGAL COMMUNITIES OF BROMUS TECTORUM: MUTUALISMS, COMMUNITY ASSEMBLAGES AND IMPLICATIONS FOR INVASION A Thesis Presented in Partial Fulfillment of the Requirement for the Degree of Master of Science with a Major in Environmental Science in the College of Graduate Studies University of Idaho by Melissa A. Baynes August 2011 Major Professor: George Newcombe, Ph.D. ii AUTHORIZATION TO SUBMIT THESIS This thesis of Melissa A. Baynes, submitted for the degree of Master of Science with a major in Environmental Science and titled “ENDOPHYTIC FUNGAL COMMUNITIES OF BROMUS TECTORUM: MUTUALISMS, COMMUNITY ASSEMBLAGES AND IMPLICATIONS FOR INVASION,” has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval. iii ABSTRACT Exotic plant invasions are of serious economic, social and ecological concern worldwide. Although many promising hypotheses have been posited in attempt to explain the mechanism(s) by which plant invaders are successful, there is no single explanation for all invasions and often no single explanation for the success of an individual species. Cheatgrass (Bromus tectorum), an annual grass native to Eurasia, is an aggressive invader throughout the United States and Canada. Because it can alter fire regimes, cheatgrass is especially problematic in the sagebrush steppe of western North America. Its pre- adaptation to invaded climates, ability to alter community dynamics and ability to compete as a mycorrhizal or non-mycorrhizal plant may contribute to its success as an invader. However, its success is likely influenced by a variety of other mechanisms including symbiotic associations with endophytic fungi.
    [Show full text]