8.2.13 Water Resource Catchments Overlay Code49

Total Page:16

File Type:pdf, Size:1020Kb

8.2.13 Water Resource Catchments Overlay Code49 8.2.13 Water resource catchments overlay code49 8.2.13.1 Application (1) This code applies to assessable development:- (a) subject to the water resource catchments overlay shown on the overlay maps contained within Schedule 2 (Mapping); and (b) identified as requiring assessment against the Water resource catchments overlay code by the tables of assessment in Part 5 (Tables of assessment). (2) All provisions in this code are assessment benchmarks for applicable assessable development. 8.2.13.2 Purpose and overall outcomes (1) The purpose of the Water resource catchments overlay code is to protect the following water supply catchments that are wholly or partly contained in the Sunshine Coast:- (a) Cooloolabin Dam and Wappa Dam; (b) Baroon Pocket Dam; (c) Ewen Maddock Dam; and (d) Somerset Dam and Wivenhoe Dam. (2) The purpose of the Water resource catchments overlay code will be achieved through the following overall outcomes:- (a) development is located, designed and managed to avoid adverse impacts on water quality in a water supply catchment; (b) development maintains and contributes to improving water quality in a water supply catchment; (c) development promotes sustainable land use practices within a water supply catchment; (d) development protects and enhances land resources, natural systems and vegetation within a water supply catchment; and (e) development in a water supply catchment ensures that there is no cumulative impact on water quality. 8.2.13.3 Performance outcomes and acceptable outcomes Table 8.2.13.3.1 Performance outcomes and acceptable outcomes for assessable development Performance Outcomes Acceptable Outcomes Effects of Development on Water Supply Storages and Water Supply Catchment Areas PO1 Development complies with the AO1 Development complies with the measures of specific outcomes of the SEQ the SEQ Water Development Guidelines for Water Development Guidelines for Water Quality Management in Drinking Water Quality Management in Water Catchments as if the measures are Drinking Water Catchments as if acceptable outcomes. the specific outcomes are performance outcomes. 49 Editor’s note—water supply storages and water resource catchment areas are identified on the Water Resource Catchments Overlay Maps in Schedule 2 (Mapping). Sunshine Coast Planning Scheme 2014 Amended 3 July 2017 Page 8-61 .
Recommended publications
  • Overview March 19 Ewen Maddock Dam Is One of Several Dams in South East Queensland Scheduled to Be Upgraded As Part of Our O
    Overview March 19 Ewen Maddock Dam is one of several dams in South East Queensland scheduled to be upgraded as part of our ongoing Dam Improvement Program. The upgrade work is set to begin from July 2019 and will include strengthening the existing embankment and raising the dam wall to increase its floodwater capacity. Work is expected to take up to 18 months, subject to weather conditions and other unexpected delays. About the Dam Ewen Maddock Dam is part of the SEQ Water Grid – a connected network of dams, treatment plants, reservoirs and pipelines supplying drinking water to the region. The dam was constructed across Addlington Creek, a tributary of the Mooloolah River. Construction of the dam was completed in 1976 and the full supply level (FSL) was raised in 1982. Following the independent dam safety review in 2010, a number of improvements were identified at Ewen Maddock Dam and approved for delivery in two stages. In 2012, the stage one upgrade of the dam involved the installation of pressure relief wells into the foundation materials, and construction of a sand filter buttress and overlying weighting berm made of clay along the downstream embankment toe. In 2016, Seqwater engaged an engineering consultant to develop the second stage of the upgrade design. More than twenty-one options were identified during this process. About the Dam Safety Upgrade On 1 February 2019, the Minister for Natural Resources, Mines and Energy, Dr Anthony Lynham, announced the project will begin in 2019. The media release can be read here. http://statements.qld.gov.au/Statement/2019/2/1/20m-upgrade-work- for-ewen-maddock-dam The 2019 - 2020 stage two upgrade option will: • add sand filters to the existing earthfill embankment • raise the embankment height with a parapet wall, to increase flood capacity • strengthen the concrete spillway • raise the training walls of the spillway • install emergency outlets in the spillway to enable reservoir drawdown in the case of a dam safety incident.
    [Show full text]
  • Seqwater Recreation Guide WAPPA
    Wappa Dam RECREATION GUIDE seqwater.com.au About OUR VISION Wappa Dam To manage access to recreation Wappa Dam is located west of Yandina in the Sunshine Coast opportunities while protecting hinterland. The dam was constructed in 1963 on the South Maroochy natural resources and water quality. River and supplies drinking water to the interconnected supply network. The lake has a catchment area of approximately 69.7km2 and holds 4694 megalitres of water at full supply. Spillway Lookout The lookout at Jack Harrison Park located at Wappa Park Road, Kiamba, is a great place to view the dam when it is spilling. RECREATION REVIEW UPDATE Seqwater is committed to providing quality recreation facilities that everyone can enjoy. We wanted to know what the community thought of current facilities and what suggestions you had for the future, so in 2013 we started a full Recreation Review across our assets. We appreciate the efforts of everyone who took the time to participate in our workshops and online surveys. While we want to implement as many ideas as possible, Seqwater must remain committed to protecting our natural environment and minimising the risks to water quality. Some of the changes will be implemented at a later date, once further funding has been secured and all environmental impact analysis has been completed. Progress updates, along with details of the feedback received is available at seqwater.com.au/recreview. We value the unique status of the Jinibara People as the original owners and custodians of the land and water around Wappa Dam. 2 Wappa Dam RECREATION GUIDE Wappa Dam RECREATION GUIDE 3 Protecting our waterways & the environment We all need to do our part to ensure we keep our • cleaning and drying anything that came into waterways healthy.
    [Show full text]
  • Fact Sheet How Dams Work
    Fact sheet How dams work December 2015 In South East Queensland, our drinking water is predominantly Flood mitigation sourced from dams, which collect run-off rainwater from our catchments and store it. Our dams provide a safe, secure and At its most basic level, flood mitigation is capturing water and cost-effective water supply, as well as help to mitigate floods. then releasing it at a slower rate, with the aim of minimising river levels downstream of the dam. When dams fill, they are designed to pass the excess water into the creek or river system they are built on. What is Full Supply Level? Dam release notification service The Full Supply Level of a dam is the approved water storage level of the dam for drinking and/or irrigation purposes. Seqwater offers a free dam release notification service, which provides subscribers with notifications when gated dams For un-gated dams, if inflows result in the water level rising release water or un-gated dams are spilling. above the Full Supply Level, the water will spill out of the dam. This spilling cannot be controlled. Subscribers to Seqwater’s dam release notification service will also be notified when higher outflows are occurring from For our gated dams (Wivenhoe, Somerset and North Pine), if a spilling dam due to high inflows resulting from rainfall in the inflows result in the water level rising above the Full Supply catchment. Level, Seqwater will make controlled releases for either flood mitigation or to protect the safety of the dam. These notifications advise caution downstream due to potential hazards to people and property.
    [Show full text]
  • Seqwater's 22 October Submission / Response To
    SEQWATER’S 22 OCTOBER SUBMISSION / RESPONSE TO QCA REQUEST OF 12 OCTOBER 12 October 2012 I hereby provide Seqwater with a further information request. Seqwater’s detailed responses to each item would be appreciated by COB 19 October 2012, please. Happy to discuss at any time noting the proposed due date of COB 19 October 2012 From: Colin Nicolson [mailto:[email protected]] Sent: Friday, 19 October 2012 1:10 PM To: Angus MacDonald Cc: George Passmore; Damian Scholz Subject: FW: Information Request 12 October 2012 Hello Angus Here are our responses to the above information request. QCA Question 1 - Cedar Pocket Stakeholders (Issues Arising (IA) Cedar Pocket 2012) submitted that more details were required regarding Seqwater’s proposed renewals expenditure [outlined in the NSP] on “electricity supply assets” in 2025-26 at $30,000. Please provide more details regarding this proposed expenditure. Seqwater Response to Item 1 The Assets in question are a property pole, meter box (excluding the meters), cabling and a distribution board. The renewal is scheduled based on the Seqwater “standard asset life” of 20 years for this type of equipment. It was installed in 2005 and will be 20 years old when the work is scheduled. The cost estimate is drawn from the estimated replacement costs as set out in Section 5.2.2 and Section 9 of the Irrigation Infrastructure Renewal Projections - 2013/14 to 2046/47 Report on Methodology. The renewal timing, will be reviewed on an ongoing basis so that it is only delivered when condition warrants. The scope and cost estimate will be reviewed prior to commencement of work to ensure the delivery is efficient.
    [Show full text]
  • Where Water Comes From
    Year 6 Lesson 1 Where water comes from www.logan.qld.gov.au Learning objectives Students will be able to determine: The definition of a catchment. Basic principles of catchment management. Issues associated with balancing the needs of various catchment users. Learning outcomes Subject Strand & Content Descriptors Science Science Understanding Sudden geological changes or extreme weather conditions can affect Earth's surface (ACSSU095) Science as a Human Endeavour Scientific knowledge is used to inform personal and community decisions (ACSHE220) Geography Geographical Knowledge & Understanding Places are connected to each other locally, regionally and globally, through the movement of goods, people and ideas as well as human or environmental events. Geographical Skills & Understanding Pose geographical questions that range in complexity and guide deep inquiry then speculate on their answers Identify a variety of information sources that will be used for inquiry, considering their validity Identify and create appropriate materials, geographical tools or equipment to collect data or observations, using formal measurements and digital and spatial technologies as appropriate Important questions What is a catchment? How do well-managed catchments contribute to clean water supplies? What impacts can industrial, agricultural or other users have on the dam catchment? What mechanisms are used to manage competing demands on catchments? P 1 of 3 DM 7962814 www.logan.qld.gov.au Background information – the dam and its catchment A catchment is an area of land, bordered by hills or mountains, from which runoff flows to a low point – either a dam or the mouth of the river. Water running from a bath down the plughole is a simple representation of a catchment.
    [Show full text]
  • Schedule a - Urban Utilities High Level Water Restrictions
    Schedule A - Urban Utilities High Level Water Restrictions This schedule details the way in which potable water from the Seqwater bulk water supply is permitted to be used after commencement of High Level Water Restrictions. For assistance with interpretation of this document please refer to the definition section at the end of this document. Category High Level Water Restrictions 1.1 Residential and non- Total ban on sprinklers. Hand-held hoses with a twist or trigger nozzle can be used for watering established residential premises gardens and lawns: a. Odd numbered properties Watering established gardens and lawns - 4am-8am and 4pm-8pm - Tuesday and Saturday (Note this does not include b. Even or un-numbered properties production and sale area - 4am-8am and 4pm-8pm irrigation for non-residential - Wednesday and Sunday consumers) Bucket or watering can may be used at any time. Only one hose at a time can be used at the property. The following are not permitted: ‐ Hoses without a twist or trigger nozzle ‐ Hoses which are not hand- held (e.g. left to run hooked in a tree). Category High Level Water Restrictions 1.2 Residential premises As per restriction item 1.1 Watering of gardens only for residents eligible for concession 1.3 Residential and non- Wasting water by way of leaking taps and plumbing fittings and overflowing containers or structures (including residential premises but not limited to pools, spas and rainwater tanks) and allowing water to flow onto roads, pathways and driveways during is prohibited. Water wastage 1.4 Residential and non- Sprinklers with a timer and hand- held hoses with a twist or trigger nozzle can be used for watering newly residential properties established gardens and lawns: Watering newly established a.
    [Show full text]
  • Water for South East Queensland: Planning for Our Future ANNUAL REPORT 2020 This Report Is a Collaborative Effort by the Following Partners
    Water for South East Queensland: Planning for our future ANNUAL REPORT 2020 This report is a collaborative effort by the following partners: CITY OF LOGAN Logo guidelines Logo formats 2.1 LOGO FORMATS 2.1.1 Primary logo Horizontal version The full colour, horizontal version of our logo is the preferred option across all Urban Utilities communications where a white background is used. The horizontal version is the preferred format, however due to design, space and layout restrictions, the vertical version can be used. Our logo needs to be produced from electronic files and should never be altered, redrawn or modified in any way. Clear space guidelines are to be followed at all times. In all cases, our logo needs to appear clearly and consistently. Minimum size 2.1.2 Primary logo minimum size Minimum size specifications ensure the Urban Utilities logo is reproduced effectively at a small size. The minimum size for the logo in a horizontal format is 50mm. Minimum size is defined by the width of our logo and size specifications need to be adhered to at all times. 50mm Urban Utilities Brand Guidelines 5 The SEQ Water Service Provider Partners work together to provide essential water and sewerage services now and into the future. 2 SEQ WATER SERVICE PROVIDERS PARTNERSHIP FOREWORD Water for SEQ – a simple In 2018, the SEQ Water Service Providers made a strategic and ambitious statement that represents decision to set out on a five-year journey to prepare a holistic and integrated a major milestone for the plan for water cycle management in South East Queensland (SEQ) titled “Water region.
    [Show full text]
  • Fact Sheet Wivenhoe Dam
    Fact sheet Wivenhoe Dam Wivenhoe Dam Wivenhoe Dam’s primary function is to provide a safe drinking Key facts water supply to the people of Brisbane and surrounding areas. It also provides flood mitigation. Name Wivenhoe Dam (Lake Wivenhoe) Watercourse Brisbane River The water from Lake Wivenhoe, the reservoir formed by the dam, is stored before being treated to produce drinking water Location Upstream of Fernvale and follows the water journey of source, store and supply. Catchment area 7020.0 square kilometres Length of dam wall 2300.0 metres Source Year completed 1984 Wivenhoe Dam is located on the Brisbane River in the Somerset Type of construction Zoned earth and rock fill Regional Council area. embankment Spillway gates 5 Water supply Full supply capacity 1,165,238 megalitres Wivenhoe Dam provides a safe drinking water supply for Flood mitigation 1,967,000 megalitres Brisbane, Ipswich, Logan, Gold Coast, Beaudesert, Esk, Gatton, Laidley, Kilcoy, Nanango and surrounding areas. The construction of the dam involved the placement of around 4 million cubic metres of earth and rock fill, and around 140,000 Wivenhoe Dam was designed and built as a multifunctional cubic metres of concrete in the spillway section. Excavation facility. The dam was built upstream of the Brisbane River, of 2 million cubic metres of earth and rock was necessary to 80 kilometres from Brisbane City. At full supply level, the dam construct the spillway. holds approximately 2,000 times the daily water consumption needed for Brisbane. The Brisbane Valley Highway was relocated to pass over the dam wall, while 65 kilometres of roads and a number of new Wivenhoe Dam, along with the Somerset, Hinze and North Pine bridges were required following construction of the dam.
    [Show full text]
  • Somerset and Wivenhoe Dam Safety Upgrades – Business
    Somerset and Wivenhoe Dam Safety Upgrades – Business Case Stage APRIL 2019 Somerset Dam was built between 1937 and 1959. Wivenhoe Dam was completed in 1985. Both dams were designed to the engineering standards of their time. We now know more about the risks of extreme floods to the Somerset and Wivenhoe Dam walls. Both dams will be upgraded so that they can withstand much larger floods. What has changed since the dams were built? Some things have changed since the dams were built or last upgraded. These include: • significant population growth downstream • advances in dam design and the development of consistent risk assessment methods • improved estimates of extreme rainfall events • data from recent floods and updated flood modelling. An independent assessment has found the dams do not meet modern Queensland Government dam safety guidelines. We now know extreme floods could exceed the design capacity of the dams. Under the Water Supply (Safety and Reliability) Act 2008, we need to upgrade both dams to meet the guidelines. Lowering water levels in Somerset and Wivenhoe In January 2016, Seqwater changed the way it manages both Somerset and Wivenhoe Dams. These changes immediately improved the ability of both dams to withstand extreme floods and maintain flood mitigation. Changes include: • Changing the flood operations manual for both dams • Lowering the water supply storage volume of Somerset Dam to 80% of its normal volume • Lowering the water supply storage volume of Wivenhoe Dam to 90% of its normal volume. Lowering the water supply storage volume increased the flood storage volume in the dams. What to expect Get involved The water supply storage levels in both dams will remain Identifying the social, environmental and heritage impacts lowered during the design and construction of the of the shortlisted upgrade options for Somerset Dam is part Somerset Dam safety upgrade.
    [Show full text]
  • Community Adaptation Strategies to Floods
    Community adaptation strategies to floods Investigating affected communities in the aftermath of the 2010–11 floods Understanding how floods impact communities provides insights on policies aimed at reducing the impact of future flood events. Climate change scenarios suggest an increase in extreme rainfall events, contributing to a greater frequency of riverine and flash floods. At the same time, Emergency Management Australia has shifted its policies for hazard mitigation towards building resilient communities. The experiences of psychological, financial and social stress within the communi- ties preparing for, dealing with, and recovering from the floods provides information to planners and emergency managers. This project looked at the factors inhibiting and enabling household adaptation strategies in the flood-affected communi- ties of Brisbane, Emerald and Donald in the aftermath of the 2010–11 flooding events. Researchers uncovered strengths and weaknesses in community resilience through surveys and face-to-face interviews with residents and local and State government agencies. Main factors affecting response, recovery and adaptation to floods » Memory of hardship from direct flood experience » Structural limits to adaptive housing redesign » Expectation of success from adaptation strategy » Financial constraints limiting capacity for change » Lack of support from insurance companies » Relocation resistance due to community identity » Negative physical and mental health impacts » Participation in community initiatives » Inadequate communication before and during » Perceived government protection through dam flooding events management, building regulations, and planning The Brisbane, Emerald and Donald case studies Study participants reported ample evidence of commu- Richardson River were the highest since 1909. The flood nity resilience through 39 face-to-face interviews and 210 caused extensive damage to agricultural land and public survey responses.
    [Show full text]
  • L Z012 Oalt Aegavcd
    t 6 JUL Z012 OAlt AEGavcD Queensland Competition Authority. file ref:444089 Level19, 12 Creek Street, BRISBANE. QLD 4001 For the Attention of Angus MacDonald Dear Sir, Subject-Irrigation Prices for Seqwater Central Brisbane WSS: 2013-17 We are stakeholders in the Central Brisbane WSS and hold a current license to draw water from the Brisbane River between Wivenhoe Dam and Mount Crosby. We would be extremely concerned should the QCA come to the conclusion that the documentation provided by Seqwater provides a justification for any charge to be made for water taken direct from the Brisbane River under the capped 7000MI agreement. We note that the Fernvale Consultation meeting of 22"d June was attended by a very small proportion of the 130 license Holders. We consider that the views expressed about the level of charging per Ml were not representative of our views or the views of the majority of license holders in the Central Brisbane WSS who attended a meeting of 10th July 2012. We support the views expressed in the attached submission and request the QCA accept this submission on our behalf. Yours faithfully, Signature r/lrz-1'151§/1 rr-; L-~,P Print Name of l icense Holder... ............... :.................. .............................................. .. Date 16 ~: ~.... / 'j-l- ~~ MID a&Ua&JII£ A l 'f'EI. 1 &1.1&4..-e&l ~ Pt•omotin8 Effective Sustainable Catchment Manag=ent Submission to Queensland Competition Authority In relation to Seqwater Rural Water Supply Network Service Plan For the Central Brisbane River supply scheme On Behalf of The Members of Mid Brisbane River Irrigators Inc This submission is prepared under 3 main headings 1.
    [Show full text]
  • Purified Recycled Water in the Lockyer Valley
    Fact Sheet December 2012 Purified Recycled Water in the Lockyer Valley The water supply security of South East Queensland (SEQ) has recently been increased by the construction of the Western Corridor Recycled Water Scheme. The infrastructure of advanced wastewater treatment plants provides purified recycled water (PRW) to the SEQ Water Grid for indirect potable reuse of effluent from urban areas. With a maximum combined production capacity of 232 million litres of PRW a day, it is the third largest recycled water scheme in the world and the largest in the southern hemisphere. This additional water supply is critical during drought conditions but is underused in wet periods. The provision of recycled water in an environmentally Background sound and socially-equitable manner requires measured The Urban Water Security Research Alliance (the Alliance) understanding of the potential impacts on the region’s worked closely with the Queensland Water Commission, soils, groundwater system, environment (such as salinity the former Queensland Department of Environment and issues) and the economy. Therefore, a holistic framework Resource Management, WaterSecure (now Seqwater) and was required to inform an integrated water management the SEQ Water Grid Manager, as well as irrigators and the plan involving the use of PRW. This was achieved through farming community. a multi-tiered assessment incorporating environmental risk analysis, climate modelling, regulatory considerations and Together we explored the feasibility of providing agro-economics. approximately 20 million litres per year of PRW to supplement irrigation supplies in the Lockyer Valley, 80 km The environmental risks and benefits from the supply of PRW west of Brisbane. were the core subjects addressed by this research, using a combination of field research, water quality and quantity Alliance research explored whether the use of PRW can serve modelling , and unstructured stakeholder interviews.
    [Show full text]