Give Me A5 for Lipoprotein Hydrolysis!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variants of Lipid-Related Genes in Adult Japanese Patients with Severe Hypertriglyceridemia Akira Matsunaga1, Mariko Nagashima1, Hideko Yamagishi1 and Keijiro Saku2
The official journal of the Japan Atherosclerosis Society and the Asian Pacific Society of Atherosclerosis and Vascular Diseases Original Article J Atheroscler Thromb, 2020; 27: 1264-1277. http://doi.org/10.5551/jat.51540 Variants of Lipid-Related Genes in Adult Japanese Patients with Severe Hypertriglyceridemia Akira Matsunaga1, Mariko Nagashima1, Hideko Yamagishi1 and Keijiro Saku2 1Department of Laboratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan 2Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan Aim: Hypertriglyceridemia is a type of dyslipidemia that contributes to atherosclerosis and coronary heart dis- ease. Variants in lipoprotein lipase (LPL), apolipoprotein CII (APOC2), apolipoprotein AV (APOA5), glyco- sylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation fac- tor 1 (LMF1), and glucokinase regulator (GCKR) are responsible for hypertriglyceridemia. We investigated the molecular basis of severe hypertriglyceridemia in adult patients referred to the Clinical Laboratory at Fukuoka University Hospital. Methods: Twenty-three adult patients with severe hypertriglyceridemia (>1,000 mg/dL, 11.29 mmol/L) were selected. The coding regions of candidate genes were sequenced by next-generation sequencing. Forty-nine genes reportedly associated with hypertriglyceridemia were analyzed. Results: In the 23 patients, we detected 70 variants: 28 rare and 42 common ones. Among the 28 rare variants with <1% allele frequency, p.I4533L in APOB, -
The Expression of the Human Apolipoprotein Genes and Their Regulation by Ppars
CORE Metadata, citation and similar papers at core.ac.uk Provided by UEF Electronic Publications The expression of the human apolipoprotein genes and their regulation by PPARs Juuso Uski M.Sc. Thesis Biochemistry Department of Biosciences University of Kuopio June 2008 Abstract The expression of the human apolipoprotein genes and their regulation by PPARs. UNIVERSITY OF KUOPIO, the Faculty of Natural and Environmental Sciences, Curriculum of Biochemistry USKI Juuso Oskari Thesis for Master of Science degree Supervisors Prof. Carsten Carlberg, Ph.D. Merja Heinäniemi, Ph.D. June 2008 Keywords: nuclear receptors; peroxisome proliferator-activated receptor; PPAR response element; apolipoprotein; lipid metabolism; high density lipoprotein; low density lipoprotein. Lipids are any fat-soluble, naturally-occurring molecules and one of their main biological functions is energy storage. Lipoproteins carry hydrophobic lipids in the water and salt-based blood environment for processing and energy supply in liver and other organs. In this study, the genomic area around the apolipoprotein genes was scanned in silico for PPAR response elements (PPREs) using the in vitro data-based computer program. Several new putative REs were found in surroundings of multiple lipoprotein genes. The responsiveness of those apolipoprotein genes to the PPAR ligands GW501516, rosiglitazone and GW7647 in the HepG2, HEK293 and THP-1 cell lines were tested with real-time PCR. The APOA1, APOA2, APOB, APOD, APOE, APOF, APOL1, APOL3, APOL5 and APOL6 genes were found to be regulated by PPARs in direct or secondary manners. Those results provide new insights in the understanding of lipid metabolism and so many lifestyle diseases like atherosclerosis, type 2 diabetes, heart disease and stroke. -
Proteomic Analysis of HDL from Inbred Mouse Strains Implicates APOE Associated with HDL in Reduced Cholesterol Effl Ux Capacity Via the ABCA1 Pathway
Supplemental Material can be found at: http://www.jlr.org/content/suppl/2015/12/15/jlr.M063701.DC1 .html ˔ Author’s Choice Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol effl ux capacity via the ABCA1 pathway Nathalie Pamir , 1, * Patrick Hutchins , * Graziella Ronsein , * Tomas Vaisar , * Catherine A. Reardon , † Godfrey S. Getz , † Aldons J. Lusis , § and Jay W. Heinecke * Downloaded from Department of Medicine,* University of Washington , Seattle, WA ; Department of Pathology, † University of Chicago , Chicago, IL ; and Department of Genetics, § University of California at Los Angeles , Los Angeles, CA Abstract Cholesterol effl ux capacity associates strongly Supplementary key words atherosclerosis • cardiovascular risk • mass and negatively with the incidence and prevalence of human spectrometry • high density lipoprotein • apolipoprotein E • ATP bind- CVD. We investigated the relationships of HDL’s size and ing cassette transporter A1 www.jlr.org protein cargo with its cholesterol effl ux capacity using APOB-depleted serum and HDLs isolated from fi ve inbred mouse strains with different susceptibilities to atherosclero- Clinical and epidemiological studies show a robust at Univ of Washington Health Sciences Library SB-55, on February 5, 2016 sis. Like humans, mouse HDL carried >70 proteins linked to inverse association of HDL-cholesterol (HDL-C) levels lipid metabolism, the acute-phase response, proteinase inhi- with CVD risk ( 1 ). In randomized clinical trials, how- bition, and the immune system. HDL’s content of specifi c ever, two drugs, CETP inhibitors and niacin, that elevate proteins strongly correlated with its size and cholesterol ef- fl ux capacity, suggesting that its protein cargo regulates its HDL-C levels by different mechanisms, failed to reduce function. -
Apoa5genetic Variants Are Markers for Classic Hyperlipoproteinemia
CLINICAL RESEARCH CLINICAL RESEARCH www.nature.com/clinicalpractice/cardio APOA5 genetic variants are markers for classic hyperlipoproteinemia phenotypes and hypertriglyceridemia 1 1 1 2 2 1 1 Jian Wang , Matthew R Ban , Brooke A Kennedy , Sonia Anand , Salim Yusuf , Murray W Huff , Rebecca L Pollex and Robert A Hegele1* SUMMARY INTRODUCTION Hypertriglyceridemia is a common biochemical Background Several known candidate gene variants are useful markers for diagnosing hyperlipoproteinemia. In an attempt to identify phenotype that is observed in up to 5% of adults. other useful variants, we evaluated the association of two common A plasma triglyceride concentration above APOA5 single-nucleotide polymorphisms across the range of classic 1.7 mmol/l is a defining component of the meta 1 hyperlipoproteinemia phenotypes. bolic syndrome and is associated with several comorbidities, including increased risk of cardio Methods We assessed plasma lipoprotein profiles and APOA5 S19W and vascular disease2 and pancreatitis.3,4 Factors, –1131T>C genotypes in 678 adults from a single tertiary referral lipid such as an imbalance between caloric intake and clinic and in 373 normolipidemic controls matched for age and sex, all of expenditure, excessive alcohol intake, diabetes, European ancestry. and use of certain medications, are associated Results We observed significant stepwise relationships between APOA5 with hypertriglyceridemia; however, genetic minor allele carrier frequencies and plasma triglyceride quartiles. The factors are also important.5,6 odds ratios for hyperlipoproteinemia types 2B, 3, 4 and 5 in APOA5 S19W Complex traits, such as plasma triglyceride carriers were 3.11 (95% CI 1.63−5.95), 4.76 (2.25−10.1), 2.89 (1.17−7.18) levels, usually do not follow Mendelian patterns of and 6.16 (3.66−10.3), respectively. -
Biomolecules
biomolecules Review High-Density Lipoproteins Are Bug Scavengers Olivier Meilhac 1,2,*, Sébastien Tanaka 1,3 and David Couret 1,4 1 Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; [email protected] (S.T.); [email protected] (D.C.) 2 CHU de La Réunion, Centre d’Investigations Clinique 1410, 97410 Saint-Pierre, France 3 AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 75018 Paris, France 4 CHU de La Réunion, Neurocritical Care Unit, 97410 Saint-Pierre, France * Correspondence: [email protected]; Tel.: +33-262-93-88-11 Received: 7 March 2020; Accepted: 6 April 2020; Published: 12 April 2020 Abstract: Lipoproteins were initially defined according to their composition (lipids and proteins) and classified according to their density (from very low- to high-density lipoproteins—HDLs). Whereas their capacity to transport hydrophobic lipids in a hydrophilic environment (plasma) is not questionable, their primitive function of cholesterol transporter could be challenged. All lipoproteins are reported to bind and potentially neutralize bacterial lipopolysaccharides (LPS); this is particularly true for HDL particles. In addition, HDL levels are drastically decreased under infectious conditions such as sepsis, suggesting a potential role in the clearance of bacterial material and, particularly, LPS. Moreover, “omics” technologies have unveiled significant changes in HDL composition in different inflammatory states, ranging from acute inflammation occurring during septic shock to low-grade inflammation associated with moderate endotoxemia such as periodontal disease or obesity. In this review, we will discuss HDL modifications associated with exposure to pathogens including bacteria, viruses and parasites, with a special focus on sepsis and the potential of HDL therapy in this context. -
Association Between the APOA2 Rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI
biomedicines Article Association between the APOA2 rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI Hatim Boughanem 1 , Borja Bandera-Merchán 2, Pablo Hernández-Alonso 2,3,4 , Noelia Moreno-Morales 5, Francisco José Tinahones 2,3, José Lozano 6 , Sonsoles Morcillo 2,3,* and Manuel Macias-Gonzalez 2,3,* 1 Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] 2 Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; [email protected] (B.B.-M.); [email protected] (P.H.-A.); [email protected] (F.J.T.) 3 Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERObn, 28029 Madrid, Spain 4 Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, 43201 Reus, Spain 5 Department of Physiotherapy, School of Health Sciences, University of Malaga-Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; [email protected] 6 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] * Correspondence: [email protected] (S.M.); [email protected] (M.M.-G.); Tel.: +34-951-032-648 (S.M. & M.M.-G.); Fax: +34-27-951-924-651 (S.M. & M.M.-G.) Received: 18 February 2020; Accepted: 25 February 2020; Published: 27 February 2020 Abstract: Background: The interaction between obesity and genetic traits on high density lipoprotein (HDL) levels has been extensively studied. -
Downloaded Separately for CEU (Individuals of Western and Northern European Origin) and YRI (Yoruba in Nigeria) from Hapmap Phase 2
NIH Public Access Author Manuscript Int J Obes (Lond). Author manuscript; available in PMC 2013 September 11. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Int J Obes (Lond). 2013 September ; 37(9): 1211–1220. doi:10.1038/ijo.2012.215. Lipoprotein receptor-related protein 1 variants and dietary fatty acids: meta-analysis of European origin and African American studies CE Smith1, J Ngwa2, T Tanaka3, Q Qi4, MK Wojczynski5, RN Lemaitre6, JS Anderson7, A Manichaikul8, V Mikkilä9, FJA van Rooij10,11, Z Ye12, S Bandinelli13, AC Frazier-Wood14, DK Houston15, F Hu4,16, C Langenberg12, NM McKeown1, D Mozaffarian17,18, KE North19, J Viikari20, MC Zillikens11,21, L Djoussé22, A Hofman10,11, M Kähönen23, EK Kabagambe14, RJF Loos12, GB Saylor7, NG Forouhi12, Y Liu24, KJ Mukamal25, Y-DI Chen26, MY Tsai27, AG Uitterlinden10,11,21, O Raitakari28, CM van Duijn10,11, DK Arnett14, IB Borecki5, LA Cupples2,29, L Ferrucci3, SB Kritchevsky15, T Lehtimäki30, Lu Qi4,16, JI Rotter26, DS Siscovick31, NJ Wareham12, JCM Witteman10,11, JM Ordovás1,32,33, and JA Nettleton34 1Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA 2Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA 3Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA 4Department of Nutrition, Harvard School of Public Health, Boston, MA, USA 5Department of Genetics, Washington University School of Medicine, St. -
Common Genetic Variations Involved in the Inter-Individual Variability Of
nutrients Review Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence Mohammad M. H. Abdullah 1 , Itzel Vazquez-Vidal 2, David J. Baer 3, James D. House 4 , Peter J. H. Jones 5 and Charles Desmarchelier 6,* 1 Department of Food Science and Nutrition, Kuwait University, Kuwait City 10002, Kuwait; [email protected] 2 Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada; [email protected] 3 United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; [email protected] 4 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] 5 Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada; [email protected] 6 Aix Marseille University, INRAE, INSERM, C2VN, 13005 Marseille, France * Correspondence: [email protected] Abstract: The number of nutrigenetic studies dedicated to the identification of single nucleotide Citation: Abdullah, M.M.H.; polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has Vazquez-Vidal, I.; Baer, D.J.; House, increased considerably over the last decade. However, the robustness of the evidence-based sci- J.D.; Jones, P.J.H.; Desmarchelier, C. ence supporting the area remains to be evaluated. The objective of this review was to present Common Genetic Variations Involved recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol in the Inter-Individual Variability of metabolism and transport, and dietary intakes or interventions on circulating cholesterol concen- Circulating Cholesterol trations, which are causally involved in cardiovascular diseases and established biomarkers of Concentrations in Response to Diets: cardiovascular health. -
Role of Myeloperoxidase Mediated Oxidative Modification and Apolipoprotein Composition in High Density Lipoprotein Function
ROLE OF MYELOPEROXIDASE MEDIATED OXIDATIVE MODIFICATION AND APOLIPOPROTEIN COMPOSITION IN HIGH DENSITY LIPOPROTEIN FUNCTION by ARUNDHATI UNDURTI Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Advisor: Dr. Stanley L. Hazen Department of Microbiology and Molecular Biology Cell Biology Program CASE WESTERN RESERVE UNIVERSITY August, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________Arundhati Undurti candidate for the ______________________degreePhD *. Alan Levine (signed)_______________________________________________ (chair of the committee) Stanley Hazen ________________________________________________ Jonathan Smith ________________________________________________ Menachem Shoham ________________________________________________ Mark Chance ________________________________________________ ________________________________________________ (date) _______________________06-30-2010 *We also certify that written approval has been obtained for any proprietary material contained therein. For Amma and Nana TABLE OF CONTENTS List of Figures 3 List of Tables 7 Abbreviations 8 Acknowledgements 11 Abstract 13 Chapter I: Introduction Pathogenesis of Atherosclerosis Endothelial Dysfunction 17 Fatty Streak Formation 17 Advanced Lesion Formation 18 Thrombotic Complications 18 Role of Lipoproteins in Atherosclerosis Lipoprotein Classification and Metabolism 19 High Density Lipoprotein 20 Reverse -
Additive Effects of LPL, APOA5 and APOE Variant Combinations On
Ariza et al. BMC Medical Genetics 2010, 11:66 http://www.biomedcentral.com/1471-2350/11/66 RESEARCH ARTICLE Open Access AdditiveResearch article effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study María-José Ariza*1, Miguel-Ángel Sánchez-Chaparro1,2,3, Francisco-Javier Barón4, Ana-María Hornos2, Eva Calvo- Bonacho2, José Rioja1, Pedro Valdivielso1,3, José-Antonio Gelpi2 and Pedro González-Santos1,3 Abstract Background: Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including LPL, APOA5 and APOE. The combined analysis of these polymorphisms could produce clinically meaningful complementary information. Methods: A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the LPL-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the APOA5- S19W (rs3135506) and -1131T/C (rs662799) variants, and the APOE polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption. Results: We found a significant lowering effect of the LPL-HindIII and S447X polymorphisms (p < 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the APOE-ε4 allele were significantly associated with an independent additive TG-raising effect (p < 0.05, p < 0.01, p < 0.001, p < 0.0001 and p < 0.001, respectively). -
Single Nucleotide Polymorphisms in CETP, SLC46A1, SLC19A1, CD36
Clifford et al. Lipids in Health and Disease 2013, 12:66 http://www.lipidworld.com/content/12/1/66 RESEARCH Open Access Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5,andABCA1 are significant predictors of plasma HDL in healthy adults Andrew J Clifford1*, Gonzalo Rincon2, Janel E Owens3, Juan F Medrano2, Alanna J Moshfegh4, David J Baer5 and Janet A Novotny5 Abstract Background: In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body weight. We used a linear regression model. Selected genes corresponded to folate metabolism, vitamins B-12, A, and E, and cholesterol pathways or lipid metabolism. Methods: Extracted DNA from both the Sacramento and Beltsville populations was analyzed using an allele discrimination assay with a MALDI-TOF mass spectrometry platform. The adjusted phenotype, y, was HDL levels adjusted for gender and body weight only statistical analyses were performed using the genotype association and regression modules from the SNP Variation Suite v7. Results: Statistically significant SNP (where P values were adjusted for false discovery rate) included: CETP (rs7499892 and rs5882); SLC46A1 (rs37514694; rs739439); SLC19A1 (rs3788199); CD36 (rs3211956); BCMO1 (rs6564851), APOA5 (rs662799), and ABCA1 (rs4149267). Many prior association trends of the SNP with HDL were replicated in our cross-validation study. Significantly, the association of SNP in folate transporters (SLC46A1 rs37514694 and rs739439; SLC19A1 rs3788199) with HDL was identified in our study. -
The Genetic Architecture of Fasting Plasma Triglyceride Response to Fenofibrate Treatment
European Journal of Human Genetics (2008) 16, 603–613 & 2008 Nature Publishing Group All rights reserved 1018-4813/08 $30.00 www.nature.com/ejhg ARTICLE The genetic architecture of fasting plasma triglyceride response to fenofibrate treatment Jennifer A Smith*,1, Donna K Arnett2, Reagan J Kelly1, Jose M Ordovas3, Yan V Sun1, Paul N Hopkins4,JamesEHixson5,RobertJStraka6, James M Peacock7 and Sharon LR Kardia1 1Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; 2Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA; 3Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; 4Cardiovascular Genetics Research, University of Utah, Salt Lake City, UT, USA; 5Human Genetics Center, University of Texas Health Science, Houston, TX, USA; 6Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA; 7Department of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, MN, USA Metabolic response to the triglyceride (TG)-lowering drug, fenofibrate, is shaped by interactions between genetic and environmental factors, yet knowledge regarding the genetic determinants of this response is primarily limited to single-gene effects. Since very low-density lipoprotein (VLDL) is the central carrier of fasting TG, identifying factors that affect both total TG and VLDL–TG response to fenofibrate is critical for predicting individual fenofibrate response. As part of the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, 688 individuals from 161 families were genotyped for 91 single-nucleotide polymorphisms (SNPs) in 25 genes known to be involved in lipoprotein metabolism.