Oxygen Guarding in the Termite Zootermopsis Nevadensis (Isoptera: Termopsidae) John R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complementary Symbiont Contributions to Plant Decomposition in a Fungus-Farming Termite
Complementary symbiont contributions to plant decomposition in a fungus-farming termite Michael Poulsena,1,2, Haofu Hub,1, Cai Lib,c, Zhensheng Chenb, Luohao Xub, Saria Otania, Sanne Nygaarda, Tania Nobred,3, Sylvia Klaubaufe, Philipp M. Schindlerf, Frank Hauserg, Hailin Panb, Zhikai Yangb, Anton S. M. Sonnenbergh, Z. Wilhelm de Beeri, Yong Zhangb, Michael J. Wingfieldi, Cornelis J. P. Grimmelikhuijzeng, Ronald P. de Vriese, Judith Korbf,4, Duur K. Aanend, Jun Wangb,j, Jacobus J. Boomsmaa, and Guojie Zhanga,b,2 aCentre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; bChina National Genebank, BGI-Shenzen, Shenzhen 518083, China; cCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark; dLaboratory of Genetics, Wageningen University, 6708 PB, Wageningen, The Netherlands; eFungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, Royal Netherlands Academy of Arts and Sciences, NL-3584 CT, Utrecht, The Netherlands; fBehavioral Biology, Fachbereich Biology/Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany; gCenter for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; hDepartment of Plant Breeding, Wageningen University and Research Centre, NL-6708 PB, Wageningen, The Netherlands; iDepartment of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria SA-0083, South Africa; and jDepartment of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark Edited by Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, and approved August 15, 2014 (received for review October 24, 2013) Termites normally rely on gut symbionts to decompose organic levels-of-selection conflicts that need to be regulated (12). -
Molecular Traces of Alternative Social Organization in a Termite Genome
Molecular traces of alternative social organization in a termite genome Terrapon, Nicolas; Li, Cai; Robertson, Hugh M.; Ji, Lu; Meng, Xuehong; Booth, Warren; Chen, Zhensheng; Childers, Christopher P.; Glastad, Karl M.; Gokhale, Kaustubh; Gowin, Johannes; Gronenberg, Wulfila; Hermansen, Russell A.; Hu, Haofu; Hunt, Brendan G.; Huylmans, Ann Kathrin; Khalil, Sayed M. S.; Mitchell, Robert D.; Munoz-Torres, Monica C.; Mustard, Julie A.; Pan, Hailin; Reese, Justin T.; Scharf, Michael E.; Sun, Fengming; Vogel, Heiko; Xiao, Jin; Yang, Wei; Yang, Zhikai; Yang, Zuoquan; Zhou, Jiajian; Zhu, Jiwei; Brent, Colin S.; Elsik, Christine G.; Goodisman, Michael A. D.; Liberles, David A.; Roe, R. Michael; Vargo, Edward L.; Vilcinskas, Andreas; Wang, Jun; Bornberg-Bauer, Erich; Korb, Judith; Zhang, Guojie; Liebig, Jurgen Published in: Nature Communications DOI: 10.1038/ncomms4636 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-SA Citation for published version (APA): Terrapon, N., Li, C., Robertson, H. M., Ji, L., Meng, X., Booth, W., Chen, Z., Childers, C. P., Glastad, K. M., Gokhale, K., Gowin, J., Gronenberg, W., Hermansen, R. A., Hu, H., Hunt, B. G., Huylmans, A. K., Khalil, S. M. S., Mitchell, R. D., Munoz-Torres, M. C., ... Liebig, J. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, [3636]. https://doi.org/10.1038/ncomms4636 Download date: 02. okt.. 2021 ARTICLE Received 17 Jul 2013 | Accepted 13 Mar 2014 | Published 20 May 2014 DOI: 10.1038/ncomms4636 OPEN Molecular traces of alternative social organization in a termite genome Nicolas Terrapon1,*,w, Cai Li2,3,*, Hugh M. -
The Nature of Alarm Communication in Constrictotermes Cyphergaster (Blattodea: Termitoidea: Termitidae): the Integration of Chemical and Vibroacoustic Signals Paulo F
© 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 1649-1659 doi:10.1242/bio.014084 RESEARCH ARTICLE The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals Paulo F. Cristaldo1,*, Vojtĕch Jandák2, Kateřina Kutalová3,4,5, Vinıciuś B. Rodrigues6, Marek Brothánek2, Ondřej Jiřıć̌ek2, Og DeSouza6 and Jan Šobotnıḱ3 ABSTRACT INTRODUCTION Predation and competition have long been considered major ecological Alarm signalling is of paramount importance to communication in all factors structuring biotic communities (e.g. Shurin and Allen, 2001). In social insects. In termites, vibroacoustic and chemical alarm signalling many taxa, a wide range of defensive strategies have evolved helping are bound to operate synergistically but have never been studied organisms to deal with costs imposed by such interactions. Strategies simultaneously in a single species. Here, we inspected the functional consist in combining mechanical (biting, kicking, fleeing) and/or significance of both communication channels in Constrictotermes chemical (toxic or repellent compounds) arsenal with an effective cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis alarm communication. The ability to give and perceive conspecific that these are not exclusive, but rather complementary processes. In signalling about imminent threats has attained maximum complexity natural situations, the alarm predominantly attracts soldiers, which in social groups, such as vertebrates (Manser, 2001, 2013) and insects actively search for the source of a disturbance. Laboratory testing (Blum, 1985; Hölldobler, 1999; Hölldobler and Wilson, 2009). revealed that the frontal gland of soldiers produces a rich mixture of In termites, one facet of such complexity is represented by the terpenoid compounds including an alarm pheromone. -
Journal of Cave and Karst Studies
March 2018 Volume 80, Number 1 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Tel:256-852-1300 Julian J. Lewis & Salisa L. Lewis Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Washington, DC 20460-0001 Bowling Green, KY [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy Scott A. Engel [email protected] Knoxville, TN 225-281-3914 Exploration Paul Burger [email protected] National Park Service Eagle River, Alaska Journal Copy Editor [email protected] Linda Starr Microbiology Albuquerque, NM Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO [email protected] Social Sciences Joseph C. Douglas The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM Volunteer State Community College Number #40065056, is a multi-disciplinary, refereed journal pub- Gallatin, TN lished four times a year by the National Speleological Society. -
Distinct Chemical Blends Produced by Different Reproductive Castes in the Subterranean Termite Reticulitermes Flavipes
www.nature.com/scientificreports OPEN Distinct chemical blends produced by diferent reproductive castes in the subterranean termite Reticulitermes favipes Pierre‑André Eyer*, Jared Salin, Anjel M. Helms & Edward L. Vargo The production of royal pheromones by reproductives (queens and kings) enables social insect colonies to allocate individuals into reproductive and non‑reproductive roles. In many termite species, nestmates can develop into neotenics when the primary king or queen dies, which then inhibit the production of additional reproductives. This suggests that primary reproductives and neotenics produce royal pheromones. The cuticular hydrocarbon heneicosane was identifed as a royal pheromone in Reticulitermes favipes neotenics. Here, we investigated the presence of this and other cuticular hydrocarbons in primary reproductives and neotenics of this species, and the ontogeny of their production in primary reproductives. Our results revealed that heneicosane was produced by most neotenics, raising the question of whether reproductive status may trigger its production. Neotenics produced six additional cuticular hydrocarbons absent from workers and nymphs. Remarkably, heneicosane and four of these compounds were absent in primary reproductives, and the other two compounds were present in lower quantities. Neotenics therefore have a distinct ‘royal’ blend from primary reproductives, and potentially over‑signal their reproductive status. Our results suggest that primary reproductives and neotenics may face diferent social pressures. -
Inbreeding and Disease Resistance in a Social Insect: Effects of Heterozygosity on Immunocompetence in the Termite Zootermopsis Angusticollis Daniel V
Proc. R. Soc. B (2006) 273, 2633–2640 doi:10.1098/rspb.2006.3622 Published online 18 July 2006 Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis Daniel V. Calleri II1,*, Ellen McGrail Reid1, Rebeca B. Rosengaus2, Edward L. Vargo3 and James F. A. Traniello1 1Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215-2406, USA 2Department of Biology, Northeastern University, 134 Mugar Life Science Building, 360 Huntington Avenue, Boston, MA 02115-5000, USA 3Department of Entomology, North Carolina State University, PO Box 7613, Raleigh, NC 27695-7613, USA Recent research has shown that low genetic variation in individuals can increase susceptibility to infection and group living may exacerbate pathogen transmission. In the eusocial diploid termites, cycles of outbreeding and inbreeding characterizing basal species can reduce genetic variation within nestmates during the life of a colony, but the relationship of genetic heterogeneity to disease resistance is poorly understood. Here we show that, one generation of inbreeding differentially affects the survivorship of isolated and grouped termites (Zootermopsis angusticollis) depending on the nature of immune challenge and treatment. Inbred and outbred isolated and grouped termites inoculated with a bacterial pathogen, exposed to a low dose of fungal pathogen or challenged with an implanted nylon monofilament had similar levels of immune defence. However, inbred grouped termites exposed to a relatively high concentration of fungal conidia had significantly greater mortality than outbred grouped termites. Inbred termites also had significantly higher cuticular microbial loads, presumably due to less effective grooming by nestmates. Genetic analyses showed that inbreeding significantly reduced heterozygosity and allelic diversity. -
Discontinuous Gas Exchange in a Tracheate Arthropod, the Pseudoscorpion Garypus Californicus: Occurrence, Characteristics and Temperature Dependence
Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: Occurrence, characteristics and temperature dependence. Author(s): John R. B. Lighton and Barbara Joos Source: Journal of Insect Science, 2(23):1-4. 2002. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1673/031.002.2301 URL: http://www.bioone.org/doi/full/10.1673/031.002.2301 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Lighton J.R.B., Joos B. 2002. Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus Insect californicus: Occurrence, characteristics and temperature dependence. 4pp. Journal of Insect Science, 2:23, Available online: insectscience.org/2.23 Science insectscience.org Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: Occurrence, characteristics and temperature dependence. John R.B. Lighton and Barbara Joos Department of Biological Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004. -
Mini-Review an Insect-Specific System for Terrestrialization Laccase
Insect Biochemistry and Molecular Biology 108 (2019) 61–70 Contents lists available at ScienceDirect Insect Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/ibmb Mini-review an insect-specific system for terrestrialization: Laccase- mediated cuticle formation T ∗ Tsunaki Asano , Yosuke Seto, Kosei Hashimoto, Hiroaki Kurushima Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan ABSTRACT Insects are often regarded as the most successful group of animals in the terrestrial environment. Their success can be represented by their huge biomass and large impact on ecosystems. Among the factors suggested to be responsible for their success, we focus on the possibility that the cuticle might have affected the process of insects’ evolution. The cuticle of insects, like that of other arthropods, is composed mainly of chitin and structural cuticle proteins. However, insects seem to have evolved a specific system for cuticle formation. Oxidation reaction of catecholamines catalyzed by a copper enzyme, laccase, is the key step in the metabolic pathway for hardening of the insect cuticle. Molecular phylogenetic analysis indicates that laccase functioning in cuticle sclerotization has evolved only in insects. In this review, we discuss a theory on how the insect-specific “laccase” function has been advantageous for establishing their current ecological position as terrestrial animals. 1. Introduction the cuticle hardens after molting in crustaceans and diplopods (Shaw, 1968; Barnes, 1982; Nagasawa, -
And Harvestmen (Opiliones) from Malta with a Preliminary Checklist of Maltese Arachnida
89 (2) · August 2017 pp. 85–110 New records of mites (Acari) and harvestmen (Opiliones) from Malta with a preliminary checklist of Maltese Arachnida Walter P. Pfliegler1,*, Axel Schönhofer2, Wojciech Niedbała3, Patrick Vella†, Arnold Sciberras4 and Antoine Vella5 1 Department of Biotechnology and Microbiology, University of Debrecen, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary 2 Johannes Gutenberg Universität Mainz, Institut für Zoologie, Abteilung Evolutionsbiologie, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany 3 Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland 4 Nature Trust Malta, PO Box9, VLT 1000, Valetta Malta 5 74, Buontempo Estate, BZN1135 Balzan, Malta * Corresponding author, e-mail: [email protected] Received 16 March 2017 | Accepted 17 May 2017 Published online at www.soil-organisms.de 1 August 2017 | Printed version 15 August 2017 Abstract We present new faunistic records of mites and harvestmen from the Maltese Archipelago and reviewed available data on the faunistics of the class Arachnida of the Archipelago. Literature records of Arachnids are rather scarce and uncomprehensive and up to date, checklists dealing with them have not been published except for spiders and gall mites. Along with newly recorded families, genera and species, we compiled a preliminary checklist and review of Maltese Arachnida to facilitate faunistic research on these groups. In regard to mites, Geckobia sarahae Bertrand, Pfliegler & Sciberras, 2012 is established as a lapsus calami that refers to G. estherae Bertrand, Pfliegler & Sciberras, 2012. Keywords Mediterranean | endemic | soil fauna | faunistics | distribution | anthropogenic habitat 1. Introduction Selmunett Island, Manoel Island, Ta’ Fra Ben Islet and Cominotto. -
Pseudoscorpion Diversity of the Canary Islands, with the Description of Nine New Species (Pseudoscorpiones, Chthoniidae, Cheiridiidae) and New Records
ARTICULO: A nature’s treasury: Pseudoscorpion diversity of the Canary Islands, with the description of nine new species (Pseudoscorpiones, Chthoniidae, Cheiridiidae) and new records Volker Mahnert Abstract: ARTICULO: Three new species of the subgenus Chthonius (Ephippiochthonius) from Tenerife A nature’s treasury: Pseudoscorpion and Gran Canaria and five new species of the genus Lagynochthonius (Chthonii- diversity of the Canary Islands, with dae) are described from the mesovoid shallow substratum (MSS) of Gran Canaria. the description of nine new species The presence of four lanceolate setae on the movable chelal finger of Lagynoch- thonius species is a previously unrecorded morphological character in this genus. (Pseudoscorpiones, Chthoniidae, Paraliochthonius curvidigitatus (Mahnert) is replaced in its original genus Lagy- Cheiridiidae) and new records nochthonius. Apocheiridium lienhardi sp. nov. (Cheiridiidae) is described from the island of El Hierro, the species is characterized by the presence of only 6 Volker Mahnert trichobothria on the fixed chelal finger. The subgenus Apocheiridium (Chiliocheirid- Muséum d’histoire naturelle ium) Vitali-di Castri is sunk in the synonymy of Apocheiridium J. C. Chamberlin, it case postale 6434 CH-1211 was only known from three species from Chile. Chthonius (Ephippiochthonius) ca- Genève 6, Suisse. nariensis stat. nov. is elevated from subspecies rank; Geogarypus mirei Heurtault C-elect.: [email protected] (Geogarypidae) and Garypus s. saxicola Waterhouse (Garypidae) are recorded for the first time from the Canarian Archipelago, several other species are added to the fauna of different islands. Identification keys are provided to the species of the genera Chthonius (Ephippiochthonius) and Lagynochthonius from the Canary Is- Revista Ibérica de Aracnología lands. -
Caste Determination in Arthropods
Author's personal copy Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in Encyclopedia of Animal Behavior, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: https://www.elsevier.com/about/our-business/policies/copyright/permissions From Dolezal, A.G. (2019). Caste Determination in Arthropods. In: Choe, J.C. (Ed.), Encyclopedia of Animal Behavior, (2nd ed.). vol. 4, pp. 691–698. Elsevier, Academic Press. ISBN: 9780128132517 Copyright © 2019 Elsevier Ltd. All rights reserved. Academic Press Author's personal copy Caste Determination in Arthropodsq Adam G Dolezal, University of Illinois Urbana-Champaign, Urbana, IL, United States © 2019 Elsevier Ltd. All rights reserved. Abstract Adefining feature in social insects is the differences between reproducing individuals and nonreproducing individuals within a colony. In many species, caste differentiation is driven by developmental processes that produce individuals with widely different phenotypes. In addition, some species of ants, bees, and termites have a polymorphic worker caste. Even within the nonreproductive individuals of a colony, developmental changes take place, and workers of highly variable sizes and shapes are produced. -
Blattodea Karyotype Database
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 118: 192–199, 2021 http://www.eje.cz doi: 10.14411/eje.2021.020 ORIGINAL ARTICLE Blattodea Karyotype Database MAREK JANKÁSEK 1 , ZUZANA KOTYKOVÁ VARADÍNOVÁ 1,2 and FRANTIŠEK ŠŤÁHLAVSKÝ 1 1 Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Praha 2, Czech Republic; e-mails: [email protected], [email protected], [email protected] 2 Department of Zoology, National Museum, Václavské náměstí 68, 115 79 Praha 1, Czech Republic Key words. Blattodea, Isoptera, cockroach, termite, chromosome number, karyotype, meiosis, sex chromosome system, online database Abstract. We present an open (publicly available) and updatable database of the karyotypes of Blattodea which is available at http://web.natur.cuni.cz/zoologie/arthropods/blattodeadatabase/index.html. This database currently contains data on chromo- some numbers and sex chromosome systems for 355 (209 cockroaches and 146 termites) cytogenetically and/or geographically distinct populations of 229 species (138 cockroaches and 91 termites). When available, data on chromosome morphology and fundamental number are also included. As this summary of the data on Blattodea cytogenetics follows current taxonomy and phy- logeny it enabled us to discuss hypotheses on karyotype evolution. We also point out some cytogenetically interesting phenomena such as extensive karyotype differentiation at low taxonomic levels in some lineages and the change from the X0 sex chromosome system, which is present in cockroaches, to systems with multiple neo-sex chromosomes, present in termites. We encourage the use of modern cytogenetic methods in research on Blattodea cytogenetics to uncover more detailed mechanisms of karyotype evolution in this insect order.