To a First Approximation, All Animals Are Insects. Robert

Total Page:16

File Type:pdf, Size:1020Kb

To a First Approximation, All Animals Are Insects. Robert To a first approximation, all animals are insects. Robert May RNAi efficiency in insects: dsRNA uptake mechanisms and viral suppressors of RNAi ir. Kaat Cappelle Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Cell and Gene Biotechnology Dutch translation of the title: RNAi efficiëntie in insecten: dsRNA opnamemechanismen en virale suppressoren van RNAi Cover illustration: The author’s own artwork depicting the main subjects of this thesis: the RNAi process, the bumblebee and the Colorado potato beetle. Refer to this thesis as follows: Cappelle, K. (2017). RNAi efficiency in insects: dsRNA uptake mechanisms and viral suppressors of RNAi. PhD dissertation, Faculty of Bioscience Engineering, Ghent University, Belgium ISBN: 978-90-5989-967-4 This study was supported by a PhD grant provided by the Bijzonder Onderzoeksfonds (Ghent University, BOF12/DOC/295). The author and the promoters give the authorization to consult and copy parts of this work for personal use only. Every other use is subject to copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. The promotors, The author, Prof. dr. ir. Guy Smagghe Kaat Cappelle Dr. Ivan Meeus Promotors Prof. dr. ir. Guy Smagghe Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium Dr. Ivan Meeus Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium Dean of the Faculty of Bioscience Engineering, Ghent University Prof. dr. ir. Marc Van Meirvenne Rector of Ghent University Prof. dr. Anne de Paepe Chair of the examination committee Prof. dr. ir. Nico Boon Department of Biochemical and Microbial Technology Faculty of Bioscience Engineering, Ghent University, Belgium Members of the reading committee Prof. dr. ir. Peter Bossier Department of Animal Production Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. Joachim de Miranda Department of Ecology Swedish University of Agricultural Sciences, Sweden Prof. dr. Godelieve Gheysen Department of Molecular Biotechnology Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. Jozef Vanden Broeck Department of Biology Faculty of Science, KU Leuven, Belgium TABLE OF CONTENTS List of abbreviations ................................................................................................................................. v List of Figures .......................................................................................................................................... ix List of Tables ............................................................................................................................................ xi Scope ..................................................................................................................................................... xiii Chapter I: Introduction ............................................................................................................................1 1.1 RNA interference ................................................................................................................ 3 1.1.1 Classes of non-coding RNAs and RNA interference ................................................... 3 1.1.2 Biological role of RNAi in insects ................................................................................ 4 1.1.3 The siRNA pathway .................................................................................................... 5 1.1.4 Environmental / systemic RNAi .................................................................................. 6 1.1.5 Applications of RNAi in entomology .......................................................................... 7 1.1.6 Problematic RNAi efficiency ....................................................................................... 7 1.2 dsRNA uptake mechanisms ................................................................................................ 9 1.2.1 Sid-1-like transmembrane proteins ........................................................................... 9 1.2.2 Receptor-mediated clathrin-dependent endocytosis ................................................ 9 1.3 Viral suppressors of RNAi ................................................................................................. 11 1.3.1 VRSs in plant viruses ................................................................................................. 11 1.3.2 VSRs in insects .......................................................................................................... 12 1.4 Insects and viruses used in this work ............................................................................... 15 1.4.1 Insect morphology .................................................................................................... 15 1.4.2 The Colorado potato beetle ..................................................................................... 16 1.4.3 The buff-tailed bumblebee ....................................................................................... 18 1.4.4 The Dicistroviridae.................................................................................................... 19 Chapter II: Intermezzo: RNAi core gene annotation in the Colorado potato beetle and the bumblebee ............................................................................................................................................ 25 2.1 Introduction ..................................................................................................................... 27 2.2 Materials and methods .................................................................................................... 28 2.3 Results and discussion ...................................................................................................... 28 Chapter III: The involvement of clathrin-dependent endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut ..... 31 3.1 Introduction ..................................................................................................................... 33 3.2 Materials and methods .................................................................................................... 36 3.2.1 Insects ....................................................................................................................... 36 3.2.2 Target and reporter gene selection ......................................................................... 36 3.2.3 dsRNA synthesis ....................................................................................................... 36 3.2.4 Feeding assays .......................................................................................................... 38 3.2.5 RNA extraction, cDNA synthesis and RT-qPCR ......................................................... 38 3.3 Results .............................................................................................................................. 39 3.3.1 Identification of target and reporter genes ............................................................. 39 TABLE OF CONTENTS I 3.3.2 Involvement of both sil genes in dsRNA uptake ....................................................... 40 3.3.3 Involvement of the endocytic pathway components in dsRNA uptake ................... 41 3.3.4 Chc as a target for RNAi-based pest control ............................................................ 42 3.4 Discussion ......................................................................................................................... 43 Chapter IV: The pathogenicity of Cricket paralysis virus in Bombus terrestris ..................................... 49 4.1 Introduction ...................................................................................................................... 51 4.2 Material and methods ...................................................................................................... 52 4.2.1 Bumblebee rearing and infection methods ............................................................. 52 4.2.2 Virus production ....................................................................................................... 53 4.2.3 RNA extraction, cDNA synthesis, RT-PCR, negative-strand-specific RT-PCR and RT- qPCR…………………………………………………………………………………………………………………………………….54 4.2.4 CrPV screening in bumblebees collected from nature ............................................. 55 4.3 Results .............................................................................................................................. 56 4.3.1 Injection with CrPV causes mortality at high doses ................................................. 56 4.3.1 Tag-based negative strand RT-PCR detection in a wide host range ......................... 56 4.3.2 Injection with lower doses of CrPV or feeding with faeces of infected bees results in chronic infections ..................................................................................................................... 58 4.3.3 Negative strand detection for CrPV and IAPV in different tissues ........................... 59 4.4 Discussion ......................................................................................................................... 61 Chapter V: The interaction between Israeli acute paralysis virus and the RNA interference response of its host Bombus
Recommended publications
  • Virology Journal Biomed Central
    Virology Journal BioMed Central Research Open Access The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities Alexander I Culley1, Andrew S Lang2 and Curtis A Suttle*1,3 Address: 1University of British Columbia, Department of Botany, 3529-6270 University Blvd, Vancouver, B.C. V6T 1Z4, Canada, 2Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada and 3University of British Columbia, Department of Earth and Ocean Sciences, Department of Microbiology and Immunology, 1461-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada Email: Alexander I Culley - [email protected]; Andrew S Lang - [email protected]; Curtis A Suttle* - [email protected] * Corresponding author Published: 6 July 2007 Received: 10 May 2007 Accepted: 6 July 2007 Virology Journal 2007, 4:69 doi:10.1186/1743-422X-4-69 This article is available from: http://www.virologyj.com/content/4/1/69 © 2007 Culley et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: RNA viruses have been isolated that infect marine organisms ranging from bacteria to whales, but little is known about the composition and population structure of the in situ marine RNA virus community. In a recent study, the majority of three genomes of previously unknown positive-sense single-stranded (ss) RNA viruses were assembled from reverse-transcribed whole- genome shotgun libraries.
    [Show full text]
  • Complementary Symbiont Contributions to Plant Decomposition in a Fungus-Farming Termite
    Complementary symbiont contributions to plant decomposition in a fungus-farming termite Michael Poulsena,1,2, Haofu Hub,1, Cai Lib,c, Zhensheng Chenb, Luohao Xub, Saria Otania, Sanne Nygaarda, Tania Nobred,3, Sylvia Klaubaufe, Philipp M. Schindlerf, Frank Hauserg, Hailin Panb, Zhikai Yangb, Anton S. M. Sonnenbergh, Z. Wilhelm de Beeri, Yong Zhangb, Michael J. Wingfieldi, Cornelis J. P. Grimmelikhuijzeng, Ronald P. de Vriese, Judith Korbf,4, Duur K. Aanend, Jun Wangb,j, Jacobus J. Boomsmaa, and Guojie Zhanga,b,2 aCentre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; bChina National Genebank, BGI-Shenzen, Shenzhen 518083, China; cCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark; dLaboratory of Genetics, Wageningen University, 6708 PB, Wageningen, The Netherlands; eFungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, Royal Netherlands Academy of Arts and Sciences, NL-3584 CT, Utrecht, The Netherlands; fBehavioral Biology, Fachbereich Biology/Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany; gCenter for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; hDepartment of Plant Breeding, Wageningen University and Research Centre, NL-6708 PB, Wageningen, The Netherlands; iDepartment of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria SA-0083, South Africa; and jDepartment of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark Edited by Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, and approved August 15, 2014 (received for review October 24, 2013) Termites normally rely on gut symbionts to decompose organic levels-of-selection conflicts that need to be regulated (12).
    [Show full text]
  • Molecular Traces of Alternative Social Organization in a Termite Genome
    Molecular traces of alternative social organization in a termite genome Terrapon, Nicolas; Li, Cai; Robertson, Hugh M.; Ji, Lu; Meng, Xuehong; Booth, Warren; Chen, Zhensheng; Childers, Christopher P.; Glastad, Karl M.; Gokhale, Kaustubh; Gowin, Johannes; Gronenberg, Wulfila; Hermansen, Russell A.; Hu, Haofu; Hunt, Brendan G.; Huylmans, Ann Kathrin; Khalil, Sayed M. S.; Mitchell, Robert D.; Munoz-Torres, Monica C.; Mustard, Julie A.; Pan, Hailin; Reese, Justin T.; Scharf, Michael E.; Sun, Fengming; Vogel, Heiko; Xiao, Jin; Yang, Wei; Yang, Zhikai; Yang, Zuoquan; Zhou, Jiajian; Zhu, Jiwei; Brent, Colin S.; Elsik, Christine G.; Goodisman, Michael A. D.; Liberles, David A.; Roe, R. Michael; Vargo, Edward L.; Vilcinskas, Andreas; Wang, Jun; Bornberg-Bauer, Erich; Korb, Judith; Zhang, Guojie; Liebig, Jurgen Published in: Nature Communications DOI: 10.1038/ncomms4636 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-SA Citation for published version (APA): Terrapon, N., Li, C., Robertson, H. M., Ji, L., Meng, X., Booth, W., Chen, Z., Childers, C. P., Glastad, K. M., Gokhale, K., Gowin, J., Gronenberg, W., Hermansen, R. A., Hu, H., Hunt, B. G., Huylmans, A. K., Khalil, S. M. S., Mitchell, R. D., Munoz-Torres, M. C., ... Liebig, J. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, [3636]. https://doi.org/10.1038/ncomms4636 Download date: 02. okt.. 2021 ARTICLE Received 17 Jul 2013 | Accepted 13 Mar 2014 | Published 20 May 2014 DOI: 10.1038/ncomms4636 OPEN Molecular traces of alternative social organization in a termite genome Nicolas Terrapon1,*,w, Cai Li2,3,*, Hugh M.
    [Show full text]
  • Next Generation Sequencing Technologies for Insect Virus Discovery
    Viruses 2011, 3, 1849-1869; doi:10.3390/v3101849 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Next Generation Sequencing Technologies for Insect Virus Discovery Sijun Liu, Diveena Vijayendran and Bryony C. Bonning * Department of Entomology, Iowa State University, Ames, IA 50011, USA; E-Mails: [email protected] (S.L.); [email protected] (D.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-515-294-1989; Fax: +1-515-294-5957. Received: 2 September 2011; in revised form: 15 September 2011 / Accepted: 19 September 2011 / Published: 10 October 2011 Abstract: Insects are commonly infected with multiple viruses including those that cause sublethal, asymptomatic, and latent infections. Traditional methods for virus isolation typically lack the sensitivity required for detection of such viruses that are present at low abundance. In this respect, next generation sequencing technologies have revolutionized methods for the discovery and identification of new viruses from insects. Here we review both traditional and modern methods for virus discovery, and outline analysis of transcriptome and small RNA data for identification of viral sequences. We will introduce methods for de novo assembly of viral sequences, identification of potential viral sequences from BLAST data, and bioinformatics for generating full-length or near full-length viral genome sequences. We will also discuss implications of the ubiquity of viruses in insects and in insect cell lines. All of the methods described in this article can also apply to the discovery of viruses in other organisms. Keywords: insect virus; next generation sequencing; virus discovery; small RNA; transcriptome Viruses 2011, 3 1850 1.
    [Show full text]
  • Distinct Chemical Blends Produced by Different Reproductive Castes in the Subterranean Termite Reticulitermes Flavipes
    www.nature.com/scientificreports OPEN Distinct chemical blends produced by diferent reproductive castes in the subterranean termite Reticulitermes favipes Pierre‑André Eyer*, Jared Salin, Anjel M. Helms & Edward L. Vargo The production of royal pheromones by reproductives (queens and kings) enables social insect colonies to allocate individuals into reproductive and non‑reproductive roles. In many termite species, nestmates can develop into neotenics when the primary king or queen dies, which then inhibit the production of additional reproductives. This suggests that primary reproductives and neotenics produce royal pheromones. The cuticular hydrocarbon heneicosane was identifed as a royal pheromone in Reticulitermes favipes neotenics. Here, we investigated the presence of this and other cuticular hydrocarbons in primary reproductives and neotenics of this species, and the ontogeny of their production in primary reproductives. Our results revealed that heneicosane was produced by most neotenics, raising the question of whether reproductive status may trigger its production. Neotenics produced six additional cuticular hydrocarbons absent from workers and nymphs. Remarkably, heneicosane and four of these compounds were absent in primary reproductives, and the other two compounds were present in lower quantities. Neotenics therefore have a distinct ‘royal’ blend from primary reproductives, and potentially over‑signal their reproductive status. Our results suggest that primary reproductives and neotenics may face diferent social pressures.
    [Show full text]
  • Viral Metagenomics of Aphids Present in Bean and Maize Plots on Mixed
    Wamonje et al. Virology Journal (2017) 14:188 DOI 10.1186/s12985-017-0854-x RESEARCH Open Access Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus Francis O. Wamonje1, George N. Michuki2,4, Luke A. Braidwood1, Joyce N. Njuguna3, J. Musembi Mutuku3, Appolinaire Djikeng3,5, Jagger J. W. Harvey3,6 and John P. Carr1* Abstract Background: Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. Results: Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products.
    [Show full text]
  • Mini-Review an Insect-Specific System for Terrestrialization Laccase
    Insect Biochemistry and Molecular Biology 108 (2019) 61–70 Contents lists available at ScienceDirect Insect Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/ibmb Mini-review an insect-specific system for terrestrialization: Laccase- mediated cuticle formation T ∗ Tsunaki Asano , Yosuke Seto, Kosei Hashimoto, Hiroaki Kurushima Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan ABSTRACT Insects are often regarded as the most successful group of animals in the terrestrial environment. Their success can be represented by their huge biomass and large impact on ecosystems. Among the factors suggested to be responsible for their success, we focus on the possibility that the cuticle might have affected the process of insects’ evolution. The cuticle of insects, like that of other arthropods, is composed mainly of chitin and structural cuticle proteins. However, insects seem to have evolved a specific system for cuticle formation. Oxidation reaction of catecholamines catalyzed by a copper enzyme, laccase, is the key step in the metabolic pathway for hardening of the insect cuticle. Molecular phylogenetic analysis indicates that laccase functioning in cuticle sclerotization has evolved only in insects. In this review, we discuss a theory on how the insect-specific “laccase” function has been advantageous for establishing their current ecological position as terrestrial animals. 1. Introduction the cuticle hardens after molting in crustaceans and diplopods (Shaw, 1968; Barnes, 1982; Nagasawa,
    [Show full text]
  • WO 2013/136073 Al 19 September 2013 (19.09.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/136073 Al 19 September 2013 (19.09.2013) P O P C T (51) International Patent Classification: (74) Agent: HARRISON GODDARD FOOTE; Belgrave C07C 255/44 (2006.01) C07C 255/43 (2006.01) Hall, Belgrave Street, Leeds, West Yorkshire LS2 8DD C07C 255/61 (2006.01) A01N 47/36 (2006.01) (GB). C07C 255/31 (2006.01) C07D 401/04 (2006.01) (81) Designated States (unless otherwise indicated, for every A 43/56 (2006.01) C07D 211/26 (2006.01) kind of national protection available): AE, AG, AL, AM, C07C 69/747 (2006.01) A01N 53/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07C 255/37 (2006.01) C07D 239/52 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A 47/12 (2006.01) C07D 211/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 69/92 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/GB20 13/050621 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (22) International Filing Date: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 13 March 2013 (13.03.2013) TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW.
    [Show full text]
  • Dissertation Submitted to the Graduate Faculty of North Carolina State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
    ABSTRACT FUNARO, COLIN FRANCIS. Royal Recognition Behaviors and Pheromones in the Subterranean Termite, Reticulitermes flavipes. (Under the direction of Dr. Edward Vargo and Dr. Coby Schal). Social insects must communicate to effectively cooperate and thrive in large and complex colonies. Termites depend on chemical communication in the form of pheromones to mediate nearly all colony activities, including feeding, building, defense, and reproduction. Queens and kings are the sole reproductive castes within the termite colony and must communicate their status to prevent unwanted reproduction and solicit their attendant workers for care. Identifying the pheromones responsible for encoding these messages and their effects on the colony is an important aspect of understanding termite biology and behavior. Queen pheromones have been identified in multiple social hymenopterans, but queen and king pheromones in termites have received little attention and no royal recognition pheromones have been identified. Moreover, the behaviors associated with royal recognition have not been well studied in termites. In the following studies, we investigate cuticular chemicals of the eastern subterranean termite, Reticulitermes flavipes, identify royal-specific cuticular hydrocarbons, develop a behavioral assay of royal recognition behaviors, and we describe the first queen and king recognition pheromone in termites. In the first study, cuticular extracts from R. flavipes collected in North Carolina were analyzed across castes and several colonies. Using gas-chromatography-mass spectrometry (GC-MS), we analyzed hexane extracts of the cuticular surface of queens, kings, and workers to identify compounds that differentiate these castes, and to specify candidate royal pheromones. We identified 21 of the most prominent cuticular hydrocarbons and successfully distinguished castes and colonies with principal component analysis.
    [Show full text]
  • A Crucial Caste Regulation Gene Detected by Comparing Termites and Sister Group
    Genetics: Early Online, published on June 22, 2018 as 10.1534/genetics.118.301038 1 1 A crucial caste regulation gene detected by comparing termites and sister group 2 cockroaches 3 4 Yudai Masuoka1, 2, Kouhei Toga3, Christine A. Nalepa4, Kiyoto Maekawa2* 5 1. Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, 6 Japan 7 2. Institute of Agrobiological Sciences, National Agriculture and Food Research 8 Organization, Tsukuba, Ibaraki 305-8634, Japan 9 3. Department of Integrated Science in Physics and Biology, Nihon University, Tokyo 10 156-8550, Japan 11 4. Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, 12 USA 13 14 *Corresponding author (email address: [email protected]) 15 16 Running head (about 35 characters inc. spaces): Caste regulation gene in termites 17 18 Keywords: termites, Cryptocercus, soldier differentiation, juvenile hormone, 19 20-hydroxyecdysone 20 21 Author contributions 22 YM and KM designed experiments; YM, KT and CN collected samples and performed 23 application analysis with JHA; YM performed molecular experiments and analyzed data; YM, Copyright 2018. 2 24 CN and KM wrote the manuscript; KM conceived of the study, designed the study, 25 coordinated the study; All authors read and gave final approval for publication. 26 27 Abstract 28 Sterile castes are a defining criterion of eusociality; investigating their evolutionary origins 29 can critically advance theory. In termites, the soldier caste is regarded as the first acquired 30 permanently sterile caste. Previous studies showed that juvenile hormone (JH) is the primary 31 factor inducing soldier differentiation, and treatment of workers with artificial JH can 32 generate presoldier differentiation.
    [Show full text]
  • Identification and Characterization of Two Novel RNA Viruses from Anopheles Gambiae Species Complex Mosquitoes
    Edinburgh Research Explorer Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes Citation for published version: Carissimo, G, Eiglmeier, K, Reveillaud, J, Holm, I, Diallo, M, Diallo, D, Vantaux, A, Kim, S, Ménard, D, Siv, S, Belda, E, Bischoff, E, Antoniewski, C & Vernick, KD 2016, 'Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes', PLoS ONE, vol. 11, no. 5, e0153881. https://doi.org/10.1371/journal.pone.0153881 Digital Object Identifier (DOI): 10.1371/journal.pone.0153881 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS ONE General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 RESEARCH ARTICLE Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes Guillaume Carissimo1,2,3, Karin Eiglmeier1,2, Julie Reveillaud4, Inge Holm1,2, Mawlouth Diallo5, Diawo Diallo5, Amélie Vantaux6, Saorin Kim6, Didier Ménard6, Sovannaroth Siv7, Eugeni Belda1,2, Emmanuel Bischoff1,2, Christophe Antoniewski8,9, Kenneth D.
    [Show full text]
  • Molecular Characterization of Novel Soybean-Associated Viruses Identified by High-Throughput Sequencing
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository MOLECULAR CHARACTERIZATION OF NOVEL SOYBEAN-ASSOCIATED VIRUSES IDENTIFIED BY HIGH-THROUGHPUT SEQUENCING BY TUBA YASMIN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Master’s Committee: Associate Professor Leslie L. Domier, adviser Associate Professor Kristopher N. Lambert Professor Glen L. Hartman ABSTRACT High-throughput sequencing of mRNA from soybean leaf samples collected from North Dakota and Illinois soybean fields revealed the presence of two novel soybean-associated viruses. The first virus has a single-stranded positive-sense RNA genome consisting of 8,693 nt that contains two large open reading frames (ORFs). The predicted amino acid sequence of the first ORF showed similarity to structural proteins, of members of the invertebrate-infecting Dicistroviridae and the sequence of the second ORF which is a nonstructural proteins lack affinity to other virus sequences available in GenBank. The presence of separate ORFs for the structural and nonstructural proteins was similar to members of the family Dicistroviridae, but the order of the two ORFs in the new virus was opposite to that of the family Dicistroviridae. Because of the virus’ unique genome organization and the lack of strong phylogenetic association with previously described virus families, the soybean-associated virus may represent a novel virus family. The second virus also has a single stranded positive sense RNA genome, but has two genomic segments.
    [Show full text]