Evaluation of the 137Ba Mass-Marking Technique and Potential Effects in the Early Life History Stages of Sepioteuthis Lessoniana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caribbean Reef Squid)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Sepioteuthis sepioidea (Caribbean Reef Squid) Order: Teuthida (Squid) Class: Cephalopoda (Octopuses, Squid and Cuttlefish) Phylum: Mollusca (Molluscs) Fig. 1. Caribbean reef squid, Sepioteuthis sepioidea. [http://www.arkive.org/caribbean-reef-squid/sepioteuthis-sepioidea/image-G76785.html, downloaded 10 March 2016] TRAITS. The mantle (body mass) is wide and relatively flattened, with a length of 114mm in adult males and 120 mm in adult females (Moynihan and Rodaniche, 1982). A skeleton is absent but a cartilaginous layer is normally found beneath the surface of the mantle which enables movement (Mather et al., 2010).Two fins span the length of the lateral mantle margins (Fig. 1). The head is slightly pointed to its anterior end, with eight arms and two tentacles which encircle the mouth (Mather et al., 2010). Suckers are positioned along the inner region of arms and tentacle clubs. The mantle is fleshy when relaxed and the skin is very fragile (Moynihan and Rodaniche, 1982). The colour patterns of the skin can change periodically, due to the existence of light-reflective and iridescence-inducing cells (Mather, 2010). DISTRIBUTION. Distributed throughout the West Indian islands, including Trinidad and Tobago; widespread along the Central and South American coasts adjacent to the Caribbean Sea and also found in Bermuda and Florida (Moynihan and Rodaniche, 1982). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Found in highly saline, clear waters of marine habitats at varying depths and distances from shoreline (Wood et al., 2008). The depth and habitat they are observed at depends on their growth stage (Mather et al., 2010). -
Molecular Evidence for Co-Occurring Cryptic Lineages Within the Sepioteuthis Cf
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/259326231 Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans ARTICLE in HYDROBIOLOGIA · DECEMBER 2013 Impact Factor: 2.28 · DOI: 10.1007/s10750-013-1778-0 CITATIONS READS 5 86 11 AUTHORS, INCLUDING: Frank E. Anderson Gusti Ngurah Mahardika Southern Illinois University Carbondale Udayana University 33 PUBLICATIONS 635 CITATIONS 42 PUBLICATIONS 110 CITATIONS SEE PROFILE SEE PROFILE Z.A. Muchlisin, Ph.D Kolliyil Sunilkumar Mohamed Syiah Kuala University Central Marine Fisheries Research Insti… 97 PUBLICATIONS 210 CITATIONS 88 PUBLICATIONS 198 CITATIONS SEE PROFILE SEE PROFILE Available from: Samantha H. Cheng Retrieved on: 20 October 2015 Hydrobiologia DOI 10.1007/s10750-013-1778-0 CEPHALOPOD BIOLOGY AND EVOLUTION Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans S. H. Cheng • F. E. Anderson • A. Bergman • G. N. Mahardika • Z. A. Muchlisin • B. T. Dang • H. P. Calumpong • K. S. Mohamed • G. Sasikumar • V. Venkatesan • P. H. Barber Received: 18 December 2012 / Accepted: 30 November 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract The big-fin reef squid, Sepioteuthis cf. from nearly 400 individuals sampled from throughout lessoniana (Lesson 1930), is an important commodity the Indian, Indo-Pacific, and Pacific Ocean portions of species within artisanal and near-shore fisheries in the the range of this species. Phylogenetic analyses using Indian and Indo-Pacific regions. While there has been maximum likelihood methods and Bayesian inference some genetic and physical evidence that supports the identified three distinct lineages with no clear geo- existence of a species complex within S. -
Isotopic Analyses of Barium in Meteorites and in Terrestrial
•'OO•,NALO• GEO•'IIYSlCALRESXAaCX VOL. ?4, NO. IS, JULY IS, 1969 Isotopic Analysesof Barium in Meteorites and in Terrestrial Samples O. EUGSTER,F. TERA,AND G. J. WASSERBURG Charles Arms Laboratory o• the Division o• Geological Sciences Cali•Jrnia Institute o• Technology,Pasadena, California 91109 Isotopic compos•tien and concentration of barium in six stone meteorites and the silicate inclusionsof two iron meteorites and three terrestrial sampleswere measured by use of a 'double spike' isotopic dilution technique in order to correct for laboratory fractionation. Any differencesbetween the abundancesof the isotopesin meteoritic and terrestrial Ba were found to be less than 0.1% for all isotopes.The per cent abundancesof Ba found in our work for Ba '•s, Ba•, Ba•% Ba '•, Ba TM,Ba •', and Ba'•ø are 71.699, 11.232, 7.853, 6.592, 2.417, 0.1012, and 0.1058, respectively. Because of the higher precision, these abundancesshould replace the currently accepted values. These results show the variations in the Ba isotopesreported by S. Umemoto (1962) to be unsubstantiated. INTRODUCTION Umemoto [1962] reported that the isotopic A comparison.of the isotopiccomposition of compositionof Ba in the Bruderheimchondrite and in the Pasamonte and Nuevo Laredo various elements in terrestrial samples,me- achondrites were distinct from terrestrial Ba teorites, and other materials of the solar system is of fundamental importance in determin- and showeda pattern of uniform fractionation relative to terrestrial Ba. The enrichments ob- ing the early history of the solar system and the mechanismsof nucleosynthesis.In ad- servedby him correspondto a 2% enrichment dition to effectsthat are a product of either in the ratio Ba•ø/Ba• compared with ter- long-lived natural activity or cosmic-rayinter- restrial materials. -
6. Potential for Human Exposure
CESIUM 125 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW Cesium has been identified in at least 8 of the 1,636 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (HazDat 2003). It was reported that 134Cs has been found in at least 3 of the 1,636 current or former NPL sites and 137Cs has been detected in at least 23 of the 1,636 current or former NPL sites. However, the number of sites evaluated for cesium is not known. The frequency of these sites can be seen in Figures 6-1, 6-2, and 6-3. Of these sites, none are located in the Commonwealth of Puerto Rico. Naturally-occurring cesium and cesium minerals consist of only one stable isotope, 133Cs. Cesium occurs in the earth's crust at low concentrations. Granites contain an average cesium concentration of about 1 ppm and sedimentary rocks contain about 4 ppm (Burt 1993). Higher concentrations are found in lepidolite, carnallite, muscovite, beryl, spodumene, potassium feldspars, leucite, petalite, and related minerals. The most important source of commercial cesium is the mineral pollucite, which usually contains about 5–32% Cs2O (Burt 1993). The largest deposits of pollucite are located in Manitoba, Canada and account for about two-thirds of the world’s known supply. Smaller deposits are located in Zimbabwe, Namibia, Brazil, Scandinavia, Czechoslovakia, and the United States. Continental dust and soil erosion are the main emission sources of naturally occurring cesium present in the environment. Cesium is also released to the environment as a result of human activities. -
Intercapsular Embryonic Development of the Big Fin Squid Sepioteuthis Lessoniana (Loliginidae)
Indian Journal of Marine Sciences Vol. 31(2), June 2002, pp. 150-152 Short Communication Intercapsular embryonic development of the big fin squid Sepioteuthis lessoniana (Loliginidae) V. Deepak Samuel & Jamila Patterson* Suganthi Devadason Marine Research Institute, 44, Beach Road, Tuticorin – 628 001, Tamil Nadu, India ( E.mail : [email protected] ) Received 18 June 2001, revised 22 January 2002 The egg masses of big fin squid, Sepioteuthis lessoniana were collected from the wild and their intercapsular embryonic development was studied. The average incubation period of the egg varied between 18-20 days. The cleavage started on the first day and the mantle developed between third and fifth day. The yolk started decreasing eighth day onwards. The tentacles with the sucker primordia on the tip were prominent from tenth day. The yolk totally reduced between thirteenth and seventeenth day and the paralarvae hatched out on eighteenth day.The developmental stages of the embryo inside the capsules during the incubation period is understood. [ Key words: Sepioteuthis lessoniana , intercapsular development ] There are about 660 species of cephalopods in the the death of the embryo. Egg capsules were taken world oceans, of which less than hundred species are everyday to study the developmental stages of the of commercial importance. In the Indian seas, about growing embryos. Size of the egg capsules, eggs and 80 species of cephalopods exist but the main fishery is the embryos inside the eggs were recorded everyday contributed by only a dozen or so. Though they play till hatching. Various stages of development were ob- an important role in the economy of our country, their served and recorded as line drawings and photographs early life cycle and reproductive biology are not yet with the help of a light microscope. -
The New Nuclear Forensics: Analysis of Nuclear Material for Security
THE NEW NUCLEAR FORENSICS Analysis of Nuclear Materials for Security Purposes edited by vitaly fedchenko The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Sven-Olof Petersson, Chairman (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Jayantha Dhanapala (Sri Lanka) Ambassador Wolfgang Ischinger (Germany) Professor Mary Kaldor (United Kingdom) The Director DIRECTOR Dr Ian Anthony (United Kingdom) Signalistgatan 9 SE-169 70 Solna, Sweden Telephone: +46 8 655 97 00 Fax: +46 8 655 97 33 Email: [email protected] Internet: www.sipri.org The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes EDITED BY VITALY FEDCHENKO OXFORD UNIVERSITY PRESS 2015 1 Great Clarendon Street, Oxford OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © SIPRI 2015 The moral rights of the authors have been asserted All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of SIPRI, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organizations. -
Along the Saudi Arabian Red Sea Coastline Thesis by Gordon Byron
Phylogenetic Diversity of Cephalopoda (Animalia:Mollusca) Along the Saudi Arabian Red Sea Coastline Thesis by Gordon Byron In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia © December, 2016 Gordon Byron All rights reserved 2 EXAMINATION COMMITTEE PAGE The thesis of Gordon Byron is approved by the examination committee. Committee Chairperson: Michael Berumen Committee Co-Chair: Christian Voolstra Committee Member: Timothy Ravasi 3 ABSTRACT Phylogenetic Diversity of Cephalopoda (Animalia:Mollusca) Along the Saudi Red Sea Coastline Gordon Byron Although the Red Sea presents a unique environment with high temperature and salinity, it remains an area that is understudied. This lack of information is reflected in many areas, one which is biodiversity. Despite increasing work on biodiversity throughout the Red Sea and an increase in Cephalopoda studies, Cephalopoda in the Red Sea remain underrepresented, which is especially pronounced in molecular analyses. Members of the class Cephalopoda are considered to be major contributors to coral reef ecosystems, serving as part of the food chain and exhibiting population increases due to targeted teleost fisheries and global climate change. In order to assess the biodiversity of Cephalopoda in the Saudi Arabian Red Sea, 87 specimens were collected from 25 reef locations between 17°N and 28°N latitude, as well as from the largest fish market in the Kingdom of Saudi Arabia. Taxonomic identification of specimens was determined using morphological comparisons with previously reported species in the Red Sea and the molecular barcoding region Cytochrome Oxidase I. 84 Red Sea sequences were compared with sequences from GenBank and analyzed using a complement of Neighbor- Joining, Maximum-Likelihood, and Bayesian inference trees. -
Population Dynamics and Reproductive Ecology of the Southern Calamary (Sepioteuthis Australis) in Tasmania
FRDC FINAL REPORT POPULATION DYNAMICS AND REPRODUCTIVE ECOLOGY OF THE SOUTHERN CALAMARY (SEPIOTEUTHIS AUSTRALIS) IN TASMANIA Natalie Moltschaniwskyj, Gretta Pecl, Jeremy Lyle, Malcolm Haddon, & Michael Steer June 2003 FRDC Project No. 2000/121 National Library of Australia Cataloguing-in-Publication Entry Moltschaniwskyj, Natalie Ann, 1965- Population dynamics and reproductive ecology of the southern calamary (Sepioteuthis australis) in Tasmania. ISBN 1 86295 104 7 1. Squid fisheries - Tasmania. 2. Squids - Reproduction - Tasmania. I. Moltschaniwskyj, N. II. Tasmanian Aquaculture and Fisheries Institute. 639.485809946 Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001. E-mail: [email protected]. Ph. (03) 6227 7277 Fax (03) 6227 8035 The opinions expressed in this report are those of the author/s and are not necessarily those of the Tasmanian Aquaculture and Fisheries Institute. Tasmanian Aquaculture and Fisheries Institute, University of Tasmania 2003. Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Tasmanian Aquaculture and Fisheries Institute. Table of Contents Table of Contents 2 List of Figures 4 List of Tables 9 Non-Technical Summary 12 Acknowledgements 16 Background 17 Need 18 Objectives 19 General Introduction 20 Chapter 1: Small-scale spatial and temporal patterns of egg production by the temperate loliginid squid Sepioteuthis -
Atoms Worksheet #2 (The Mole)
Name_______________________________ Atoms Worksheet #2 (The Mole) 1. Counting Atoms – How many atoms are in the following compounds? a) CaCl2___3____ b) NH4OH___7____ c) NaCl____2___ d) N2O7__9_____ e) P2O5__7_____ f) KNO3___5____ g) Al2(CO3)3__14_____ h) Na3PO4__8___ i) Mg(NO3)2__9_____ 2. Calculate the molar mass of the following compounds: a) NaCl 58.5 g/mol b) Fe2O3 159.6 g/mol c) LiOH 23.9 g/mol d) NH3 17.0 g/mol e) AlPO4 122.3 g/mol 3. Mole-to-Gram/Gram-to-Mole Conversions (One Step Problems) a) How many grams of Ca are present in 3.28 moles? 132 g Ca b) How many grams of S are present in 5.39 moles? 173 g S c) How many moles of Ag are there in 4.98 gram? 0.0462 mol d) How many moles of Mg are present in 303 grams? 12.5 mol Mg 4. Conversions using Avogadro’s number (One Step Problems) a) How many atoms are present in 34.69 moles of Mg? 2.09 X 1025 atoms b) How many atoms are present in 0.529 moles of Li? 3.18 X 1023 atoms c) How many moles of Mn are present in 4.09 x 1024 atoms of Mn? 6.79 mol d) How many moles of Ni are present in 5.88 x 1019 atoms? 0.0000977 mol 5. Grams ↔ Moles ↔ Particles OR Atoms OR Molecules (Two Step Problems) a) Calculate the number of molecules in 8.33 grams of O2 1.57 X 1023 molecules b.) Calculate the number of atoms in 43.33 grams of iron, Fe? 4.67 X 1023 atoms c) Calculate the number of particles in 32.8 grams of Cu2S. -
Fingerprints of a Local Supernova
To appear in Space Exploration Research, Editors: J. H. Denis, P. D. Aldridge Chapter 7 (Nova Science Publishers, Inc.) ISBN: 978-1-60692-264-4 Fingerprints of a Local Supernova Oliver Manuela and Hilton Ratcliffeb a Nuclear Chemistry, University of Missouri, Rolla, MO 65401 USA b Climate and Solar Science Institute, Cape Girardeau, MO 63701 USA ABSTRACT. The results of precise analysis of elements and isotopes in meteorites, comets, the Earth, the Moon, Mars, Jupiter, the solar wind, solar flares, and the solar photosphere since 1960 reveal the fingerprints of a local supernova (SN)—undiluted by interstellar material. Heterogeneous SN debris formed the planets. The Sun formed on the neutron (n) rich SN core. The ground-state masses of nuclei reveal repulsive n-n interactions that can trigger axial n-emission and a series of nuclear reactions that generate solar luminosity, the solar wind, and the measured flux of solar neutrinos. The location of the Sun's high-density core shifts relative to the solar surface as gravitational forces exerted by the major planets cause the Sun to experience abrupt acceleration and deceleration, like a yoyo on a string, in its orbit about the ever-changing centre-of-mass of the solar system. Solar cycles (surface magnetic activity, solar eruptions, and sunspots) and major climate changes arise from changes in the depth of the energetic SN core remnant in the interior of the Sun. Keywords: supernovae; stellar systems; supernova debris; supernova remnants; origin, formation, abundances of elements; planetary -
The Bigfin Reef Squid)
Southern Illinois University Carbondale OpenSIUC Honors Theses University Honors Program 5-11-2013 Phylogeography of Sepioteuthis lessoniana (the bigfin eefr squid) and Uroteuthis duvauceli (the Indian squid). Alexis M. Bergman Southern Illinois University Carbondale, [email protected] Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses Recommended Citation Bergman, Alexis M., "Phylogeography of Sepioteuthis lessoniana (the bigfin er ef squid) and Uroteuthis duvauceli (the Indian squid)." (2013). Honors Theses. Paper 353. This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Phylogeography of Sepioteuthis lessoniana (the bigfin reef squid) and Uroteuthis duvauceli (the Indian squid). Alexis Bergman A thesis submitted to the University Honors Program in partial fulfillment of the requirements for the Honors Degree Southern Illinois University April 18, 2013 2 Abstract Sepioteuthis lessoniana (the bigfin reef squid) and Uroteuthis duvauceli (the Indian squid) are two squid species found in largely overlapping regions in the Indian and Pacific Oceans. While both squids are important to fisheries throughout their ranges, very little taxonomic work has been done on either of them. Previous studies have led scientists to believe that S. lessoniana is actually a species complex (for example, there appear to be three species of “S. cf. lessoniana” in Japanese waters alone). The similarly broad geographic range of U. duvauceli suggests that this species could also harbor substantial cryptic genetic diversity. In order to evaluate genetic variation within these two species, regions of two mitochondrial genes—the large subunit ribosomal RNA gene (16S) and the cytochrome oxidase I gene (COI)—from specimens caught in regions throughout the northern Indian and western Pacific Oceans were sequenced and compared. -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Evolution and Population Genomics of Loliginid Squids Permalink https://escholarship.org/uc/item/0zw3h4ps Author Cheng, Samantha Hue Tone Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Evolution and Population Genomics of Loliginid Squids A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biology by Samantha Hue Tone Cheng 2015 ABSTRACT OF THE DISSERTATION Evolution and Population Genomics of Loliginid Squids by Samantha Hue Tone Cheng Doctor of Philosophy in Biology University of California, Los Angeles, 2015 Professor Paul Henry Barber, Chair Globally, rampant harvesting practices have left vital marine resources in sharp decline precipitating a dramatic loss of the biodiversity and threatening the health and viability of natural populations. To protect these crucial resources and ecosystems, a comprehensive assessment of biodiversity, as well as a rigorous understanding of the mechanisms underlying it, is urgently needed. As global finfish fisheries decline, harvest of cephalopod fisheries, squid, in particular, has exponentially increased. However, while much is known about the evolution and population dynamics of teleost fishes, much less is understood about squids. This dissertation provides a robust, in-depth examination of these mechanisms in commercially important squids using a novel approach combining genetics and genomics methods. In the first chapter, a suite of genetic markers is used to thoroughly examine the distribution and evolution of a species complex of bigfin reef squid (Sepioteuthis cf. lessoniana) throughout the global center of marine biodiversity, the Coral Triangle, and adjacent areas.