Middle-Latitude Climate Zones and Climate Types - E.I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 Μm Images
atmosphere Article Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 µm Images Dmitry A. Gorinov * , Ludmila V. Zasova, Igor V. Khatuntsev, Marina V. Patsaeva and Alexander V. Turin Space Research Institute, Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (L.V.Z.); [email protected] (I.V.K.); [email protected] (M.V.P.); [email protected] (A.V.T.) * Correspondence: [email protected] Abstract: The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60◦ S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20◦ S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20◦ S. -
Global Climate Influencer – Arctic Oscillation
ARCTIC OSCILLATION GLOBAL CLIMATE INFLUENCER by James Rohman | February 2014 Figure 1. A satellite image of the jet stream. Figure 2. How the jet stream/Arctic Oscillation might affect weather distribution in the Northern Hemisphere. Arctic Oscillation Introduction (%2#4)#)3(/-%4/!3%-)0%2-!.%.4,/702%3352%#)2#5,!4)/. (%2%!2%!.5-"%2/&2%#522).'#,)-!4%%6%.434(!4)-0!#44(%',/"!, +./7.!34(%0/,!26/24%8(!46/24%8)3).#/.34!.4/00/3)4)/.4/!.$ $)342)"54)/./&7%!4(%20!44%2.3.%/&4(%-/2%3)'.)&)#!.4#,)-!4%).$%8%3&/2 4(%2%&/2%2%02%3%.43/00/3).'02%3352%4/4(%7%!4(%20!44%2.3/&4(% 4(%/24(%2.%-)30(%2%)34(%2#4)#3#),,!4)/. ./24(%2.-)$$,%,!4)45$%3)%./24(%2./24(-%2)#!52/0%!.$3)! ).$)#!4%34(%$)&&%2%.#%).3%!,%6%,02%3352%"%47%%.4(% (%2#4)#3#),,!4)/.-%!352%34(%6!2)!4)/.).4(% /24(/,%!.$4(%./24(%2.-)$,!4)45$%34)-0!#437%!4(%2 342%.'4().4%.3)49!.$3):%/&4(%*%4342%!-!3)4%80!.$3 0!44%2.3).4(%/24(%2.%-)30(%2%4(2/5'(4(%0/3)4)6%!.$.%'!4)6% #/.42!#43!.$!,4%23)433(!0%4)3-%!352%$"93%!02%3352% 0(!3%3/&4(%#9#,% !./-!,)%3%)4(%20/3)4)6%/2.%'!4)6%!.$"9/00/3).'!./-!,)%3.%'!4)6% / / /20/3)4)6%).,!4)45$%3(%,03$%&).%4(% %842% -%3/&4(%%##%.42)#)4)%3).4(%*%4 342%!- (%.4(%2%)3!342/.'.%'!4)6%0(!3%4(%*%4342%!-3,/73 52).'4(%;.%'!4)6%0(!3%</&3%!,%6%,02%3352%)3()'().4(% $/7.!.$4!+%3,!2'%-%!.$%2).',//0352).'0/3)4)6%0(!3%34(%*%4 2#4)#7(),%,/73%!,%6%,02%3352%$%6%,/03).4(%./24(%2. -
Globe Lesson 10 - Latitude Zones - Grade 6+ Geographers Divide the Earth Into Latitude Zones
Globe Lesson 10 - Latitude Zones - Grade 6+ Geographers divide the Earth into latitude zones. There are three latitude zones: - Low latitude zones - Middle latitude zones - High latitude zones There are 90 degrees of latitude. Each zone of latitude is 30 degrees wide. The Equator is 0 degrees. 0 to 30 are low numbers, 30-60 are middle numbers, and 60 to 90 are high numbers. This chart shows the arrangement of the zones in the Northern Hemisphere. Write in high, middle, and low latitude zones in the proper order in the Southern Hemisphere. Remember that the Equator is latitude 0 and the South Pole is latitude 90. Find the 180th meridian on your globe. On this line you will find the numbers of the printed parallels. Find 30 and 60 degrees north latitude. Draw a line of dashes around your globe on these lines. Find 30 and 60 degrees south latitude. Draw a line of dashes on these lines. These parallels divide the latitude zones. Label the zones Low, Middle and High in both the Northern and Southern Hemisphere on your globe. Finding Latitude Zones 4. In the following exercise identify the latitude with the proper latitude zone. "L" stands for low latitudes. "M" stands for middle latitudes. "H" stands for high latitudes. ______ 35°N ______ 23°N ______ 86°N ______ 15°N ______ 5°N ______ 66°N ______ 45°N ______ 28°N 5. In the following exercise, identify each city with the latitude zone where you find it. "L" stands for low latitudes. "M" stands for middle latitudes. -
Monthly Weather Review June1960
DEPARTMENT OF COMMERCE WEATHER BUREAU FREDERICK H. MUELLER, Secretary F. W.REICHELDERFER, Chief MONTHLYWEATHER REVIEW JAMESE. CASKEY, JR., Editor Volume 88 JUNE 1960 Closed August 15, 1960 Number 6 Issued September 15, 1960 THE SEASONAL VARIATION OF THE STRENGTH OF THE SOUTHERN CIRCUMPOLAR VORTEX W. SCHWERDTFEGER Department of Meteorology, Naval Hydrographic Service, Argentina [Manuscript received May 24, 1960; revised June 20, 19601 ABSTRACT The annual marchof the strengthof the southerncircumpolar. vortexis shown to be composed of a simple annual variation(with the maximumoccurring in late winter)which dominates in thestratosphere, and a semiannual variation with the maximum at the equinoxes, which is the dominating part in the troposphere. This behavior of the circumpolarvortex is considered to be the consequence of the seasonal variation of radiation conditions and of the different efficiency of meridional turbulent exchange in the troposphere and stratosphere. It is suggested that the semiannual variation of the tropospheric vortex is an essential feature of a planetary circulation. The annual march of pressure with opposite phase values at polar and middle latitudes, can be understood as a consequence of the formation and decay of the great circumpolar vortex. 1. INTRODUCTION part of the period which can now be considered. The Some aerological data of the Southern Hemisphere and South Pole station has been taken as representative of the particularly those from the South Pole (Amundsen-Scott inner part of the SCPV, in spiteof the fact that inseveral Station) obtained during theIGY and its extension through months the center of the vortex cannot be found exactly 1959, make it possible for the first time to arrive at an es- over the Pole. -
Crop Production in a Northern Climate Pirjo Peltonen-Sainio, MTT Agrifood Research Finland, Plant Production, Jokioinen, Finland
Crop production in a northern climate Pirjo Peltonen-Sainio, MTT Agrifood Research Finland, Plant Production, Jokioinen, Finland CONCEPTS AND ABBREVIATIONS USED IN THIS THEMATIC STUDY In this thematic study northern growing conditions represent the northernmost high latitude European countries (also referred to as the northern Baltic Sea region, Fennoscandia and Boreal regions) characterized mainly as the Boreal Environmental Zone (Metzger et al., 2005). Using this classification, Finland, Sweden, Norway and Estonia are well covered. In Norway, the Alpine North is, however, the dominant Environmental Zone, while in Sweden the Nemoral Zone is represented by the south of the country as for the western parts of Estonia (Metzger et al., 2005). According to the Köppen-Trewartha climate classification, these northern regions include the subarctic continental (taiga), subarctic oceanic (needle- leaf forest) and temperate continental (needle-leaf and deciduous tall broadleaf forest) zones and climates (de Castro et al., 2007). Northern growing conditions are generally considered to be less favourable areas (LFAs) in the European Union (EU) with regional cropland areas typically ranging from 0 to 25 percent of total land area (Rounsevell et al., 2005). Adaptation is the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities (IPCC, 2012). Adaptive capacity is shaped by the interaction of environmental and social forces, which determine exposures and sensitivities, and by various social, cultural, political and economic forces. Adaptations are manifestations of adaptive capacity. Adaptive capacity is closely linked or synonymous with, for example, adaptability, coping ability and management capacity (Smit and Wandel, 2006). -
Weather and Climate Science 4-H-1024-W
4-H-1024-W LEVEL 2 WEATHER AND CLIMATE SCIENCE 4-H-1024-W CONTENTS Air Pressure Carbon Footprints Cloud Formation Cloud Types Cold Fronts Earth’s Rotation Global Winds The Greenhouse Effect Humidity Hurricanes Making Weather Instruments Mini-Tornado Out of the Dust Seasons Using Weather Instruments to Collect Data NGSS indicates the Next Generation Science Standards for each activity. See www. nextgenscience.org/next-generation-science- standards for more information. Reference in this publication to any specific commercial product, process, or service, or the use of any trade, firm, or corporation name See Purdue Extension’s Education Store, is for general informational purposes only and does not constitute an www.edustore.purdue.edu, for additional endorsement, recommendation, or certification of any kind by Purdue Extension. Persons using such products assume responsibility for their resources on many of the topics covered in the use in accordance with current directions of the manufacturer. 4-H manuals. PURDUE EXTENSION 4-H-1024-W GLOBAL WINDS How do the sun’s energy and earth’s rotation combine to create global wind patterns? While we may experience winds blowing GLOBAL WINDS INFORMATION from any direction on any given day, the Air that moves across the surface of earth is called weather systems in the Midwest usually wind. The sun heats the earth’s surface, which warms travel from west to east. People in Indiana can look the air above it. Areas near the equator receive the at Illinois weather to get an idea of what to expect most direct sunlight and warming. The North and the next day. -
Shifting Westerlies to Shift After the Last Glacial Period? J
PERSPECTIVES CLIMATE CHANGE What caused atmospheric westerly winds Shifting Westerlies to shift after the last glacial period? J. R. Toggweiler he westerlies are the prevailing ica-rich deep water must be drawn to the sur- winds in the middle latitudes of face. As mentioned above, silica-rich deep Earth’s atmosphere, blowing water tends to be high in CO . It is also T 2 from west to east between the high- warmer than the near-freezing surface pressure areas of the subtropics and waters around Antarctica. the low-pressure areas over the poles. A shift of the westerlies that draws They have strengthened and shifted more warm, silica-rich deep water to poleward over the past 50 years, pos- the surface is thus a simple way to sibly in response to warming from explain the CO2 steps, the silica pulses, rising concentrations of atmospheric and the fact that Antarctica warmed carbon dioxide (CO2) (1–4). Some- along with higher CO2 during the two thing similar appears to have happened steps. Anderson et al.’s two silica pulses 17,000 years ago at the end of the last ice occur right along with the two CO2 steps, age: Earth warmed, atmospheric CO2 in- which implies that the westerlies shifted creased, and the Southern Hemisphere wester- early as the level of CO2 in the atmosphere lies seem to have shifted toward Antarctica began to rise. Had the westerlies shifted in (5, 6). Data reported by Anderson et al. on response to higher CO , one would expect to Southward movement. At the end of the last ice 2 page 1443 of this issue (7) suggest that the see more upwelling and more silica accumula- on October 23, 2009 age, the ITCZ and the Southern Hemisphere wester- shift 17,000 years ago occurred before the lies winds moved southward in response to a flatter tion after the second CO2 step when the level of warming and that it caused the CO2 increase. -
Climate Classification Revisited: from Köppen to Trewartha
Vol. 59: 1–13, 2014 CLIMATE RESEARCH Published February 4 doi: 10.3354/cr01204 Clim Res FREEREE ACCESSCCESS Climate classification revisited: from Köppen to Trewartha Michal Belda*, Eva Holtanová, Tomáš Halenka, Jaroslava Kalvová Charles University in Prague, Dept. of Meteorology and Environment Protection, 18200 Prague, Czech Republic ABSTRACT: The analysis of climate patterns can be performed separately for each climatic vari- able or the data can be aggregated, for example, by using a climate classification. These classifi- cations usually correspond to vegetation distribution, in the sense that each climate type is domi- nated by one vegetation zone or eco-region. Thus, climatic classifications also represent a con - venient tool for the validation of climate models and for the analysis of simulated future climate changes. Basic concepts are presented by applying climate classification to the global Climate Research Unit (CRU) TS 3.1 global dataset. We focus on definitions of climate types according to the Köppen-Trewartha climate classification (KTC) with special attention given to the distinction between wet and dry climates. The distribution of KTC types is compared with the original Köp- pen classification (KCC) for the period 1961−1990. In addition, we provide an analysis of the time development of the distribution of KTC types throughout the 20th century. There are observable changes identified in some subtypes, especially semi-arid, savanna and tundra. KEY WORDS: Köppen-Trewartha · Köppen · Climate classification · Observed climate change · CRU TS 3.10.01 dataset · Patton’s dryness criteria Resale or republication not permitted without written consent of the publisher 1. INTRODUCTION The first quantitative classification of Earth’s cli- mate was developed by Wladimir Köppen in 1900 Climate monitoring is mostly based either directly (Kottek et al. -
Continental Climate and Oceanic Climate
Continental Climate and Oceanic Climate Let's find out that in the summer it is cooler by the sea than on the land and that water cools off more slowly than soil. Space Awareness, Leiden Observatory AGE LEVEL 6 - 10 Primary TIME GROUP 45min Group SUPERVISED COST PER STUDENT No Medium Cost LOCATION Small Indoor Setting (e.g. classroom) CORE SKILLS Asking questions, Planning and carrying out investigations, Analysing and interpreting data, Constructing explanations, Engaging in argument from evidence TYPE(S) OF LEARNING ACTIVITY Structured-inquiry learning, Modelling, Traditional Science Experiment KEYWORDS Climate, Earth, Ocean SUMMARY GOALS Students measure and compare temperature changes of water and soil to explain the differences between continental climate and oceanic climate. LEARNING OBJECTIVES • Students learn that in the summer it is cooler by the sea than on land. • Students describe why water cools-off more slowly than soil. • Students use temperature measurements. They learn that different regions in the world experience seasonal weather patterns and that climate can be linked to the environment of an area. EVALUATION • Students fill in a worksheet during the activity. • At the end of the activity, ask the students to explain why it is warmer inland in the summer than on the coast. They can draw the experiments conducted and write the conclusions. • Ask students why the cup of soil was warmer than the cup of water. Ask students which cup would cool down faster if they were both hot. MATERIALS • 2 clear plastic cups • 2 thermometers • water • soil • sunlight • red, yellow, green and blue colouring pencils • worksheet PDF BACKGROUND INFORMATION The Koppen climate classification system, named after the scientist, was developed in the 19th century and is the most widely used classification system in the world. -
High-Latitude Climate Zones and Climate Types - E.I
ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM – Vol. II - High-Latitude Climate Zones and Climate Types - E.I. Khlebnikova HIGH-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St.Petersburg, Russia Keywords: annual temperature range, Arctic continental climate, Arctic oceanic climate, katabatic wind, radiation cooling, subarctic continental climate, temperature inversion Contents 1. Introduction 2. Climate types of subarctic and subantarctic belts 2.1. Continental climate 2.2. Oceanic climate 3. Climate types in Arctic and Antarctic Regions 3.1. Climates of Arctic Region 3.2. Climates of Antarctic continent 3.2.1. Highland continental region 3.2.2. Glacial slope 3.2.3. Coastal region Glossary Bibliography Biographical Sketch Summary The description of the high-latitude climate zone and types is given according to the genetic classification of B.P. Alisov (see Genetic Classifications of Earth’s Climate). In dependence on air mass, which is in prevalence in different seasons, Arctic (Antarctic) and subarctic (subantarctic) belts are distinguished in these latitudes. Two kinds of climates are considered: continental and oceanic. Examples of typical temperature and precipitation regime and other meteorological elements are presented. 1. IntroductionUNESCO – EOLSS In the high latitudes of each hemisphere two climatic belts are distinguished: subarctic (subantarctic) andSAMPLE arctic (antarctic). CHAPTERS The regions with the prevalence of arctic (antarctic) air mass in winter, and polar air mass in summer, belong to the subarctic (subantarctic) belt. As a result of the peculiarities in distribution of continents and oceans in the northern hemisphere, two types of climate are distinguished in this belt: continental and oceanic. In the southern hemisphere there is only one type - oceanic. -
Chapter 7 – Atmospheric Circulations (Pp
Chapter 7 - Title Chapter 7 – Atmospheric Circulations (pp. 165-195) Contents • scales of motion and turbulence • local winds • the General Circulation of the atmosphere • ocean currents Wind Examples Fig. 7.1: Scales of atmospheric motion. Microscale → mesoscale → synoptic scale. Scales of Motion • Microscale – e.g. chimney – Short lived ‘eddies’, chaotic motion – Timescale: minutes • Mesoscale – e.g. local winds, thunderstorms – Timescale mins/hr/days • Synoptic scale – e.g. weather maps – Timescale: days to weeks • Planetary scale – Entire earth Scales of Motion Table 7.1: Scales of atmospheric motion Turbulence • Eddies : internal friction generated as laminar (smooth, steady) flow becomes irregular and turbulent • Most weather disturbances involve turbulence • 3 kinds: – Mechanical turbulence – you, buildings, etc. – Thermal turbulence – due to warm air rising and cold air sinking caused by surface heating – Clear Air Turbulence (CAT) - due to wind shear, i.e. change in wind speed and/or direction Mechanical Turbulence • Mechanical turbulence – due to flow over or around objects (mountains, buildings, etc.) Mechanical Turbulence: Wave Clouds • Flow over a mountain, generating: – Wave clouds – Rotors, bad for planes and gliders! Fig. 7.2: Mechanical turbulence - Air flowing past a mountain range creates eddies hazardous to flying. Thermal Turbulence • Thermal turbulence - essentially rising thermals of air generated by surface heating • Thermal turbulence is maximum during max surface heating - mid afternoon Questions 1. A pilot enters the weather service office and wants to know what time of the day she can expect to encounter the least turbulent winds at 760 m above central Kansas. If you were the weather forecaster, what would you tell her? 2. -
Subpolar Oceanic Climates Are Usually Located Near the Polar Re- Gions, So They Tend to Colder Than the Rest of the Oceanic Climates
Subpolar oceanic climates are usually located near the polar re- gions, so they tend to colder than the rest of the oceanic climates. They have only one to three months of average temperatures that are at least 50°F, while the coldest months have tempera- Cfc tures that are below or just above Subpolar Oceanic Climate freezing. Materials used in this climate may range and include, but not Location Examples: limited to, concrete, glass, wood, • Punta Arenas, Chile and metal for both interior and • Tórshavn, Faroe Islands exterior use. Furthermore, due to the large amount of snow, wind, • Reykjavik, Iceland and precipitation throughout the • Northern United Kingdom year, the materials are used to use to insulate and protect the interiors. Sources: https://en.wikipedia.org/wiki/ Oceanic_climate#Locations https://www.britannica.com/sci- ence/marine-west-coast-climate https://en.wikipedia.org/wiki/ study Punta_Arenas By Juan Gonzalez Punta Arenas, Chile case study B14 Residence By Sarah Fahey Location: Iceland Architect: Studio Granda Owner: Private Year of completion: 2012 Climate: Marine West Coast Material of interest: Concrete Application: Interior & Exterior The home was built using the crushed concrete of the former resident’s foundation pad as aggregate for the new on-site concrete pours Properties of material: Local - indigenous material in Iceland, re-usable, dense, durable, strong Sources: https://www.archdaily.com/804325/b14-studio- granda https://archello.com/project/b14-residence case study The Macallan New Distillery & Visitors Experience By Juan Gonzalez Location: Tromie Mills, United Kingdom Architect: Rogers Stirk Harbour + Partners Owner: Edrington Year of completion: 2018 Climate: Marine West Coast Material of interest: Metal Application: Superstructure Properties of material: The roof structure is com- posed of the primary tibular steel support frame.