United States Patent (1) 11 Patent Number: 4,574,075 Rickly Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (1) 11 Patent Number: 4,574,075 Rickly Et Al United States Patent (1) 11 Patent Number: 4,574,075 Rickly et al. 45 Date of Patent: Mar. 4, 1986 54) PURIFICATION OF ALKALIMETAL Attorney, Agent, or Firm-Donald F. Clements; James NITRATES B. Haglind 75 Inventors: Jack D. Rickly, Dumont, N.J.; B. 57 ABSTRACT Timothy Pennington, Sulphur, La. A process is disclosed for removing heavy metal con 73) Assignee: Olin Corporation, Cheshire, Conn. taminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates (21) Appl. No.: 678,858 with sufficient water to form a concentrated aqueous (22) Filed: Dec. 6, 1984 solution of the impure nitrates, adjusting the pH of the 51) int.C.'.............................................. C01F 11/36 resulting solution to preferably within the range of 52 U.S. C. ..................................... 423/184; 423/198 between about 2 and about 4, adjusting the nitrite ion 58) Field of Search ................. 423/184, 198,55, 140, concentration to between about 0.07 molar and about 423/144, 395, 192, 194 1.0 molar, to effect reduction of the heavy metal con taminants, adjusting the pH of the reduced solution to (56) References Cited effect precipitation of heavy metal impurities, and sepa U.S. PATENT DOCUMENTS rating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting 4,517,164 5/1985 Fiorucci et al. .................... 423/84 purified solution of alkali metal nitrates may be heated OTHER PUBLICATIONS to evaporate water therefrom to produce purified mol J. W. Mellor, Inorganic and Theoretical Chemistry, vol. ten alkali metal nitrate suitable for use as a heat transfer VIII, pp. 476-478 (Mar. 1947), Longmans, Green and medium. If desired, the purified molten form may be Co. granulated and cooled to form discrete solid particles of alkali metal nitrates. Primary Examiner-John Doll Assistant Examiner-Wayne A. Langel 22 Claims, No Drawings 4,574,075 2 molar and about 1.0 molar to reduce heavy metal PURIFICATION OF ALKALI METAL NITRATES contaminants contained therein; d. adjusting the pH of the reduced concentrated aque This invention relates to the purification of alkali ous solution to a pH of at least about 6 to effect pre metal nitrates. More particularly, it is directed to the 5 cipitation of solid heavy metal contaminants within removal of heavy metal contaminants from a mixed said concentrated aqueous solution; and alkali metal nitrate heat transfer medium. e. separating said solid heavy metal contaminants from The energy crisis has generated the investigation of a the resulting purified solution of alkali metal nitrate. large number of alternate sources of power. One tech More in detail, any alkali metal nitrate containing nique presently under investigation is the use of solar O heavy metal impurities may be purified by the process energy to raise the temperature of a suitable heat trans of this invention. Typical examples of alklai metal ni fer medium and convey the heat transfer medium to a trates include sodium nitrate, potassium nitrate, and suitable steam generator or to a heating system for an lithium nitrate, or mixtures thereof. The process of this inhabited dwelling. One heat transfer medium under invention is particularly effective when treating a solar intensive investigation at this time is the eutectic mix 15 or industrial heat transfer medium comprised of an eu ture of sodium nitrate and potassium nitrate. This mix tectic mixture of sodium nitrate and potassium nitrate, ture usually contains about 60 percent by weight of wherein the sodium nitrate concentration is about 60 sodium nitrate and about 40 percent by weight of potas percent by weight and the potassium nitrate concentra sium nitrate, but may contain from about 30 to about 70 tion is about 40 percent by weight. However, the con percent by weight of sodium nitrate and between about 20 centration of sodium nitrate and potassium nitrate may 30 and about 70 percent by weight of potassium nitrate. each range from about 30 to about 70 percent by weight Mixtures of this type may have a relatively low melting of the mixture. point, i.e. about 400' F., and have a relatively low vis The process of this invention may be utilized in the cosity in the molten state. As a result, it can be easily purification of alkali metal nitrates in solid or molten transferred by pumping or otherwise within a closed 25 form. For example, sodium nitrate solids obtained by system. conventional mining and beneficiating techniques, Sodium nitrate and potassium nitrate frequently con which may contain heavy metal contaminants in the tain heavy metal contaminants as well as anionic con range of from about 0.03 to about 0.15 percent by taminants in the form of carbonates, oxides and sulfates. weight may be processed in accordance with the pro In addition, when the molten form of the mixed nitrate 30 cess of this invention. In addition, the process of this is circulated in the solar power system or industrial invention is useful in the purification of impure mixed process heat systems, small quantities of heavy metal nitrates produced synthetically, or impure mixed ni impurities may be dissolved from the materials of con trates obtained from solar heat systems, which may struction used as conduits, storage tanks and the like. In contain heavy metal impurities within the range from addition, local hot spots in the solar energy system may 35 about 0.03 to about 0.5 percent by weight. cause degradation of the alkali metal nitrates to form The impure alkali metal nitrates are dissolved in suffi oxides, oxygen and nitrogen. The oxides may react with cient water to form an aqueous solution having an alkali water and carbon dioxide to form hydroxides and car metal nitrate concentration within the range of from bonates. between about 20 to about 70 and preferably between 40 about 30 and about 50 percent by weight. Either solid, There is a need at the present time to provide a pro molten, or solution forms of the alkali metal nitrates cess for reducing the heavy metal contaminants found may be added to the water. in alkali metal nitrates, particularly those used in the Sufficient acid is added to the aqueous alkali metal preparation of solar energy heat transfer medium. nitrate solution to adjust the pH thereof to within the It is a primary object of this invention to provide an 45 range from about 2 to about 6 and preferably from improved process for purifying alkali metal nitrates. about 2 to about 4. Any suitable acidic substance which It is another object of this invention to provide a is nonreactive with the alkali metal nitrates may be process for reducing the concentration of heavy metal utilized for this purpose. It is preferred to utilize nitric impurities present in alkali metal nitrates. acid since it does not add foreign anions to the alkali Still another object of the invention is to provide a 50 metal nitrate being treated. However, if anionic impu process for purifying mixed alkali metal nitrates utilized rity is not a problem, then any other suitable acids such as a heat transfer medium in solar energy systems and as sulfuric acid, hydrochloric acid, phosphoric acid and industrial process heat systems. the like may be employed. It is preferred to employ a A further object of the invention is to provide a pro concentrated mineral acid when adjusting the pH in cess for purifying eutectic mixtures of sodium nitrate 55 order to minimize the amount of water that may ulti and potassium nitrate. mately have to be evaporated to obtain the desired These and other objects of the invention will be ap purified molten product. However, any suitable con parent from the following detailed description thereof. centration of acid may be utilized. It has now been discovered that the foregoing objects After the pH of the aqueous solution of alkali metal are accomplished in a process for removing heavy metal nitrate has been adjusted to the desired level, the con contaminants from impure alkali metal nitrates contain centration of nitrite anion in the aqueous solution is ing them, which comprises: adjusted to effect reaction of the nitrite ion with the a. admixing the impure alkali metal nitrates with suffi heavy metal impurities present. Sufficient nitrite ion is cient water to form an aqueous solution thereof; added to the aqueous solution to provide at least about b. adjusting the pH of the aqueous solution to preferably 65 6 times the stoichiometric amount, and preferably be within a range from between about 2 to about 4; tween about 8 and about 15 times the stoichiometric c. adjusting the concentration of nitrite ion in the aque amount necessary to reduce all of the heavy metal con ous solution to within the range between about 0.07 taminants to a reduced valent state. Sodium nitrite is 4,574,075 3 4 preferred for use as the nitrite ion forming agent, but potassium nitrate is a preferred ingredient for purifying other nitrite compounds such as potassium nitrite, lith in accordance with the process of this invention. ium nitrite, cesium nitrite, and the like, barium nitrite, When admixing the impure aqueous alkali metal ni strontium nitrite, calcium nitrite and mixtures thereof trate solution with acid, the nitrite ion compound and which form nitrite ions in aqueous solutions may also be basic material to effect the pH lowering, control of the employed. In addition, nitrite ions formed in situ, for nitrite ion concentration, and the pH raising, respec example, by electrolysis of aqueous solutions of alkali tively, suitable agitation means are employed. Fre metal nitrates, or by bubbling equimolar mixtures of NO quently, when the basic material is added to precipitate and NO2 through an aqueous alkali metal hydroxide or the heavy metal impurities, a porous floc-type precipi alkali metal carbonate solution may also be employed as 10 tate forms.
Recommended publications
  • A Review of the Patents and Literature on the Manufacture of Potassium Nitrate with Notes on Its Occurrence and Uses
    UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 192 Washington, D.C. July 1934 A REVIEW OF THE PATENTS AND LITERATURE ON THE MANUFACTURE OF POTASSIUM NITRATE WITH NOTES ON ITS OCCURRENCE AND USES By COLIN W. WHITTAKER. Associate Chemist and FRANK O. LUNDSTROM, Assistant Chemist Division of Fertilizer Technology, Fertilizer Investigationa Bureau of Chemistry and Soils For sale by the Superintendent of Documents, Washington, D.C. .....-..- Price 5 cents UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 192 Washington, D.C. July 1934 A REVIEW OF THE PATENTS AND LITERATURE ON THE MANUFACTURE OF POTASSIUM NITRATE WITH NOTES ON ITS OCCURRENCE AND USES By COLIN W. WHITTAKER, associate chemist, and FRANK O. LUNDSTROM, assistant chemist, Division of Fertilizer Technology, Fertilizer Investigations, Bureau oj Chemistry and Soils CONTENTS Page Production of potassium nitrate —Contd. Page Processes involving dilute oxides of Introduction } nitrogen 22 Historical sketch 3 Absorption in carbonates, bicarbon- Statistics of the saltpeter industry 4 ates, or hydroxides 22 Potassium nitrate as a plant food 8 Conversion of nitrites to nitrates 23 Occurrence of potassium nitrate 9 Processes involving direct action of nitric Production of potassium nitrate 11 acid or oxides of nitrogen on potassium Saltpeter from the soil 11 compounds 23 In East India 11 Potassium bicarbonate and nitric In other countries 12 acid or ammonium nitrate 23 Chilean high-potash nitrate 13 Potassium hydroxide or carbonate Composting and
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0161249 A1 Mull Et Al
    US 2002O161249A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0161249 A1 Mull et al. (43) Pub. Date: Oct. 31, 2002 (54) PREPARATION OF EPOXIDES FROM (21) Appl. No.: 09/792,390 ALKANES USING LANTHANDE-PROMOTED SILVER (22) Filed: Feb. 22, 2001 CATALYSTS Publication Classification (76) Inventors: Guido Mul, Nootdorp (NL); Marianna F. Asaro, Belmont, CA (US); Albert S. (51) Int. Cl." ............................................. C07D 301/02 Hirschon, Menlo Park, CA (US); (52) U.S. Cl. .............................................................. 549/534 Retri B. Wilson JR., Palo Alto, CA (57) ABSTRACT A process is provided for use in the conversion of alkanes Correspondence Address: into alkylene oxides, having particular utility in the conver REED & ASSOCATES Sion of propane to form propylene oxide, using a lanthanide 800 MENLO AVENUE promoted, Supported, Silver catalyst prepared via precipita SUTE 210 tion. A preferred embodiment uses Silver nitrate and MENLO PARK, CA 94025 (US) lanthanum nitrate to form the catalyst on a BaCO Support. Patent Application Publication Oct. 31, 2002 US 2002/0161249 A1 10 O 2000 4000 6000 Time (s) FIG. 1 US 2002/0161249 A1 Oct. 31, 2002 PREPARATION OF EPOXDES FROM ALKANES 0006 Catalysts composed of lanthanum carbonate and USINGLANTHANDE-PROMOTED SILVER chromium oxide have been shown to be active and Selective CATALYSTS at lower temperatures but have only been used in the oxidative dehydrogenation of isobutane, See Hoang et al. TECHNICAL FIELD (1997).J. Catal. 171:313. Carbonate-supported catalysts are currently used in ethylene epoxidation and often contain 0001. This invention relates generally to novel catalysts reduced Silver and an O-alumina carrier.
    [Show full text]
  • In 3,708,275 Camp, Jr
    United States Patent to in 3,708,275 Camp, Jr. (45) Jan. 2, 1973 54 MANUFACTURE OF ALKALIMETAL 2,888,321 5/1959 Baumann ....................... 23/107 3,554,729 1/1971 Curless................................. 71136 X PHOSPHATES 3,375,062 3/1968. Curless...................... ...23/102A (75. Inventor: Ernest C. Camp, Jr., Barrington, 3,010,818 11/1961 Jones et al........................... 71/37 N.J. 3,574,591 4/1971 Lyons et al........................... 71/36X (73) Assignee: Cities Service Company, New York, FOREIGN PATENTS OR APPLICATIONS N.Y. 1,082,963 1/1963 Japan....................................... 71/36 22 Filed: Oct. 28, 1970 613,794 l/1961 Canada............................... 23/102 A (21) Appl. No. 84,907 1447,996 12/1964 France................................ 23/102 A Related U.S. Application Data Primary Examiner-Reuben Friedman Assistant Examiner-Richard Barnes (63) Continuation-in-part of Ser. No. 725,139, April 29, Attorney-J. Richard. Geaman, Elton F. Gunn and 1968, Pat. No. 3,563,703. Joshua J. Ward (52) U.S. Cl. ................................ 71/1, 7 1/34, 7 1/35, 57 ABSTRACT 71/36, 423/309, 423/399 (51 int. Cl. ............................................... C05b 7/00 Alkali metal phosphates can be prepared by adding an (58) Field of Search.........71/35, 36, 1,34; 23/102 A, alkali metal halide to a solution of phosphoric and 23/107,203 N; 423/309, 313,399, 386 nitric acids. The resulting gases can be recovered. After removal of halogen, as by boiling, the solution 56) References Cited can be adjusted in nitric acid content and neutralized to yield a fertilizer. Alternatively, the solution can be UNITED STATES PATENTS substantially denitrated, yielding an alkali metal 3,579,323 5/1971 Gauster et al...........................
    [Show full text]
  • Nano3,KNO3,Rbno3,Csno3)
    id13369703 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com ISSN : 0974 - 7524 Volume 8 Issue 4 Physical CCHHEEAnMM IndIIiaSSn TTJouRRrnaYYl Full Paper PCAIJ, 8(4), 2013 [140-145] Phase equilibria of alkali metal salt (NaNO3,KNO3,RbNO3,CsNO3) in system HOCH2CH(OH)CH2OH - H2O at various temperatures Zhang Hui-Ying1,2, Li Shu-Ni1, Zhai Quan-Guo1, Ou Yang-Miao2, Jiang Yu-Cheng1, Hu Man-Cheng1* 1Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi ’an, Shaanxi, 710062, (CHINA) Normal University, Xi 2Department of Chemistry and Life Science, Hechi University, Yizhou,Guangxi, 546300, (CHINA) E-mail: [email protected]. ABSTRACT KEYWORDS By using a self-made research device for phase equilibrium, the equilib- Alkali metal nitrate; Glycerin; rium solubility of the saturation ternary system of NaNO3/KNO3/RbNO3/ °C Solubility; CsNO3 - HOCH2CH (OH)CH2OH - H2O at 35 and 45 was measured, and simultaneously the density and refractive index of this system was deter- Density; mined. The experimental results showed that, in all systems, with the Refractive index. increase of weight percentage of glycerol, the solubility and density of the salt in mixed solvent were reduced, while the refractive index was increased gradually. The solubility, refractive index and density data in all the saturation systems were fitted by the four-parameter empirical correlation equation. 2013 Trade Science Inc. - INDIA INTRODUCTION and refractive index, which aims to provide the neces- sary basic reference data for the separation and purifi- Crystallization, separation and purification can be cation of alkali metal nitrate.
    [Show full text]
  • A Vibrational Study of a Selected Series of Matrix-Isolated Alkali-Metal Chlorate and Nitrate Salts
    A VIBRATIONAL STUDY OF A SELECTED SERIES OF MATRIX-ISOLATED ALKALI-METAL CHLORATE AND NITRATE SALTS By NORMAN RAY SMYRL 11 Bachelor of Science West Texas State University Canyon, Texas 1969 Master of Science West Texas State University Canyon, Texas 1971 Submitted to the Faculty of t.he Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1973 Yk~i$ I q73l) S{;t'lv C.vp, ')._ OKLAHOMA STATE UNIVERSITY LIBRARY M.Af~ 14 1975 A VIBRATIONAL STUDY OF A SELECTED SERIES OF MATRIX-ISOLATED ALKALI-METAL CHLORATE AND NITRATE SALTS Thesis Approved: ,, Thesis Adviser 4~L1D-:Loe~ ,s); ~.2. ~ Dean of the Graduate College 902238 ii ACKNOWLEDGEMENTS Grateful acknowledgement is made to Dr. J. Paul Devlin, thesis director, for continuing assistance and guidance throughout this work. I would like to express my love and gratitude to my wife, Sherry, for her encouragement and understanding throughout my tenure in graduate school and for her patient assistance in the preparation of this manu­ script. I would also like to gratefully acknowledge the financial support during this work provided by the National Science Foundation and Oklahoma State University. Finally, I would like to thank Wayne Adkins and Heinz Hall for their aid in the design and repair of equipment utilized for this study. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION 1 Scope of the Problem. 1 Matrix Isolation. 3 Infrared Matrix Isolation. 3 Raman Matrix Isolation . 5 Chlorates .•......... 6 The Symmetry and Selection Rules for the Chlorate Anion ....
    [Show full text]
  • The 70Th Southeastern Regional Meeting of the American Chemical Society October 31-November 3, 2018 Augusta, GA
    The 70th Southeastern Regional Meeting of the American Chemical Society October 31-November 3, 2018 Augusta, GA Michael Bronikowski and Robert Lascola, Program Chairs WEDNESDAY MORNING Augusta Marriott at the Convention Center Estes A Chemistry Applications of Neutron Scattering Cosponsored by NUCL Financially supported by Shull Wollan Center – a Joint Institute for Neutron Sciences J. Z. Larese, Organizer, Presiding 8:00 Introductory Remarks. 8:15 1. Investigating phase transitions and structure changes under applied conditions with neutron scattering. C. Hoffmann, A.J. Schultz, C. Fancher 8:45 2. Upgraded diffractometer at HFIR, HB-2C: WAND2. M. Frontzek, K.M. Andrews, A.B. Jones, R. Whitfield, B. Chakoumakos, J. Fernandez-Baca 9:15 3. Adsorption of cycloalkanes on MgO (100), graphite and hexagonal boron nitride: A thermodynamic, modeling and neutron scattering study. F. Wahida, J.Z. Larese 9:35 4. Solution structure of an intramembrane aspartyl protease via small angle neutron scattering. R.L. Lieberman, S. Naing, R. Oliver, K.L. Weiss, V. Urban 9:55 Intermission. 10:15 5. Next-generation neutron vibrational spectroscopy of organic molecular crystals, cocrystals, and polymorphs: Applications for benchmarking density functional theory calculations. A. Sedova, A. Pandey 10:35 6. New insights on the nature of pressure induced amorphous ices. C.A. Tulk, J. Molaison, D. Klug, A. Makhluf, C. Manning 11:05 7. Probing the structures and dynamics of biological interfaces by neutron scattering. J. Majewski WEDNESDAY MORNING, 10/31/18 Augusta Marriott at the Convention Center Lamar C Frontiers in Nucleic Acid Chemistry J. T. Petty, Organizer, Presiding 8:00 Introductory Remarks. 8:05 8.
    [Show full text]
  • The 70Th Southeastern Regional Meeting of the American Chemical Society
    The 70th Southeastern Regional Meeting of the American Chemical Society October 31 - November 3, 2018 Augusta, GA Program 70th Southeastern Regional Meeting of the American Chemical Society Augusta Marriott at the Convention Center October 31 - November 3, 2018 Hosted by the ACS-Savannah River Section 2 SERMACS 2018 “Security Tomorrow Through Inovation Today” Augusta Marriott at the Convention Center, Augusta, Georgia General Co-Chairs’ Welcome On behalf of the Savannah River Section and the 2018 organizing committee, we want to welcome you to the 70th South- eastern Regional Meeting of the American Chemical Society (SERMACS 2018). With over 1140 abstracts, 46 exhibitors, and 34 graduate schools, this year’s meeting is definitely “Linking Chemistry in the Southeast” – to quote from our 2006 theme. Those of you visiting the Central Savannah River Area (CSRA) for the first time will find many exciting activities to explore. We have tried to promote the colloquialism that is the hallmark of regional meetings through a number of special events where you can meet and network amongst your colleagues from throughout the southeast, the nation, and 13 countries. Please join us for the ACS Division of Professional Relations (PROF) sponsored Trick-or-Treat Networking Reception in the Olmstead B Exposition Hall, for the National Historic Chemical Landmark (NHCL) Dedication and Reception at the SRS Heritage Museum in Aiken, SC, or the Fermentation Chemistry Social at the Savannah River Brewing Company, where you can dine at local Food Trucks, drink local brew, enjoy a tour of the brewery, and play some games. There are a number of new features at this year’s meeting.
    [Show full text]
  • Ultra-Thin Mems Fabricated Tynodes for Electron Multiplication
    Delft University of Technology Ultra-thin mems fabricated tynodes for electron multiplication Prodanovic, Violeta DOI 10.4233/uuid:1f889837-0d94-415c-8137-6065c0a44245 Publication date 2019 Document Version Final published version Citation (APA) Prodanovic, V. (2019). Ultra-thin mems fabricated tynodes for electron multiplication. https://doi.org/10.4233/uuid:1f889837-0d94-415c-8137-6065c0a44245 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. ULTRA-THIN MEMS FABRICATED TYNODES FOR ELECTRON MULTIPLICATION 537226-L-sub01-bw-Frodanovic Processed on: 29-10-2019 PDF page: 1 537226-L-sub01-bw-Frodanovic Processed on: 29-10-2019 PDF page: 2 ULTRA-THIN MEMS FABRICATED TYNODES FOR ELECTRON MULTIPLICATION Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 19 november 2019 om 15:00 uur door Violeta PRODANOVIC´ Master of Science in Electrical Engineering and Computer Science, Universiteit van Belgrado, Belgrado, Servië, geboren te Zvornik, Joegoslavië.
    [Show full text]
  • United States Patent Office Patented Feb
    3,497,404 United States Patent Office Patented Feb. 24, 1970 1. 2 itate mixing with the magnesium powder. I have also 3,497,404 CAST FELARE COMPOSITION OF MAGNESUM found that these salt mixtures wet magnesium and hence DISPERSED IN A MATREX, MOSTLY SODIUM are specially easily mixed to form a uniform slurry. NTRATE The proportion of metal to oxidizer salt is between Ralph H. Hiltz, Pittsburgh, Pa., assignor to Mine Safety about 1 and 1.85 parts metal to each part salt, preferably Appliances Company, Pittsburgh, Pa., a corporation of between 1.25 and 1.50 to 1. Pennsylvania The flares are in use normally ignited at one end and No Drawing. Fied Jan. 28, 1969, Ser. No. 794,779 Int, C. C06d 1/10 burn lengthwise, the flare life depending on the rate at U.S. C. 149-17 4. Claims which the burning front proceeds lengthwise of the flare, O designated as linear burning rate. The linear burning rate can be substantially adjusted, suitably from 4-10 seconds per inch, by adjusting the proportion of magnesium to ABSTRACT OF THE DISCLOSURE Salt, the magnesium particle size and the amount of added Cast high-intensity illuminating flares contain a coarse salt. Burning rate decreases with increasing amounts of magnesium powder dispersed in a matrix of a solidified 5 magnesium up to about 60% by weight magnesium and salt melt containing principally sodium nitrate with a then increases with further increase in magnesium con minor amount of another alkali metal or alkaline earth tent. Increasing the amount of added salt decreases burn metal nitrate or nitrite.
    [Show full text]
  • Microwave Enhancement of Energetic Materials Combustion Through Gas-Phase Flame Interactions
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Microwave enhancement of energetic materials combustion through gas-phase flame interactions Stuart James Barkley Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Barkley, Stuart James, "Microwave enhancement of energetic materials combustion through gas-phase flame interactions" (2020). Graduate Theses and Dissertations. 18277. https://lib.dr.iastate.edu/etd/18277 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Microwave enhancement of energetic materials combustion through gas-phase flame interactions by Stuart James Barkley A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mechanical Engineering Program of Study Committee: Travis R Sippel, Major Professor James B Michael Shankar Subramaniam Theodore J Heindel Jiming Song The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will
    [Show full text]
  • 1 High Temperature Molten Salts for Solar Power Application Thomas
    Chapter 20 in “Molten Salts Chemistry: From Lab To Applications”, edited by Lantelme, F. and Groult, H., Elsevier, 2013 https://doi.org/10.1016/B978-0-12-398538-5.00020-2 High temperature molten salts for solar power application Thomas Bauer1, Nicole Pfleger2, Doerte Laing2, Wolf-Dieter Steinmann2, Markus Eck2, Stefanie Kaesche3 1 German Aerospace Center (DLR), Institute of Technical Thermodynamics, Linder Höhe, 51147 Köln, Germany, [email protected] 2 German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany 3 Materials Testing Institute University of Stuttgart (MPA), Pfaffenwaldring 32, 70569 Stuttgart, Germany Abstract: Solar thermal power plants are a key technology for electricity generation from renewable energy resources. Thermal energy storage (TES) systems correct the mismatch between the solar supply and the power demand. TES makes it possible to meet the intermediate load profile with dispatchable power, a benefit that has a high value to power utilities and that gives concentrating solar power (CSP) technology an edge over photovoltaic and wind power. Hence, TES is a key technology for solar thermal energy utilization with growing present and future importance. This chapter focuses on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes, steel corrosion issues and phase diagrams of multicomponent salt systems. In addition, two CSP applications using molten nitrate salts as sensible and latent TES are discussed. Keywords: nitrates, nitrites, phase change materials (PCM), corrosion, heat transfer fluids, thermophysical properties, thermal decomposition, phase diagrams, multicomponent salt systems. 1 Chapter 20 in “Molten Salts Chemistry: From Lab To Applications”, edited by Lantelme, F.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 4,545,974 Thompson (45) Date of Patent: Oct
    United States Patent (19) 11) Patent Number: 4,545,974 Thompson (45) Date of Patent: Oct. 8, 1985 (54) PROCESS FOR PRODUCING ALKALI METAL FERRATES UTILIZING HEMATITE OTHER PUBLICATIONS AND MAGNETTE Bailar et al., "Comprehensive Inorganic Chemistry', Pergamon Press, N.Y., vol. 3, 1973. 76 Inventor: John A. Thompson, Nassau, The Primary Examiner-H. T. Carter Bahamas Attorney, Agent, or Firm-Kenyon & Kenyon 57 ABSTRACT (21) Appl. No.: 590,567 Alkali metal iron (IV) and iron (VI) ferrates are pro duced by forming a particulate mixture of reactants (22 Filed: Mar. 16, 1984 including an alkali metal nitrogen oxygen compound and an iron material selected from the group of iron oxide, Fe2O3, Fe3O4 and an iron compound which self (51) Int. Cl." .............................................. C01G 49/00 reacts at a temperature less than about 1100° C. to form 52 U.S. Cl. .................................................... 423/594 Fe2O3. The mixture of reactants is subjected to a prede 58) Field of Search ......................................... 423/594 termined elevated temperature for a predetermined time duration sufficient to bring about a reaction be (56) References Cited tween the reactants which produces at least one of iron (IV) and iron (VI) ferrates. The molar ratio of alkali U.S. PATENT DOCUMENTS metal nitrogen oxygen compound to the iron material is 2,835,553 5/1958 Harrison et al. .................... 423/594 preferably in the range extending between about 4:1 and about 8:1. FOREIGN PATENT DOCUMENTS 1013272 1/1958 Fed. Rep. of Germany ...... 423/594 23 Claims, No Drawings 4,545,974 1. 2 duced in these methods are in solution and require a PROCESS FOR PRODUCING ALKAL METAL crystallization therefrom in order to avoid the obvious FERRATES UTILIZING HEMATITE AND handling, shipping and storage disadvantages associated MAGNETITE with aqueous solutions.
    [Show full text]