United States Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented July 6, 1954 2,683,075 UNITED STATES PATENT OFFICE 2,683,075 DIGESTION OF PHOSPHATE ROCK Paul Caldwell, Evergreen Park, I., assignor, by mesne assignments, to Cannac Research and Development Company, Thornwood, N. Y., a joint venture No Drawing. Application June 5, 1951, Serial No. 230,07 Cains, (C. 23-09) 2 This invention relates to the digestion of phOS vention is further characterized by the elimina phate rock and, more particularly, to the recoV tion of a substantial portion of any fluorine con ery of the phosphatic value of such rock. The ponent of the phosphate rock so treated With the invention includes a method of recovering trical result that the end product is particularly Suit cium phosphate from phospate rock in a form 5 able for use as livestock feed Without requiring which is useful both as a fertilizer and as live pyrolytic treatment of the rock or of the final stock feed as well as a method of producing Such product for the elimination of fluorine pursu tricalcium phosphate in admixture with other ant to conventional practice. compounds of known fertilizer Value, and further The method of recovering a non-hygroscopic includes the novel products obtained thereby. O tricalcium phosphate product from phosphate It is conventional practice to recover the phos rock in accordance with my invention comprises phatic value of phosphate rock by digestion of dissolving the tricalcium phosphate component of the rock with Sulfuric acid. Regardless of the rock in an inorganic nitrogenous acid, Sep Whether this digestion is carried Out With Suf arating the resulting phosphorus- and calcium ficient acid to form a product consisting pre 5 containing solution from the acid-insoluble ima dominantly of monocalcium acid phosphate or terial, adding to said solution potassium chloride, with a lesser annount of acid to form a superphos Sodium chloride or sodium sulfate, neutralizing phate, the digestion requires the use of large the resulting phosphorus-, calcium- and potas quantities of the Sulfuric acid. This fact has sium- or SOdium-containing Solution with ann prompted numerous prior investigations to find 20 monia, and recovering the resulting precipitated an alternative reagent or procedure for recover tricalcium phosphate product. The added al ing the phosphatic value of phosphate rock. The kali metal Salt effects precipitation of a large recent critical shortage of Sulfuric acid has placed portion of any fluorine component of the rock a further prennium on the development of a phos in the form of potassium fluosilicate, the latter phate rock digestion operation which does not 25 being advantageously separated from the aque depend upon the use of this acid. ous phase prior to the ammonia-neutralizing step. All previous studies of this problenn have led The precipitated tricalcium phosphate product to the conclusion that such alternative phosphate may be recovered in a form largely free of other rock digestion reagents produce less satisfactory Compounds, or the ammonium and potassium end products than the product obtained by Sull 30 Or Sodium salts present in the solution from furic acid digestion. For example, attempts to which the tricalcium phosphate is precipitated produce a Suitable phosphatic material by diges may be crystallized therefrom so as to form an tion of phosphate rock with nitric acid have been addition to the precipitated tricalcium phosphate. thwarted by the substantial amount of calcium The novel phosphatic product of my invention. nitrate formed along the resulting acid phosphate 35 comprises a.. non-hygroscopic and substantially or Superphosphate. The hygroscopic nature of fluorine-free tricalcium phosphate obtained by calcium nitrate is largely responsible for the wet dissolving the tricalcium phosphate component of and gunny consistency of the phosphate product, phosphate rock in an inorganic nitrogenous acid, and has defeated prior attempts to produce a adding potassium chloride, sodium chloride or phosphatic material from phosphate rock by di 40 Sodium sulfate to the resulting acid solution to gestion with nitric acid. remove fluorine therefrom in the form of pre I have now devised a method of recovering cipitated potassium or sodium fluosilicate, and the phosphatic value of phosphate rock by a pro neutralizing the resulting solution with ammonia, cedure involving digestion of the rock with an to precipitate the tricalcium phosphate product. in Organic nitrogenous acid, such as nitric acid, This product may further contain, in accordance which is nevertheless characterized by the elim With the invention, an ammonium salt and po ination from the phosphatic end product of any taSSium or sodium nitrate obtained by crystal hygroScopic salts which might interfere With the lization from the ammonia-neutralized solution Stability and free flowing characteristics of this from which the tricalcium phosphate is precipi product. The method of my invention effects tated. The resulting product containing these Sequestering of the calcium component of the compounds comprises a highly effective, stable phosphate rock substantially only in the form of and non-hygroscopic fertilizer composition. the ultimate phosphatic compound which, as ex The product obtained by the method of my plained further herein, comprises essentially tri invention is Substantially non-hygroscopic in the calcium phosphate. The novel method of my in 55 accepted sense that it does not absorb a signifi 2,683,075 3. 4 cant amount of moisture from the atmosphere. fluorine component of the rock is largely in the The product does adsorb atmospheric noisture form of a calcium salt, and inasmuch as the rock to some extent but this adsorbed moisture does generally contains other calcium SaitS Such as not impart to the product any significant tend the carbonate, the solution which is neutralized ency to become wet, cake-like or gummy. Al 5 with annonia, will contain an excess of Calcium though the product obtained with the use of over and above that which will combine With the the potassium salt pursuant to the invention is phosphorus to precipitate tricalcium phosphate. less hygroscpic than that, obtained with the use Accordingly, the precipitated product Will Con of the sodium salt, both products can be accu tain other non-hygroscopic calcium compounds rately characterized as substantially non-hygro such as calcium hydrate or possibly tetracaiciun scopic under average United States Weather con phosphate, or both. If, as described an Ore fully ditions. hereinafter, the solution from which the trical The product of my invention is characterized cium phosphate product is precipitated is further by this non-hygroscopicity in the unwashed but suitably concentrated, an annonium Salt and dry state. If the precipitated product were 5 aikali metal nitrate are obtained either for Sepa washed, it Would be expected that it would he rate use or for addition to the precipitated tri non-hygroscopic, but drying of the washed pre calcium phosphate product in the preparation of cipitate causes a Substantial reversion of the a complete fertilizer material. In the latter phosphatic precipitate to an insoluble form event, the annoniura sat and the nitrate both whence it is not readily available for fertilizer 20 provide available nitrogen for the fertilizer, and value. However, when the precipitate is dried where potassium chloride is used as the added without Washing, there is no significant reversion alkali metal salt the resulting potassium initrate of its phosphatic content to an insoluble form forms a particularly Suitable Source of potash. and the resulting dried product is nevertheless The method of my invention is applicable to substantially non-hygroscopic. 25 the treatment of any phosphate rock. Prepa Digestion of the phosphate rock with the in ration of the rock for digestion. With nitric acid Organic nitrogenous acid effects dissolution of is substantially the Sarine as that which prevails the tricacium phosphate component of the rock in the conventional digestion of such rock With with the resulting production of a solution con Sulfuric acid. Thus, Satisfactory resultS can be prising phosphoric acid and calcium nitrate. 30 obtained with rock ground to such a degree Of The acid-insoluble cornponents of the rock settle fineness that, 80-90% will paSS through a 60 aesh out of this Solution and are preferably renoved screen (Tyler standard), although the rock inay before further treatnant of the phosphoric acid be more finely ground so that up to about 95% calciurn nitrate solution. The separated solu Will pass through a 100 resh Screen. As in the tion will further contain most if not all of any 35 case of other aethods of digesting phOSphate florine component of the rock in the form of rock, the degree of Subdivision of the rock is of fluosilicic acid. When the potassium chloride importance only in so far as it affects the late or sodium chloride or sulfate is added to this of its reaction. With the digesting agent. Where Solution in accordance with the invention, a the Speed of reaction can be Sacrificed Sonewhat large portion of this fluorine component of the 40 for ease in Separating the acid-inSouble poi Solution is removed in the form of a precipitate tion of the rock, a coarser starting material Such of the corresponding alkali metal fluosilicate. aS 20 resh rock can be used. The alkali metal salt (an expression which will The digesting agent used in the practice of the be used hereinafter to refer generically to the invention cornprises such inorganic nitrogenous potassium chloride, sodium chloride or sodium 45 acids aS nitric acid or the acid or acid iiixtutes Sulfate) is added in amount not only substan obtained by the passage of gaseous nitrogen tially equivalent stoichiometrically to the fluo Oxides through an aceous redill). Thus, the rine Component of the phosphoric acid solution nitrogenous acid may comprise nitric acid for but also in annount substantially equivalent a commercial Source or it may coprise it;og Stoichiometrically to the calcium nitrate content, 50 enous acids produced at the Site of the digestion of the acid Solution.
Recommended publications
  • A Review of the Patents and Literature on the Manufacture of Potassium Nitrate with Notes on Its Occurrence and Uses
    UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 192 Washington, D.C. July 1934 A REVIEW OF THE PATENTS AND LITERATURE ON THE MANUFACTURE OF POTASSIUM NITRATE WITH NOTES ON ITS OCCURRENCE AND USES By COLIN W. WHITTAKER. Associate Chemist and FRANK O. LUNDSTROM, Assistant Chemist Division of Fertilizer Technology, Fertilizer Investigationa Bureau of Chemistry and Soils For sale by the Superintendent of Documents, Washington, D.C. .....-..- Price 5 cents UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 192 Washington, D.C. July 1934 A REVIEW OF THE PATENTS AND LITERATURE ON THE MANUFACTURE OF POTASSIUM NITRATE WITH NOTES ON ITS OCCURRENCE AND USES By COLIN W. WHITTAKER, associate chemist, and FRANK O. LUNDSTROM, assistant chemist, Division of Fertilizer Technology, Fertilizer Investigations, Bureau oj Chemistry and Soils CONTENTS Page Production of potassium nitrate —Contd. Page Processes involving dilute oxides of Introduction } nitrogen 22 Historical sketch 3 Absorption in carbonates, bicarbon- Statistics of the saltpeter industry 4 ates, or hydroxides 22 Potassium nitrate as a plant food 8 Conversion of nitrites to nitrates 23 Occurrence of potassium nitrate 9 Processes involving direct action of nitric Production of potassium nitrate 11 acid or oxides of nitrogen on potassium Saltpeter from the soil 11 compounds 23 In East India 11 Potassium bicarbonate and nitric In other countries 12 acid or ammonium nitrate 23 Chilean high-potash nitrate 13 Potassium hydroxide or carbonate Composting and
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0161249 A1 Mull Et Al
    US 2002O161249A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0161249 A1 Mull et al. (43) Pub. Date: Oct. 31, 2002 (54) PREPARATION OF EPOXIDES FROM (21) Appl. No.: 09/792,390 ALKANES USING LANTHANDE-PROMOTED SILVER (22) Filed: Feb. 22, 2001 CATALYSTS Publication Classification (76) Inventors: Guido Mul, Nootdorp (NL); Marianna F. Asaro, Belmont, CA (US); Albert S. (51) Int. Cl." ............................................. C07D 301/02 Hirschon, Menlo Park, CA (US); (52) U.S. Cl. .............................................................. 549/534 Retri B. Wilson JR., Palo Alto, CA (57) ABSTRACT A process is provided for use in the conversion of alkanes Correspondence Address: into alkylene oxides, having particular utility in the conver REED & ASSOCATES Sion of propane to form propylene oxide, using a lanthanide 800 MENLO AVENUE promoted, Supported, Silver catalyst prepared via precipita SUTE 210 tion. A preferred embodiment uses Silver nitrate and MENLO PARK, CA 94025 (US) lanthanum nitrate to form the catalyst on a BaCO Support. Patent Application Publication Oct. 31, 2002 US 2002/0161249 A1 10 O 2000 4000 6000 Time (s) FIG. 1 US 2002/0161249 A1 Oct. 31, 2002 PREPARATION OF EPOXDES FROM ALKANES 0006 Catalysts composed of lanthanum carbonate and USINGLANTHANDE-PROMOTED SILVER chromium oxide have been shown to be active and Selective CATALYSTS at lower temperatures but have only been used in the oxidative dehydrogenation of isobutane, See Hoang et al. TECHNICAL FIELD (1997).J. Catal. 171:313. Carbonate-supported catalysts are currently used in ethylene epoxidation and often contain 0001. This invention relates generally to novel catalysts reduced Silver and an O-alumina carrier.
    [Show full text]
  • In 3,708,275 Camp, Jr
    United States Patent to in 3,708,275 Camp, Jr. (45) Jan. 2, 1973 54 MANUFACTURE OF ALKALIMETAL 2,888,321 5/1959 Baumann ....................... 23/107 3,554,729 1/1971 Curless................................. 71136 X PHOSPHATES 3,375,062 3/1968. Curless...................... ...23/102A (75. Inventor: Ernest C. Camp, Jr., Barrington, 3,010,818 11/1961 Jones et al........................... 71/37 N.J. 3,574,591 4/1971 Lyons et al........................... 71/36X (73) Assignee: Cities Service Company, New York, FOREIGN PATENTS OR APPLICATIONS N.Y. 1,082,963 1/1963 Japan....................................... 71/36 22 Filed: Oct. 28, 1970 613,794 l/1961 Canada............................... 23/102 A (21) Appl. No. 84,907 1447,996 12/1964 France................................ 23/102 A Related U.S. Application Data Primary Examiner-Reuben Friedman Assistant Examiner-Richard Barnes (63) Continuation-in-part of Ser. No. 725,139, April 29, Attorney-J. Richard. Geaman, Elton F. Gunn and 1968, Pat. No. 3,563,703. Joshua J. Ward (52) U.S. Cl. ................................ 71/1, 7 1/34, 7 1/35, 57 ABSTRACT 71/36, 423/309, 423/399 (51 int. Cl. ............................................... C05b 7/00 Alkali metal phosphates can be prepared by adding an (58) Field of Search.........71/35, 36, 1,34; 23/102 A, alkali metal halide to a solution of phosphoric and 23/107,203 N; 423/309, 313,399, 386 nitric acids. The resulting gases can be recovered. After removal of halogen, as by boiling, the solution 56) References Cited can be adjusted in nitric acid content and neutralized to yield a fertilizer. Alternatively, the solution can be UNITED STATES PATENTS substantially denitrated, yielding an alkali metal 3,579,323 5/1971 Gauster et al...........................
    [Show full text]
  • Nano3,KNO3,Rbno3,Csno3)
    id13369703 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com ISSN : 0974 - 7524 Volume 8 Issue 4 Physical CCHHEEAnMM IndIIiaSSn TTJouRRrnaYYl Full Paper PCAIJ, 8(4), 2013 [140-145] Phase equilibria of alkali metal salt (NaNO3,KNO3,RbNO3,CsNO3) in system HOCH2CH(OH)CH2OH - H2O at various temperatures Zhang Hui-Ying1,2, Li Shu-Ni1, Zhai Quan-Guo1, Ou Yang-Miao2, Jiang Yu-Cheng1, Hu Man-Cheng1* 1Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi ’an, Shaanxi, 710062, (CHINA) Normal University, Xi 2Department of Chemistry and Life Science, Hechi University, Yizhou,Guangxi, 546300, (CHINA) E-mail: [email protected]. ABSTRACT KEYWORDS By using a self-made research device for phase equilibrium, the equilib- Alkali metal nitrate; Glycerin; rium solubility of the saturation ternary system of NaNO3/KNO3/RbNO3/ °C Solubility; CsNO3 - HOCH2CH (OH)CH2OH - H2O at 35 and 45 was measured, and simultaneously the density and refractive index of this system was deter- Density; mined. The experimental results showed that, in all systems, with the Refractive index. increase of weight percentage of glycerol, the solubility and density of the salt in mixed solvent were reduced, while the refractive index was increased gradually. The solubility, refractive index and density data in all the saturation systems were fitted by the four-parameter empirical correlation equation. 2013 Trade Science Inc. - INDIA INTRODUCTION and refractive index, which aims to provide the neces- sary basic reference data for the separation and purifi- Crystallization, separation and purification can be cation of alkali metal nitrate.
    [Show full text]
  • A Vibrational Study of a Selected Series of Matrix-Isolated Alkali-Metal Chlorate and Nitrate Salts
    A VIBRATIONAL STUDY OF A SELECTED SERIES OF MATRIX-ISOLATED ALKALI-METAL CHLORATE AND NITRATE SALTS By NORMAN RAY SMYRL 11 Bachelor of Science West Texas State University Canyon, Texas 1969 Master of Science West Texas State University Canyon, Texas 1971 Submitted to the Faculty of t.he Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1973 Yk~i$ I q73l) S{;t'lv C.vp, ')._ OKLAHOMA STATE UNIVERSITY LIBRARY M.Af~ 14 1975 A VIBRATIONAL STUDY OF A SELECTED SERIES OF MATRIX-ISOLATED ALKALI-METAL CHLORATE AND NITRATE SALTS Thesis Approved: ,, Thesis Adviser 4~L1D-:Loe~ ,s); ~.2. ~ Dean of the Graduate College 902238 ii ACKNOWLEDGEMENTS Grateful acknowledgement is made to Dr. J. Paul Devlin, thesis director, for continuing assistance and guidance throughout this work. I would like to express my love and gratitude to my wife, Sherry, for her encouragement and understanding throughout my tenure in graduate school and for her patient assistance in the preparation of this manu­ script. I would also like to gratefully acknowledge the financial support during this work provided by the National Science Foundation and Oklahoma State University. Finally, I would like to thank Wayne Adkins and Heinz Hall for their aid in the design and repair of equipment utilized for this study. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION 1 Scope of the Problem. 1 Matrix Isolation. 3 Infrared Matrix Isolation. 3 Raman Matrix Isolation . 5 Chlorates .•......... 6 The Symmetry and Selection Rules for the Chlorate Anion ....
    [Show full text]
  • The 70Th Southeastern Regional Meeting of the American Chemical Society October 31-November 3, 2018 Augusta, GA
    The 70th Southeastern Regional Meeting of the American Chemical Society October 31-November 3, 2018 Augusta, GA Michael Bronikowski and Robert Lascola, Program Chairs WEDNESDAY MORNING Augusta Marriott at the Convention Center Estes A Chemistry Applications of Neutron Scattering Cosponsored by NUCL Financially supported by Shull Wollan Center – a Joint Institute for Neutron Sciences J. Z. Larese, Organizer, Presiding 8:00 Introductory Remarks. 8:15 1. Investigating phase transitions and structure changes under applied conditions with neutron scattering. C. Hoffmann, A.J. Schultz, C. Fancher 8:45 2. Upgraded diffractometer at HFIR, HB-2C: WAND2. M. Frontzek, K.M. Andrews, A.B. Jones, R. Whitfield, B. Chakoumakos, J. Fernandez-Baca 9:15 3. Adsorption of cycloalkanes on MgO (100), graphite and hexagonal boron nitride: A thermodynamic, modeling and neutron scattering study. F. Wahida, J.Z. Larese 9:35 4. Solution structure of an intramembrane aspartyl protease via small angle neutron scattering. R.L. Lieberman, S. Naing, R. Oliver, K.L. Weiss, V. Urban 9:55 Intermission. 10:15 5. Next-generation neutron vibrational spectroscopy of organic molecular crystals, cocrystals, and polymorphs: Applications for benchmarking density functional theory calculations. A. Sedova, A. Pandey 10:35 6. New insights on the nature of pressure induced amorphous ices. C.A. Tulk, J. Molaison, D. Klug, A. Makhluf, C. Manning 11:05 7. Probing the structures and dynamics of biological interfaces by neutron scattering. J. Majewski WEDNESDAY MORNING, 10/31/18 Augusta Marriott at the Convention Center Lamar C Frontiers in Nucleic Acid Chemistry J. T. Petty, Organizer, Presiding 8:00 Introductory Remarks. 8:05 8.
    [Show full text]
  • The 70Th Southeastern Regional Meeting of the American Chemical Society
    The 70th Southeastern Regional Meeting of the American Chemical Society October 31 - November 3, 2018 Augusta, GA Program 70th Southeastern Regional Meeting of the American Chemical Society Augusta Marriott at the Convention Center October 31 - November 3, 2018 Hosted by the ACS-Savannah River Section 2 SERMACS 2018 “Security Tomorrow Through Inovation Today” Augusta Marriott at the Convention Center, Augusta, Georgia General Co-Chairs’ Welcome On behalf of the Savannah River Section and the 2018 organizing committee, we want to welcome you to the 70th South- eastern Regional Meeting of the American Chemical Society (SERMACS 2018). With over 1140 abstracts, 46 exhibitors, and 34 graduate schools, this year’s meeting is definitely “Linking Chemistry in the Southeast” – to quote from our 2006 theme. Those of you visiting the Central Savannah River Area (CSRA) for the first time will find many exciting activities to explore. We have tried to promote the colloquialism that is the hallmark of regional meetings through a number of special events where you can meet and network amongst your colleagues from throughout the southeast, the nation, and 13 countries. Please join us for the ACS Division of Professional Relations (PROF) sponsored Trick-or-Treat Networking Reception in the Olmstead B Exposition Hall, for the National Historic Chemical Landmark (NHCL) Dedication and Reception at the SRS Heritage Museum in Aiken, SC, or the Fermentation Chemistry Social at the Savannah River Brewing Company, where you can dine at local Food Trucks, drink local brew, enjoy a tour of the brewery, and play some games. There are a number of new features at this year’s meeting.
    [Show full text]
  • Ultra-Thin Mems Fabricated Tynodes for Electron Multiplication
    Delft University of Technology Ultra-thin mems fabricated tynodes for electron multiplication Prodanovic, Violeta DOI 10.4233/uuid:1f889837-0d94-415c-8137-6065c0a44245 Publication date 2019 Document Version Final published version Citation (APA) Prodanovic, V. (2019). Ultra-thin mems fabricated tynodes for electron multiplication. https://doi.org/10.4233/uuid:1f889837-0d94-415c-8137-6065c0a44245 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. ULTRA-THIN MEMS FABRICATED TYNODES FOR ELECTRON MULTIPLICATION 537226-L-sub01-bw-Frodanovic Processed on: 29-10-2019 PDF page: 1 537226-L-sub01-bw-Frodanovic Processed on: 29-10-2019 PDF page: 2 ULTRA-THIN MEMS FABRICATED TYNODES FOR ELECTRON MULTIPLICATION Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 19 november 2019 om 15:00 uur door Violeta PRODANOVIC´ Master of Science in Electrical Engineering and Computer Science, Universiteit van Belgrado, Belgrado, Servië, geboren te Zvornik, Joegoslavië.
    [Show full text]
  • United States Patent Office Patented Feb
    3,497,404 United States Patent Office Patented Feb. 24, 1970 1. 2 itate mixing with the magnesium powder. I have also 3,497,404 CAST FELARE COMPOSITION OF MAGNESUM found that these salt mixtures wet magnesium and hence DISPERSED IN A MATREX, MOSTLY SODIUM are specially easily mixed to form a uniform slurry. NTRATE The proportion of metal to oxidizer salt is between Ralph H. Hiltz, Pittsburgh, Pa., assignor to Mine Safety about 1 and 1.85 parts metal to each part salt, preferably Appliances Company, Pittsburgh, Pa., a corporation of between 1.25 and 1.50 to 1. Pennsylvania The flares are in use normally ignited at one end and No Drawing. Fied Jan. 28, 1969, Ser. No. 794,779 Int, C. C06d 1/10 burn lengthwise, the flare life depending on the rate at U.S. C. 149-17 4. Claims which the burning front proceeds lengthwise of the flare, O designated as linear burning rate. The linear burning rate can be substantially adjusted, suitably from 4-10 seconds per inch, by adjusting the proportion of magnesium to ABSTRACT OF THE DISCLOSURE Salt, the magnesium particle size and the amount of added Cast high-intensity illuminating flares contain a coarse salt. Burning rate decreases with increasing amounts of magnesium powder dispersed in a matrix of a solidified 5 magnesium up to about 60% by weight magnesium and salt melt containing principally sodium nitrate with a then increases with further increase in magnesium con minor amount of another alkali metal or alkaline earth tent. Increasing the amount of added salt decreases burn metal nitrate or nitrite.
    [Show full text]
  • Microwave Enhancement of Energetic Materials Combustion Through Gas-Phase Flame Interactions
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Microwave enhancement of energetic materials combustion through gas-phase flame interactions Stuart James Barkley Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Barkley, Stuart James, "Microwave enhancement of energetic materials combustion through gas-phase flame interactions" (2020). Graduate Theses and Dissertations. 18277. https://lib.dr.iastate.edu/etd/18277 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Microwave enhancement of energetic materials combustion through gas-phase flame interactions by Stuart James Barkley A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mechanical Engineering Program of Study Committee: Travis R Sippel, Major Professor James B Michael Shankar Subramaniam Theodore J Heindel Jiming Song The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will
    [Show full text]
  • 1 High Temperature Molten Salts for Solar Power Application Thomas
    Chapter 20 in “Molten Salts Chemistry: From Lab To Applications”, edited by Lantelme, F. and Groult, H., Elsevier, 2013 https://doi.org/10.1016/B978-0-12-398538-5.00020-2 High temperature molten salts for solar power application Thomas Bauer1, Nicole Pfleger2, Doerte Laing2, Wolf-Dieter Steinmann2, Markus Eck2, Stefanie Kaesche3 1 German Aerospace Center (DLR), Institute of Technical Thermodynamics, Linder Höhe, 51147 Köln, Germany, [email protected] 2 German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany 3 Materials Testing Institute University of Stuttgart (MPA), Pfaffenwaldring 32, 70569 Stuttgart, Germany Abstract: Solar thermal power plants are a key technology for electricity generation from renewable energy resources. Thermal energy storage (TES) systems correct the mismatch between the solar supply and the power demand. TES makes it possible to meet the intermediate load profile with dispatchable power, a benefit that has a high value to power utilities and that gives concentrating solar power (CSP) technology an edge over photovoltaic and wind power. Hence, TES is a key technology for solar thermal energy utilization with growing present and future importance. This chapter focuses on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes, steel corrosion issues and phase diagrams of multicomponent salt systems. In addition, two CSP applications using molten nitrate salts as sensible and latent TES are discussed. Keywords: nitrates, nitrites, phase change materials (PCM), corrosion, heat transfer fluids, thermophysical properties, thermal decomposition, phase diagrams, multicomponent salt systems. 1 Chapter 20 in “Molten Salts Chemistry: From Lab To Applications”, edited by Lantelme, F.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 4,545,974 Thompson (45) Date of Patent: Oct
    United States Patent (19) 11) Patent Number: 4,545,974 Thompson (45) Date of Patent: Oct. 8, 1985 (54) PROCESS FOR PRODUCING ALKALI METAL FERRATES UTILIZING HEMATITE OTHER PUBLICATIONS AND MAGNETTE Bailar et al., "Comprehensive Inorganic Chemistry', Pergamon Press, N.Y., vol. 3, 1973. 76 Inventor: John A. Thompson, Nassau, The Primary Examiner-H. T. Carter Bahamas Attorney, Agent, or Firm-Kenyon & Kenyon 57 ABSTRACT (21) Appl. No.: 590,567 Alkali metal iron (IV) and iron (VI) ferrates are pro duced by forming a particulate mixture of reactants (22 Filed: Mar. 16, 1984 including an alkali metal nitrogen oxygen compound and an iron material selected from the group of iron oxide, Fe2O3, Fe3O4 and an iron compound which self (51) Int. Cl." .............................................. C01G 49/00 reacts at a temperature less than about 1100° C. to form 52 U.S. Cl. .................................................... 423/594 Fe2O3. The mixture of reactants is subjected to a prede 58) Field of Search ......................................... 423/594 termined elevated temperature for a predetermined time duration sufficient to bring about a reaction be (56) References Cited tween the reactants which produces at least one of iron (IV) and iron (VI) ferrates. The molar ratio of alkali U.S. PATENT DOCUMENTS metal nitrogen oxygen compound to the iron material is 2,835,553 5/1958 Harrison et al. .................... 423/594 preferably in the range extending between about 4:1 and about 8:1. FOREIGN PATENT DOCUMENTS 1013272 1/1958 Fed. Rep. of Germany ...... 423/594 23 Claims, No Drawings 4,545,974 1. 2 duced in these methods are in solution and require a PROCESS FOR PRODUCING ALKAL METAL crystallization therefrom in order to avoid the obvious FERRATES UTILIZING HEMATITE AND handling, shipping and storage disadvantages associated MAGNETITE with aqueous solutions.
    [Show full text]