C12) United States Patent (IO) Patent No.: US 10,920,251 B2 San Et Al

Total Page:16

File Type:pdf, Size:1020Kb

C12) United States Patent (IO) Patent No.: US 10,920,251 B2 San Et Al I 1111111111111111 1111111111 1111111111 11111 1111111111 111111111111111 IIII IIII USO 10920251B2 c12) United States Patent (IO) Patent No.: US 10,920,251 B2 San et al. (45) Date of Patent: Feb.16,2021 (54) MICROBIAL PRODUCTION OF FATS (56) References Cited (71) Applicant: William Marsh Rice University, U.S. PATENT DOCUMENTS Houston, TX (US) 4,762,784 A 8/1988 Keith et al. 7,262,046 B2 8/2007 Ka-Yiu et al. (72) Inventors: Ka-Yiu San, Houston, TX (US); Zhilin 7,326,557 B2 2/2008 San et al. Li, Houston, TX (US); Xian Zhang, 7,569,380 B2 8/2009 San et al. Houston, TX (US) 7,901,924 B2 3/2011 San et al. 8,129,157 B2 3/2012 Gonzalez (73) Assignee: WILLIAM MARSH RICE 8,486,686 B2 7/2013 Segueilha et al. 8,691,552 B2 4/2014 Gonzalez et al. UNIVERSITY, Houston, TX (US) 8,795,991 B2 8/2014 San et al. 8,962,272 B2 2/2015 San et al. ( *) Notice: Subject to any disclaimer, the term ofthis 2010/0317086 Al* 12/2010 Segueilha ................. Cl2P 7/04 patent is extended or adjusted under 35 435/252.33 U.S.C. 154(b) by 103 days. 2014/0093921 Al 4/2014 San et al. 2014/0193867 Al 7/2014 Sanetal. 2014/0212935 Al 7/2014 Sanetal. (21) Appl. No.: 16/098,914 2014/0273114 Al 9/2014 San et al. 2015/0037853 Al 2/2015 Fischer et al. (22) PCT Filed: May 5, 2017 2015/0259712 Al 9/2015 San et al. (86) PCT No.: PCT/US2017 /03117 4 FOREIGN PATENT DOCUMENTS § 371 (c)(l), WO 2015054138 4/2015 (2) Date: Nov. 5, 2018 (87) PCT Pub. No.: WO2017/192925 OTHER PUBLICATIONS PCT Pub. Date: Nov. 9, 2017 Olsson, J., & Andrews, J.F., "The dissolved oxygen profile-A valuable tool for control of the activated sludge process," Water (65) Prior Publication Data Research, vol. 12, Issue 11, pp. 985-1004 (Mar. 3, 1978). Sun, Z., et al., "Amino acid substitutions at glutamate-354 in US 2019/0144898 Al May 16, 2019 dihydrolipoamide dehydrogenase of Escherichia coli lower the sensitivity of pyruvate dehydrogenase to NADH," Microbiology, vol. 158, pp. 1350-1358 (May 2012). Related U.S. Application Data Wu, H., et al., "Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli," Metabolic Engineering, (60) Provisional application No. 62/332,308, filed on May vol. 28, pp. 159-168 (Mar. 2015). 5, 2016. Zhang, X., et al., "Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases," Metabolic Engineering, (51) Int. Cl. vol. 13, Issue 6, pp. 713-722, Nov. 2011. C12N 1120 (2006.01) Tatusova, T.A., and Madden, T.T., "Blast 2 Sequences, a new tool C12P 7164 (2006.01) for comparing protein and nucleotide sequences," FEMS Microbi­ ology Letters, vol. 174, pp. 247-250 (1998). C12N 9102 (2006.01) International Search Report & Written Opinion of the International C12N 15152 (2006.01) Searching Authority received in Application No. PCT/US2017/ C12N 9/16 (2006.01) 031174, dated Jul. 20, 2017. C12N 9/88 (2006.01) C12N 9/04 (2006.01) * cited by examiner C12N 15174 (2006.01) (52) U.S. Cl. Primary Examiner - Tekchand Saidha CPC .............. C12P 716409 (2013.01); C12N 1120 (74) Attorney, Agent, or Firm - Boulware & Valoir (2013.01); C12N 9/0006 (2013.01); C12N 9/0008 (2013.01); C12N 9/16 (2013.01); (57) ABSTRACT C12N 9/88 (2013.01); C12N 15152 (2013.01); This invention describes a method of using microbial to C12N 15174 (2013.01); C12Y 102/01051 produce fats, such as fatty acids and their derivatives, or (2013.01); C12Y 102/07001 (2013.01) products derived from the fatty acid synthesis cycle, such as (58) Field of Classification Search hydroxyfatty acids, methyl ketones, and the like. CPC ..................................................... C12P 7/6409 See application file for complete search history. 9 Claims, 4 Drawing Sheets U.S. Patent Feb.16,2021 Sheet 1 of 4 US 10,920,251 B2 "' 14 0 18 0 ell 1,0 -Qj 15 12 ... ~ -...~ 0 10 ~ "'C 12 ~ =~ 8 -"'C 9 -Glucose ~ =~ - 6 Qj ell -+-QD600 ...~~ -Qj 6 ... - rll 4 Qj - ~ ---+E-Fatty acid 0 ~ 3 ~ = 2 -e' -Acetate -~ ... ~ 0 0 ~ .........Lactate 0 12 24 36 48 60 72 ...~ ~ Time (h) ~ ML103(pXZ18Z) FIGURE 1 Gas inlet ---,"-""-......................... h Gas outlet ...... ,..·' ...... '-....: () Gas-bubble •'"\ ....• C"·""'· ............., \...-----.) () ........~)...........................i).......()4·~~-~----- Sparger/aerator FIGURE2 U.S. Patent Feb.16,2021 Sheet 2 of 4 US 10,920,251 B2 Gas outlet Heads pace FIGURE3 U.S. Patent Feb.16,2021 Sheet 3 of 4 US 10,920,251 B2 18 5 -~ 0 ell -Qj 0 15 1,0 4 ... -~ Q ...u 0 12 ~ "'C 3 -"'C =~ 9 =~ -Glucose ~ ...Qj - ~ ell 2 ... ~OD600 -Qj Qj rll 6 u - ~ -.-Fatty acid 0 u "' 1 ...."'C -e-Acetate = 3 u -~ ~ ...>. ...._Lactate 0 0 ~ ~ 0 12 24 36 48 60 Time (h) A-1 ML103(pXZ18Z) FIGURE4A 450 100 8.5 I 90 400 \ \ 80 8.0 350 ;, ,.,-.:·;.---, 70 \ ..:, \ 300 I I I _.·, ' 7.5 I I •; ' 60 •. I I ;'- ' a 250 "J ': ' - ( \ 0.. _,.... I ' 50 ~_, 7.0 ' I ::c: .-=:: 200 ' 40 N 0.. 00 •.. .• •• . ......·,1 --Agit '~ 0 < "O 150 I --- -dO2 30 6.5 : 1·•· ....... ..... pH • I 20 100 : I I : I I 6.0 • I I 10 50 I I ·.__: ,_ --L-------- _1 0 0 5.5 0 12 24 36 48 60 Time (h) A-2 l\1L103(p:XZ18Z) FIGURE4B U.S. Patent Feb.16,2021 Sheet 4 of 4 US 10,920,251 B2 18 C 5 ~ 0 - 0 ell 1,0 15 -Qj 4 ~ ... -~ 0 ... ~ "'C 12 ~ 3 =~ -"'C 9 -Glucose ~ =~ - Qj ell 2 ... ~OD600 -Qj ~ 6 rll ... - Qj -+-Fatty acid 0 ~ ~ 1 ~ = 3 -e' -+-Acetate -~ ... ~ ~ -+-Lactate 0 0 >. 0 12 24 36 48 60 ... ~ Time (h) ~ B-1 ZL302(pXZ18Z) FIGURE SA 450 100 8.5 90 400 ' - , -- -- ... ~------:--•.>· \ ''.,' .... :,; 80 8.0 350 \ 70 300 I ... 7.5 ' : •: 60 •: • i 50 ~ _.·. '._/ 7.0::g_ , I --Agit 4o 8 "O 150 .-. -·- ----dO2 30 6.5 .,:•· .. -·· ...... pH 100 ;: 20 : ' ~~ 6.0 50 . : ' lO .. •-1----------·-----~ 0 0 -+--"""T"""-"""T"""----r-----T"-----.-----.------,--,---..-------1 5.5 0 12 24 36 48 60 Time (h) B-2 ZL302(pXZ18Z) FIGURE SB US 10,920,251 B2 1 2 MICROBIAL PRODUCTION OF FATS What is needed in the art is a novel culture method that allows high yield and rates of production of compounds, PRIOR RELATED APPLICATIONS such as fatty acids and their derivatives, yet is amenable to scale up and is cost effective. This application claims priority to U.S. Ser. No. 62/332, 5 308, IMPROVED MICROBIAL PRODUCTION OF FATS, SUMMARY OF THE INVENTION filed May 5, 2016, and PCT/US2017/031174, filed May 5, 2017, each of which is incorporated by reference herein in Fatty acids are aliphatic acids fundamental to energy its entirety for all purposes. production and storage, cellular structure and as intermedi- 10 ates in the biosynthesis of hormones and other biologically FEDERALLY SPONSORED RESEARCH important molecules. Fatty acids in E. coli, for example, are synthesized by a series of decarboxylative Claisen conden­ STATEMENT sation reactions using acetyl-CoA to add two carbon units to a growing fat. Following each round of elongation the beta This invention was made with govermnent support under 15 keto group is reduced to the fully saturated carbon chain by Grant No: 2012-10008-20263 awarded by the USDA. The the sequential action of a ketoreductase, a dehydratase, and govermnent has certain rights in the invention. an enol reductase. The growing fatty acid chain is carried between these FIELD OF THE DISCLOSURE active sites while attached covalently to the phosphoanteth- 20 eine prosthetic group of an acyl carrier protein (ACP), and This invention relates generally to the microbial produc­ is released from the ACP by the action ofa thioesterase (TE) tion of fats, such as fatty acids and their derivatives, or upon reaching a carbon chain length ofe.g., 16, although this products derived from the fatty acid synthesis cycle, such as can be varied by adding different TE enzymes to the cell. hydroxyfatty acids, methyl ketones, and the like. This invention relates to a technology to improve micro- 25 bial production of fatty acids, fatty acid derivatives and/or BACKGROUND OF THE DISCLOSURE products derived from the fatty acid synthesis cycle through the use of a new micro-aerobic/anaerobic cultivation Anaerobic fermentation and aerobic respiration have been method. The traditional fatty acid production was performed the two metabolic modes of interest for the industrial under fully aerobic conditions, because fatty acid production bioproduction of chemicals, such as fats. Oxygen rich res­ 30 dropped significantly under anaerobic conditions. piration offers very efficient cell growth (growth rate and There are two main reasons for the absolute requirement yield) and converts a high percentage of the carbon source of oxygen for high free fatty acid production. One reason is into carbon dioxide and cell mass ( see Table 1), but typically due to the limitation of ATP availability. Only 2 ATP per has low product yields. Anaerobic fermentation, on the other glucose will be generated in the glycolysis pathway under hand, has high product formation, but poor cell growth and 35 anaerobic conditions and 1 ATP is required for each fatty the synthesis of several competing fermentation products at acid elongation cycle. high yields (e.g. lactate, formate, ethanol, acetate, succinate, The second reason is due to limited reducing equivalent etc.), thus, diverting carbons away from the desired product. availability and is more problematic. Under normal aerobic conditions, the conversion of pyruvate to acetyl-CoA, a TABLE 1 40 precursor for fatty acid synthesis, and NAD+ to NADH is carried out by the enzyme pyruvate dehydrogenase (PDH).
Recommended publications
  • ASSESSING DIAGNOSTIC and THERAPEUTIC TARGETS in OBESITY- ASSOCIATED LIVER DISEASES Noemí Cabré Casares
    ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY- ASSOCIATED LIVER DISEASES Noemí Cabré Casares ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • C12) United States Patent (IO) Patent No.: US 10,774,349 B2 San Et Al
    I1111111111111111 1111111111 111111111111111 IIIII IIIII IIIII IIIIII IIII IIII IIII US010774349B2 c12) United States Patent (IO) Patent No.: US 10,774,349 B2 San et al. (45) Date of Patent: Sep.15,2020 (54) ALPHA OMEGA BIFUNCTIONAL FATTY 9/1029 (2013.01); C12N 9/13 (2013.01); ACIDS C12N 9/16 (2013.01); C12N 9/88 (2013.01); C12N 9/93 (2013.01) (71) Applicant: William Marsh Rice University, (58) Field of Classification Search Houston, TX (US) None See application file for complete search history. (72) Inventors: Ka-Yiu San, Houston, TX (US); Dan Wang, Houston, TX (US) (56) References Cited (73) Assignee: William Marsh Rice University, U.S. PATENT DOCUMENTS Houston, TX (US) 9,994,881 B2 * 6/2018 Gonzalez . Cl2N 9/0006 2016/0090576 Al 3/2016 Garg et al. ( *) Notice: Subject to any disclaimer, the term ofthis patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C. 154(b) by 152 days. WO W02000075343 12/2000 (21) Appl. No.: 15/572,099 WO W02016179572 11/2016 (22) PCT Filed: May 7, 2016 OTHER PUBLICATIONS (86) PCT No.: PCT/US2016/031386 Choi, K. H., R. J. Heath, and C. 0. Rock. 2000. 13-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in § 371 (c)(l), branched-chain fatty acid biosynthesis. J. Bacteriol. 182:365-370. (2) Date: Nov. 6, 2017 He, X., and K. A. Reynolds. 2002. Purification, characterization, and identification of novel inhibitors of the beta-ketoacyl-acyl (87) PCT Pub. No.: WO2016/179572 carrier protein synthase III (FabH) from Staphylococcus aureus.
    [Show full text]
  • In Vivo Dual RNA-Seq Analysis Reveals the Basis for Differential Tissue Tropism of Clinical Isolates of Streptococcus Pneumoniae
    In Vivo Dual RNA-Seq Analysis Reveals the Basis for Differential Tissue Tropism of Clinical Isolates of Streptococcus pneumoniae Vikrant Minhas,1,4 Rieza Aprianto,2,4 Lauren J. McAllister,1 Hui Wang,1 Shannon C. David,1 Kimberley T. McLean,1 Iain Comerford,3 Shaun R. McColl,3 James C. Paton,1,5,6,* Jan-Willem Veening,2,5 and Claudia Trappetti,1,5 Supplementary Information Supplementary Table 1. Pneumococcal differential gene expression in the lungs 6 h post-infection, 9-47-Ear vs 9-47M. Genes with fold change (FC) greater than 2 and p < 0.05 are shown. FC values highlighted in blue = upregulated in 9-47-Ear, while values highlighted in red = upregulated in 9- 47M. Locus tag in 9-47- Product padj FC Ear Sp947_chr_00844 Sialidase B 3.08E-10 313.9807 Sp947_chr_02077 hypothetical protein 4.46E-10 306.9412 Sp947_chr_00842 Sodium/glucose cotransporter 2.22E-09 243.4822 Sp947_chr_00841 N-acetylneuraminate lyase 4.53E-09 227.7963 scyllo-inositol 2-dehydrogenase Sp947_chr_00845 (NAD(+)) 4.36E-09 221.051 Sp947_chr_00848 hypothetical protein 1.19E-08 202.7867 V-type sodium ATPase catalytic subunit Sp947_chr_00853 A 1.29E-06 100.5411 Sp947_chr_00846 Beta-glucoside kinase 3.42E-06 98.18951 Sp947_chr_00855 V-type sodium ATPase subunit D 8.34E-06 85.94879 Sp947_chr_00851 V-type sodium ATPase subunit C 2.50E-05 72.46612 Sp947_chr_00843 hypothetical protein 2.17E-05 65.97758 Sp947_chr_00839 HTH-type transcriptional regulator RpiR 3.09E-05 61.28171 Sp947_chr_00854 V-type sodium ATPase subunit B 1.32E-06 50.86992 Sp947_chr_00120 hypothetical protein 3.00E-04
    [Show full text]
  • Greg's Awesome Thesis
    Analysis of alignment error and sitewise constraint in mammalian comparative genomics Gregory Jordan European Bioinformatics Institute University of Cambridge A dissertation submitted for the degree of Doctor of Philosophy November 30, 2011 To my parents, who kept us thinking and playing This dissertation is the result of my own work and includes nothing which is the out- come of work done in collaboration except where specifically indicated in the text and acknowledgements. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. November 30, 2011 Gregory Jordan ii Analysis of alignment error and sitewise constraint in mammalian comparative genomics Summary Gregory Jordan November 30, 2011 Darwin College Insight into the evolution of protein-coding genes can be gained from the use of phylogenetic codon models. Recently sequenced mammalian genomes and powerful analysis methods developed over the past decade provide the potential to globally measure the impact of natural selection on pro- tein sequences at a fine scale. The detection of positive selection in particular is of great interest, with relevance to the study of host-parasite conflicts, immune system evolution and adaptive dif- ferences between species. This thesis examines the performance of methods for detecting positive selection first with a series of simulation experiments, and then with two empirical studies in mammals and primates.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Downloaded from (2007)
    ARTICLE https://doi.org/10.1038/s41467-020-14796-x OPEN Alterations in promoter interaction landscape and transcriptional network underlying metabolic adaptation to diet ✉ Yufeng Qin1, Sara A. Grimm2, John D. Roberts1, Kaliopi Chrysovergis1 & Paul A. Wade 1 Metabolic adaptation to nutritional state requires alterations in gene expression in key tis- sues. Here, we investigated chromatin interaction dynamics, as well as alterations in cis- 1234567890():,; regulatory loci and transcriptional network in a mouse model system. Chronic consumption of a diet high in saturated fat, when compared to a diet high in carbohydrate, led to dramatic reprogramming of the liver transcriptional network. Long-range interaction of promoters with distal regulatory loci, monitored by promoter capture Hi-C, was regulated by metabolic status in distinct fashion depending on diet. Adaptation to a lipid-rich diet, mediated largely by nuclear receptors including Hnf4α, relied on activation of preformed enhancer/promoter loops. Adaptation to carbohydrate-rich diet led to activation of preformed loops and to de novo formation of new promoter/enhancer interactions. These results suggest that adapta- tion to nutritional changes and metabolic stress occurs through both de novo and pre-existing chromatin interactions which respond differently to metabolic signals. 1 Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA. 2 Integrative Bioinformatics
    [Show full text]
  • Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member 2 in Skeletal Muscle Promotes Hepatic Steatosis and Insulin Resistance Norihiro Imai1, Hayley T. Nicholls1, Michele Alves-Bezerra1, Yingxia Li1, Anna A. Ivanova2, Eric A. Ortlund2, and David E. Cohen1 1Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA 2Department of Biochemistry, Emory University, Atlanta, GA 30322 USA Current addresses: Norihiro Imai - Department of Gastroenterology and Hepatology, Nagoya University School of Medicine, Aichi 4668560 Japan Michele Alves-Bezerra - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Figure number: 8 Supplemental figure number: 10 Supplemental table number: 2 References: 48 Keywords: Hepatic steatosis, obesity, acyl-CoA thioesterase, fatty acid oxidation, insulin resistance Conflict of interest: The authors have declared that no conflict of interest exists. Author contributions: N.I.: designed research studies, conducted experiments, acquired data, analyzed data and wrote manuscript. H.T.N.: conducted experiments and analyzed data, M.A.B.: designed research studies and conducted experiments, Y.L.: acquired data, A.A.I.: conducted experiments and analyzed data, E.A.O.: analyzed data, D.E.C.: designed research studies, analyzed data and wrote manuscript.
    [Show full text]
  • Structural Basis for Recruitment of Tandem Hotdog Domains in Acyl-Coa Thioesterase 7 and Its Role in Inflammation
    Structural basis for recruitment of tandem hotdog domains in acyl-CoA thioesterase 7 and its role in inflammation Jade K. Forwood*†‡, Anil S. Thakur*, Gregor Guncar*§¶, Mary Marfori*, Dmitri Mouradov*, Weining Meng*§, Jodie Robinson§ʈ, Thomas Huber*, Stuart Kellie*§ʈ, Jennifer L. Martin*§**, David A. Hume*§ʈ**††, and Bostjan Kobe*‡§** *School of Molecular and Microbial Sciences, §Institute for Molecular Bioscience, ʈCooperative Research Centre for Chronic Inflammatory Diseases, and **Australian Research Council Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland 4072, Australia Edited by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved May 10, 2007 (received for review February 2, 2007) Acyl-CoA thioesterases (Acots) catalyze the hydrolysis of fatty long-chain acyl-CoA substrates with fatty acid chains of 8–16 acyl-CoA to free fatty acid and CoA and thereby regulate lipid carbon atoms (C8–C16) (7, 13). Acot7 contains a pair of fused metabolism and cellular signaling. We present a comprehensive thioesterase domains that share Ϸ30% sequence identity, with each structural and functional characterization of mouse acyl-CoA thio- thioesterase domain predicted to have the hotdog fold structure esterase 7 (Acot7). Whereas prokaryotic homologues possess a with an ␣-helix sausage wrapped by a ␤-sheet bun (14–16). single thioesterase domain, mammalian Acot7 contains a pair of Here, we present the crystal structures of the N- and C- domains in tandem. We determined the crystal structures of both terminal thioesterase domains (N- and C-domains) of mouse the N- and C-terminal domains of the mouse enzyme, and inferred Acot7, refined at 1.8 and 2.4 Å resolution, respectively.
    [Show full text]
  • The Emerging Role of Acyl-Coa Thioesterases and Acyltransferases in Regulating Peroxisomal Lipid Metabolism☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1822 (2012) 1397–1410 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Review The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism☆ Mary C. Hunt a,⁎, Marina I. Siponen b,1, Stefan E.H. Alexson c a Dublin Institute of Technology, School of Biological Sciences, College of Sciences & Health, Kevin Street, Dublin 8, Ireland b Department of Medical Biochemistry and Biophysics, Structural Genomics Consortium, Karolinska Institutet, SE-171 77 Stockholm, Sweden c Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden article info abstract Article history: The importance of peroxisomes in lipid metabolism is now well established and peroxisomes contain approx- Received 15 November 2011 imately 60 enzymes involved in these lipid metabolic pathways. Several acyl-CoA thioesterase enzymes Received in revised form 3 March 2012 (ACOTs) have been identified in peroxisomes that catalyze the hydrolysis of acyl-CoAs (short-, medium-, Accepted 16 March 2012 long- and very long-chain), bile acid-CoAs, and methyl branched-CoAs, to the free fatty acid and coenzyme Available online 23 March 2012 A. A number of acyltransferase enzymes, which are structurally and functionally related to ACOTs, have also been identified in peroxisomes, which conjugate (or amidate) bile acid-CoAs and acyl-CoAs to amino acids, Keywords: Acyl-CoA thioesterase resulting in the production of amidated bile acids and fatty acids.
    [Show full text]
  • Flavone Effects on the Proteome and Transcriptome of Colonocytes in Vitro and in Vivo and Its Relevance for Cancer Prevention and Therapy
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Ernährungsphysiologie Flavone effects on the proteome and transcriptome of colonocytes in vitro and in vivo and its relevance for cancer prevention and therapy Isabel Winkelmann Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. D. Haller Prüfer der Dissertation: 1. Univ.-Prof. Dr. H. Daniel 2. Univ.-Prof. Dr. U. Wenzel (Justus-Liebig-Universität Giessen) 3. Prof. Dr. E.C.M. Mariman (Maastricht University, Niederlande) schriftliche Beurteilung Die Dissertation wurde am 24.08.2009 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 25.11.2009 angenommen. Die Forschung ist immer auf dem Wege, nie am Ziel. (Adolf Pichler) Table of contents 1. Introduction .......................................................................................................... 1 1.1. Cancer and carcinogenesis .................................................................................. 2 1.2. Colorectal Cancer ............................................................................................... 3 1.2.1. Hereditary forms of CRC ........................................................................................ 4 1.2.2. Sporadic forms of CRC ..........................................................................................
    [Show full text]
  • Analysis of the Impact of Population Copy Number Variation in Introns
    UNIVERSIDAD AUTÓNOMA DE MADRID Programa de Doctorado en Biociencias Moleculares Analysis of the Impact of Population Copy Number Variation in Introns Maria Rigau de Llobet Madrid, 2019 DEPARTMENT OF BIOCHEMISTRY UNIVERSIDAD AUTÓNOMA DE MADRID FACULTY OF MEDICINE Analysis of the Impact of Population Copy Number Variation in Introns Maria Rigau de Llobet Graduate in Biology Thesis Directors: Dr. Alfonso Valencia Herrera and Dr. Daniel Rico Rodríguez Barcelona Supercomputing Center I Certificado del director o directores Dr Alfonso Valencia Herrera, Head of the Computational Biology Life Sciences Group (Barcelona Supercomputing Center) and Dr Daniel Rico Rodríguez, Head of the Chromatin, Immunity and Bioinformatics Group (Institute of Cellular Medicine, Newcastle, UK) CERTIFY: That Ms. Maria Rigau de Llobet, Graduate in Biology by the University Pompeu Fabra (Barcelona, Spain), has completed her Doctoral Thesis entitled “Analysis of the Impact of Population Copy Number Variation in Introns” under our supervision and meets the necessary requirements to obtain the PhD degree in Molecular Biosciences. To this purpose, she will defend her doctoral thesis at the Universidad Autó noma de Madrid. We hereby authorize its defense in front of the appropriate Thesis evaluation panel. We issue this certificate in Madrid on April 30th 2019 Alfonso Valencia Herrera Daniel Rico Rodríguez Thesis Director Thesis Director III This thesis was supported by a “La Caixa” – Severo Ochoa International PhD Programme V Aknowledgments Para empezar, me gustaría dar las gracias a mis dos directores de tesis, Alfonso Valencia y Daniel Rico. Muchas gracias Alfonso por la oportunidad de hacer el doctorado en tu grupo. Puedo decir sin dudar que ha sido el comienzo de una carrera profesional con la que disfruto.
    [Show full text]
  • Supplementary Table S1. Relative Change in Proteins Associated with Heme Biosynthesis and Degradation
    Supplementary Table S1. Relative change in proteins associated with heme biosynthesis and degradation. hPXR mPxr–/– Protein Gene RIF/INH INH RIF RIF/INH p Value 5-aminolevulinate synthase Alas1 1.90 2.61 1.05 1.41 0.28 5-aminolevulinate synthase Alas2 0.86 1.38 0.73 1.18 0.018 Delta-aminolevulinic acid Alad 0.96 1.00 1.02 0.95 0.75 dehydratase Porphobilinogen deaminase Hmbs 1.04 0.99 1.10 1.05 0.67 Uroporphyrinogen-III synthase Uros 1.19 1.09 1.31 1.38 0.012 Uroporphyrinogen decarboxylase Urod 0.92 1.03 0.94 0.92 0.33 Oxygen-dependent Cpox 1.13 1.04 1.18 1.15 0.20 coproporphyrinogen-III oxidase, Protoporphyrinogen oxidase Ppox 0.69 0.81 0.85 0.83 0.013 Ferrochelatase, Fech 0.39 0.50 0.88 0.43 0.000002 Heme oxygenase 1 Hmox1 1.15 0.86 0.91 1.11 0.34 Heme oxygenase 2 Hmox2 0.96 0.98 0.89 0.88 0.22 Biliverdin reductase A Blvra 0.84 0.92 0.82 0.92 0.032 UDP-glucuronosyltransferase 1-6 Ugt1a6 1.22 0.96 1.10 1.13 0.30 NADPH--cytochrome P450 Por 1.28 0.92 1.18 1.12 0.019 reductase INH, isoniazid; RIF, rifampicin; RIF/INH, rifampicin and isoniazid. Supplementary Table S2. Relative change in protein nuclear receptors. hPXR mPxr–/– Protein Gene RIF/INH INH RIF RIF/INH p Value Aryl hydrocarbon receptor Ahr 1.09 0.91 1.00 1.26 0.092 Hepatocyte nuclear factor Hnf1a 0.87 0.97 0.82 0.79 0.027 1-alpha Hepatocyte nuclear factor Hnf4a 0.95 1.05 0.97 1.08 0.20 4-alpha Oxysterols receptor LXR- Nr1h3 0.94 1.16 1.03 1.02 0.42 alpha Bile acid receptor Nr1h4 1.05 1.17 0.98 1.19 0.12 Retinoic acid receptor Rxra 0.88 1.03 0.83 0.95 0.12 RXR-alpha Peroxisome proliferator-
    [Show full text]