The Australian National University Centre for Mathematical Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
Hamilton's Ricci Flow
The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland. -
Inverse Mean Curvature Evolution of Entire Graphs
INVERSE MEAN CURVATURE EVOLUTION OF ENTIRE GRAPHS PANAGIOTA DASKALOPOULOS AND GERHARD HUISKEN n Abstract. We study the evolution of strictly mean-convex entire graphs over R by Inverse Mean Curvature flow. First we establish the global existence of starshaped entire graphs with superlinear growth at infinity. The main result in this work concerns the critical case of asymptotically conical entire convex graphs. In this case we show that there exists a time T < +1, which depends on the growth at infinity of the initial data, such that the unique solution of the flow exists for all t < T . Moreover, as t ! T the solution converges to a flat plane. Our techniques exploit the ultra-fast diffusion character of the fully-nonlinear flow, a property that implies that the asymptotic behavior at spatial infinity of our solution plays a crucial influence on the maximal time of existence, as such behavior propagates infinitely fast towards the interior. Contents 1. Introduction 1 2. The geometric equations and preliminaries 5 3. Self-similar solutions 10 4. The super-linear case and short time existence 13 5. Lp bounds on 1=H 23 6. L1 estimates on 1=H 29 7. Long time existence Theorem 1.1 40 References 41 arXiv:1709.06665v1 [math.DG] 19 Sep 2017 1. Introduction n n+1 We consider a family of immersions Ft : M ! R of n-dimensional mean convex hypersurfaces n+1 n in R . We say that Mt := Ft(M ) moves by inverse mean curvature flow if @ (1.1) F (z; t) = H−1(z; t) ν(z; t); z 2 M n @t where H(z; t) > 0 and ν(z; t) denote the mean curvature and exterior unit normal of the surface Mt at the point F (z; t). -
The Newtonian Limit of General Relativity
The Newtonian Limit of General Relativity Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften an der Fakult¨atMathematik und Physik der Eberhard-Karls-Universit¨atT¨ubingen vorgelegt von Maren Reimold aus N¨ordlingen Unterst¨utztdurch das Evangelische Studienwerk Villigst e.V. T¨ubingen,September 3, 2010 Contents Deutsche Zusammenfassung 3 Introduction 5 0.1 Transitions from tangent and cotangent space and induced connections 8 0.2 Concepts of curvature . 9 0.3 Newton's theory of gravitation and Einstein's theory of relativity . 13 1 Frame theory 19 1.1 The structure of the frame theory . 19 1.2 Linear Algebra . 23 1.3 Transfer to the frame theory . 30 1.4 The case λ =0 ............................. 34 2 The Newtonian limit: definition and existence 63 2.1 Definition of the Newtonian limit . 63 2.2 Extension of spacetimes . 66 2.3 Examples . 66 2.4 Existence of a limit . 75 2.5 Static and spherically symmetric spacetimes . 82 3 Existence of genuine Newtonian limits 95 3.1 Transformation of coordinates . 96 3.2 Conditions for the curvature tensor . 103 3.3 Asymptotically flat spacetimes . 106 A Appendix 121 A.1 The Schwarzschild spacetime . 121 A.2 The Kerr spacetime . 128 Index 151 Bibliography 153 1 Deutsche Zusammenfassung So lange es die Allgemeine Relativit¨atstheoriegibt, so lange gibt es auch die zugeh¨origeFrage, inwieweit man die Newtonsche Gravitationstheorie als einen Spezialfall oder doch wenigstens als eine Grenzlage der Allgemeinen Relativit¨ats- theorie auffassen kann. Schon am 18. November 1915, eine Woche bevor -
BIRS 2010 Scientific Report
Banff International Research Station for Mathematical Innovation and Discovery 2010 Scientific Report 5-Day Workshops 2010 Jan 10 Jan 15 Mathematics and Physics of Polymer Entanglement Jan 17 Jan 22 Multi-Scale Stochastic Modeling of Cell Dynamics Jan 24 Jan 29 Sparse Random Structures: Analysis and Computation Jan 31 Feb 5 Theory and Applications of Matrices Described by Patterns Jan 31 Feb 5 Branching Random Walks and Searching in Trees Feb 7 Feb 12 Small-scale Hydrodynamics: Microfluidics and Thin Films Feb 14 Feb 19 Convex Algebraic Geometry Feb 21 Feb 26 Some Mathematical Problems of Material Science Feb 28 Mar 5 Randomization, Relaxation and Complexity Mar 7 Mar 12 Quasi-Isometric Rigidity in Low-Dimensional Topology Mar 7 Mar 12 (0,2) Mirror Symmetry and Heterotic Gromov-Witten Invariants Mar 14 Mar 19 Geometric Scattering Theory and Applications Mar 21 Mar 26 Deterministic and Stochastic Front Propagation Mar 28 Apr 2 Volume Inequalities Apr 4 Apr 9 Coordinated Mathematical Modeling of Internal Waves Apr 11 Apr 16 Generalized Complex and Holomorphic Poisson Geometry Apr 18 Apr 23 Optimal Transportation and Applications Apr 25 Apr 30 Character Varieties in the Geometry and Topology of Low-Dimensional Manifolds May 2 May 7 Functional Data Analysis: Future Directions May 2 May 7 Creative Writing in Mathematics and Science May 9 May 14 Nonlinear Diffusions and Entropy Dissipation: From Geometry to Biology May 16 May 21 Inverse Transport Theory and Tomography May 23 May 28 Self-assembly of Block Copolymers: Theoretical Models and Mathematical -
Geometric Analysis
IAS/PARK CITY MATHEMATICS SERIES Volume 22 Geometric Analysis Hubert L. Bray Greg Galloway Rafe Mazzeo Natasa Sesum Editors American Mathematical Society Institute for Advanced Study Geometric Analysis https://doi.org/10.1090//pcms/022 IAS/PARK CITY MATHEMATICS SERIES Volume 22 Geometric Analysis Hubert L. Bray Greg Galloway Rafe Mazzeo Natasa Sesum Editors American Mathematical Society Institute for Advanced Study Hubert Lewis Bray, Gregory J. Galloway, Rafe Mazzeo, and Natasa Sesum, Volume Editors IAS/Park City Mathematics Institute runs mathematics education programs that bring together high school mathematics teachers, researchers in mathematics and mathematics education, undergraduate mathematics faculty, graduate students, and undergraduates to participate in distinct but overlapping programs of research and education. This volume contains the lecture notes from the Graduate Summer School program 2010 Mathematics Subject Classification. Primary 53-06, 35-06, 83-06. Library of Congress Cataloging-in-Publication Data Geometric analysis / Hubert L. Bray, editor [and three others]. pages cm. — (IAS/Park City mathematics series ; volume 22) Includes bibliographical references. ISBN 978-1-4704-2313-1 (alk. paper) 1. Geometric analysis. 2. Mathematical analysis. I. Bray, Hubert L., editor. QA360.G455 2015 515.1—dc23 2015031562 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. -
Geometric Relativity
GRADUATE STUDIES IN MATHEMATICS 201 Geometric Relativity Dan A. Lee 10.1090/gsm/201 Geometric Relativity GRADUATE STUDIES IN MATHEMATICS 201 Geometric Relativity Dan A. Lee EDITORIAL COMMITTEE Daniel S. Freed (Chair) Bjorn Poonen Gigliola Staffilani Jeff A. Viaclovsky 2010 Mathematics Subject Classification. Primary 53-01, 53C20, 53C21, 53C24, 53C27, 53C44, 53C50, 53C80, 83C05, 83C57. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-201 Library of Congress Cataloging-in-Publication Data Names: Lee, Dan A., 1978- author. Title: Geometric relativity / Dan A. Lee. Description: Providence, Rhode Island : American Mathematical Society, [2019] | Series: Gradu- ate studies in mathematics ; volume 201 | Includes bibliographical references and index. Identifiers: LCCN 2019019111 | ISBN 9781470450816 (alk. paper) Subjects: LCSH: General relativity (Physics)–Mathematics. | Geometry, Riemannian. | Differ- ential equations, Partial. | AMS: Differential geometry – Instructional exposition (textbooks, tutorial papers, etc.). msc | Differential geometry – Global differential geometry – Global Riemannian geometry, including pinching. msc | Differential geometry – Global differential geometry – Methods of Riemannian geometry, including PDE methods; curvature restrictions. msc | Differential geometry – Global differential geometry – Rigidity results. msc — Differential geometry – Global differential geometry – Spin and Spin. msc | Differential geometry – Global differential geometry – Geometric evolution equations (mean curvature flow, -
Monotonicity Formulas for Parabolic Flows on Manifolds
COMMUNICATIONS IN ANALYSIS AND GEOMETRY Volume 1, Number 1, 127-137, 1993 MONOTONICITY FORMULAS FOR PARABOLIC FLOWS ON MANIFOLDS RICHARD S. HAMILTON Recently Michael Struwe [S] and Gerhard Huisken [Hu2] have independently derived monotonicity formulas for the Harmonic Map heat flow on a Euclidean domain and for the Mean Curvature flow of a hypersurface in Euclidean space. In this paper we show how to generalize these results to the case of flows on a general compact manifold, and we also give the analogous monotonicity for- mula for the Yang-Mills heat flow. The key ingredient is a matrix Harnack estimate for positive solutions to the scalar heat equation given in [H]. In [GrH] the authors show how to use the monotonicity formula to prove that rapidly forming singularities in the Harmonic Map heat flow are asymptotic to homo- thetically shrinking solitons; similar results may be expected in other cases, as Huisken does in [Hu2] for the Mean Curvature flow in Euclidean space. We only obtain strict monotonicity for a special class of metrics, but in general there is an error term which is small enough to give the same effect. (Chen Yummei and Michael Struwe [CS] give a different approach to the error on manifolds.) The special class of metrics are those which are Ricci parallel (so that DiRjk = 0) and have weakly positive sectional curvature (so that RijkiViWjVkWt > 0 for all vectors V and W). This holds for example if M is flat or a sphere or a complex projective space, or a product of such, or a quotient of a product by a finite free group of isometries. -
Convex Ancient Solutions of the Mean Curvature Flow
j. differential geometry 101 (2015) 267-287 CONVEX ANCIENT SOLUTIONS OF THE MEAN CURVATURE FLOW Gerhard Huisken & Carlo Sinestrari Abstract We study solutions of the mean curvature flow which are defined for all negative times, usually called ancient solutions. We give various conditions ensuring that a closed convex ancient solution is a shrinking sphere. Examples of such conditions are: a uniform pinching condition on the curvatures, a suitable growth bound on the diameter, or a reverse isoperimetric inequality. We also study the behaviour of uniformly k-convex solutions, and consider generalizations to ancient solutions immersed in a sphere. 1. Introduction In this paper, we study convex ancient solutions to the mean cur- vature flow. We recall that a family of smooth immersions F : M× n+1 (t0,t1) → R ,whereM is an n-dimensional manifold, is called a mean curvature flow if it satisfies ∂F (1.1) (p, t)=−H(p, t)ν(p, t),p∈M,t∈ (t0,t1), ∂t where H(p, t)andν(p, t) are the mean curvature and the outer normal respectively at the point F (p, t)ofthesurfaceMt = F (·,t)(M). The signs are chosen such that −Hν = H is the mean curvature vector and the mean curvature of a convex surface is positive. We assume that n ≥ 2andthatM is closed. A solution is called ancient if it is defined for t ∈ (−∞, 0). While mean curvature flow is parabolic and hence in general ill-posed backward in time, ancient solutions are of interest for several reasons: They arise as tangent flows near singularities of the flow and therefore model the as- ymptotic profile of the surfaces as they approach a singularity, see e.g. -
NCTS Midterm Report, 2015 National Center for Theoretical Sciences
NCTS Midterm Report, 2015 National Center for Theoretical Sciences, Mathematics Division October, 2015 Contents I. Overview 2 II. Operation and Achievement of the Center 7 III. Academic Programs 11 IV. Goals and Planning of Next Year 65 V. Budget and Expenditure 77 VI. Host institution's commitment 78 VII. Appendix 81 1 I. Overview A. Report of Director 1. Goals and missions of the Center Theoretical sciences are undoubtedly the foundation of sciences and technology of our daily life. In fact, it is generally believed that theoretical science will play more and more important role in the next few decades. Cultivating young generation with solid training of fundamental sciences and fostering frontier academic research in theoretical sciences are thus essential to further development of our society. Therefore, in 1997, National Center for Theoretical Sciences (NCTS) was established by National Science Council. Since its establishment, NCTS has completely changed the mathematical society. The achievement of NCTS during the past 18 years was remarkable. It is generally believed that NCTS is the key factor for the great improvement of the mathematical research in Taiwan. NCTS has set its objective to promote researches of theoretical sciences in Taiwan. The aim consists of the following specific aspects: a. Fostering world class outstanding researchers, and attract top young researchers to do cutting edge research in NCTS; b. Attracting worldwide outstanding theoretical scientists to do research in Taiwan; c. Developing international and inter-disciplinary scientific research program; d. Promoting international cooperation and collaborations, aiming to become a leading research institution in Asia and in the world. -
Arxiv:1102.3001V2 [Math.DG]
ON LARGE VOLUME PRESERVING STABLE CMC SURFACES IN INITIAL DATA SETS MICHAEL EICHMAIR AND JAN METZGER Abstract. Let (M,g) be a complete 3-dimensional asymptotically flat manifold with everywhere positive scalar curvature. We prove that, given a compact subset K ⊂ M, all volume preserving stable constant mean curvature surfaces of sufficiently large area will avoid K. This com- plements the results of G. Huisken and S.-T. Yau [17] and of J. Qing and G. Tian [26] on the uniqueness of large volume preserving stable constant mean curvature spheres in initial data sets that are asymptot- ically close to Schwarzschild with mass m> 0. The analysis in [17] and [26] takes place in the asymptotic regime of M. Here we adapt ideas from the minimal surface proof of the positive mass theorem [32] by R. Schoen and S.-T. Yau and develop geometric properties of volume preserving stable constant mean curvature surfaces to handle surfaces that run through the part of M that is far from Euclidean. 1. Introduction A classical result in the calculus of variations is that the isoperimetric re- gions of Rn are precisely the round balls. A surface which is critical for the associated variational problem has constant mean curvature. In 1951, H. Hopf proved that immersed two-spheres of constant mean curvature in R3 are necessarily round, and then, in 1958, A. D. Alexandrov showed that so are compact embedded constant mean curvature hypersurfaces in Rn. Note arXiv:1102.3001v2 [math.DG] 17 May 2012 that translations preserve such surfaces and fully account for their non- uniqueness, once we fix their area. -
Geometric Evolution Equations for Hypersurfaces
Geometric evolution equations for hypersurfaces GERHARD HUISKEN AND ALEXANDER POLDEN 1 Introduction Let Fo : A4 ~ -* (N =+1, ~) be a smooth immersion of a hypersurface r = F0(A4 ~) in a smooth Riemannian manifold (N"+l,~). We study one-parameter families F : .h4 = x [0, T] ~ (N "+l, ~) of hypersurfaces J~r = F(., t)(A4") satisfying an initial value problem OF -~ (p,t) -- -fu(p,t), p A4", t [0, T], (1.1) F(p,0) = F0, p .h4 n, (1.2) where u(p, t) is a choice of unit normal at F(p, t) and f(p, t) is some smooth homogeneous symmetric function of the principal curvatures of the hypersurface at F(p, t). We will consider examples where f = f(Al,"-, ~) is monotone with respect to the prin- cipal curvatures Al,' "-, Am such that (1.1) is a nonlinear parabolic system of second order. Although there are some similarities to the harmonic map heatflow, this deformation law is more nonlinear in nature since the leading second order operator depends on the ge- ometry of the solution at each time rather than the initial geometry. There is a very direct interplay between geometric properties of the underlying manifold (N"+l,~) and the geometry of tile evolving hypersurface which leads to applications both in differential geometry and mathematical physics. Here we investigate some of the general properties of (1.1) and then concentrate on the mean curvature flow f = -H = --(Al+..-+A,,), the inverse mean curvature flow f = H -1 and fully nonlinear flows such as the the Gauss curvature flow f = -K = -(AI'" An) or the harmonic mean curvature flow, f = -(A] "1 + ..