MINIMAL MODEL THEORY of NUMERICAL KODAIRA DIMENSION ZERO Contents 1. Introduction 1 2. Preliminaries 3 3. Log Minimal Model Prog
MINIMAL MODEL THEORY OF NUMERICAL KODAIRA DIMENSION ZERO YOSHINORI GONGYO Abstract. We prove the existence of good minimal models of numerical Kodaira dimension 0. Contents 1. Introduction 1 2. Preliminaries 3 3. Log minimal model program with scaling 7 4. Zariski decomposition in the sense of Nakayama 9 5. Existence of minimal model in the case where º = 0 10 6. Abundance theorem in the case where º = 0 12 References 14 1. Introduction Throughout this paper, we work over C, the complex number ¯eld. We will make use of the standard notation and de¯nitions as in [KM] and [KMM]. The minimal model conjecture for smooth varieties is the following: Conjecture 1.1 (Minimal model conjecture). Let X be a smooth pro- jective variety. Then there exists a minimal model or a Mori ¯ber space of X. This conjecture is true in dimension 3 and 4 by Kawamata, Koll¶ar, Mori, Shokurov and Reid (cf. [KMM], [KM] and [Sho2]). In the case where KX is numerically equivalent to some e®ective divisor in dimen- sion 5, this conjecture is proved by Birkar (cf. [Bi1]). When X is of general type or KX is not pseudo-e®ective, Birkar, Cascini, Hacon Date: 2010/9/21, version 4.03. 2000 Mathematics Subject Classi¯cation. 14E30. Key words and phrases. minimal model, the abundance conjecture, numerical Kodaira dimension. 1 2 YOSHINORI GONGYO and McKernan prove Conjecture 1.1 for arbitrary dimension ([BCHM]). Moreover if X has maximal Albanese dimension, Conjecture 1.1 is true by [F2]. In this paper, among other things, we show Conjecture 1.1 in the case where º(KX ) = 0 (for the de¯nition of º, see De¯nition 2.6): Theorem 1.2.
[Show full text]