Solar Absorption Chiller Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Solar Absorption Chiller Final Report EML 4905 Senior Design Project A B.S. THESIS PREPARED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING Solar Absorption Chiller Final Report Juan Aristizabal Robert Martin Mikail Williams Advisor: Andres Tremante November 24th, 2014 This B.S. thesis is written in partial fulfillment of the requirements in EML 4905. The contents represent the opinion of the authors and not the Department of Mechanical and Materials Engineering. Ethics Statement and Signatures The work submitted in this B.S. thesis is solely prepared by a team consisting of JUAN ARISTIZABAL, ROBERT MARTIN and MIKAIL WILLIAMS and it is original. Excerpts from others’ work have been clearly identified, their work acknowledged within the text and listed in the list of references. All of the engineering drawings, computer programs, formulations, design work, prototype development and testing reported in this document are also original and prepared by the same team of students. Robert Martin Robert Martin Team Leader Juan Aristizabal Juan Aristizabal Team Member Mikail Williams Mikail Williams Team Member Andres Tremante Dr. Andres Tremante Faculty Advisor i Table of Contents I. Nomenclature .......................................................................................................................... 1 II. Abstract ................................................................................................................................... 2 1. Introduction............................................................................................................................. 3 1.1 Problem Statement........................................................................................................... 3 1.2 Motivation ....................................................................................................................... 4 1.3 Literature Survey ............................................................................................................. 6 2. Project Formulation ................................................................................................................ 9 2.1 Absorption Chiller ........................................................................................................... 9 2.1.1 Cycle and Components .......................................................................................... 11 2.1.2 Efficiency .............................................................................................................. 14 2.1.3 Refrigerants ........................................................................................................... 15 2.1.4 Equations and Parameters ...................................................................................... 19 2.2 Solar Energy .................................................................................................................. 27 2.2.1 Photovoltaic (PV) Cells ......................................................................................... 28 2.2.2 Solar Water Heating .............................................................................................. 32 2.2.2.1 Direct-Circulation Hot Water Systems ............................................................. 33 2.2.2.2 Flat Plate Collectors ......................................................................................... 34 2.2.2.3 Evacuated Tube Collectors ............................................................................... 35 2.2.2.4 ICS Collectors (Integral Collector Storage) ..................................................... 37 2.2.2.5 Concentrating Collectors .................................................................................. 38 2.2.2.6 Hybrid Solar Panel Systems ............................................................................. 39 2.2.3 Equations and Parameters ...................................................................................... 42 2.3 Stirling Engine .................................................................................................................. 48 2.3.1 Equations and Parameters ...................................................................................... 48 3. Design ................................................................................................................................... 51 3.1 Design Analysis ................................................................................................................ 51 3.2.1 Heat Transfer Analysis .......................................................................................... 52 3.2.2 Solar Energy Analysis ........................................................................................... 56 3.2.2.1 Solar Water Heating Selection .......................................................................... 56 3.2.2.2 Pump Selection .................................................................................................. 63 3.2.2.3 PV Panel Selection ............................................................................................ 70 3.2 Proposed Design .............................................................................................................. 78 ii 3.3 Design Model ................................................................................................................... 82 3.4 Design Cost Analysis ....................................................................................................... 89 4. Prototype ............................................................................................................................... 90 4.1 Prototype Cost Analysis ................................................................................................... 91 4.2 Building the Prototype ...................................................................................................... 92 5. Project Management ............................................................................................................. 96 5.1 Project Planner Timeline .................................................................................................. 96 5.2 Responsibility Distribution ............................................................................................... 97 6. Conclusion ............................................................................................................................ 99 6.1 Recommendations for Further Research ..................................................................... 101 6.2 Standards Used in this Project ........................................................................................ 103 6.2.1 ISO Standards ...................................................................................................... 103 6.2.2 SRCC Standards .................................................................................................. 104 6.2.3 International Electrotechnical Commission Standards ........................................ 105 6.2.4 Summary of Component Standards ..................................................................... 106 6.3 Global Components ........................................................................................................ 106 6.4 References ...................................................................................................................... 108 7. Appendix ............................................................................................................................ 110 7.1 Appendix A: Boundary Conditions and Assumptions ................................................... 110 7.2 Appendix B: Piping Diagrams and Layouts ................................................................... 112 7.3 Appendix C: Results – Tables ........................................................................................ 114 7.5 Appendix E: Component Data Sheets and Specifications .............................................. 120 7.5.1 Absorption Chiller Data Sheets ........................................................................... 120 7.5.1.1 English ............................................................................................................. 120 7.5.1.2 French .............................................................................................................. 121 7.5.1.3 German ............................................................................................................ 123 7.5.2 Solar Water Heating Collector Certificates and Data Sheets .............................. 124 7.5.3 PV Panel Data Sheets .......................................................................................... 126 7.5.4 Pump Data Sheets ................................................................................................ 128 iii List of Figures Figure 1 - Annual Energy Consumption by Technology Type [10] ................................................ 5 Figure 2 - Energy Savings, Development Status and Geographic Applicability of Alternatives to Vapor Compression [13] ................................................................................................................. 7 Figure 3 - LiBr Quality for System [3] .......................................................................................... 16 Figure 4 - Heat Balance for WFC-SC5 [32] .................................................................................. 22 Figure 5 - Schematic of a PV Panel
Recommended publications
  • Performance Comparison Between an Absorption-Compression Hybrid Refrigeration System and a Double-Effect Absorption Refrigeration Sys-Tem
    Available online at www.sciencedirect.com ScienceDirect Available online at www.sciencedirect.com Procedia Engineering 00 (2017) 000–000 ScienceDirect www.elsevier.com/locate/procedia Procedia Engineering 205 (2017) 241–247 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017, 19- 22 October 2017, Jinan, China Performance Comparison between an Absorption-compression Hybrid Refrigeration System and a Double-effect Absorption Refrigeration Sys-tem Jian Wang, Xianting Li, Baolong Wang, Wei Wu, Pengyuan Song, Wenxing Shi* Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Haidian District, Beijing 100084, China Abstract Conventional absorption refrigeration systems (ARSs), which are mainly driven by heat, have a competitive primary energy efficiency (PEE) compared with chillers driven by electricity. In the typical ARS, a large quantity of high-temperature heat is supplied into the generator, while a substantial amount of low-temperature heat is rejected to the environment from the condenser, it’s a huge waste. In order to decrease the input heat for generator and enhance the performance of conventional ARS, a kind of absorption-compression hybrid refrigeration system recovering condensation heat for generation (RCHG-ARS) was ever proposed. In the present study, the models of both RCHG-ARS and double-effect absorption refrigeration system (DEARS) are established, and the effects of different parameters on them are simulated and compared with each other. As a conclusion, the PEE of RCHG-ARS can be 29.0% higher than that of DEARS, and RCHG-ARS has a wider working conditions than DEARS due to the existence of the compressor.
    [Show full text]
  • Waste Heat Recovery in Diesel Engines Using the Organic Rankine
    DF Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle Potential of Heat Recovery in the Volvo D13 Engine for Marine and Standby Power Generation Applications ANIL GOPINATH BHARADWAJ WAEL AL HAJI Department of Mechanics and Maritime Sciences, CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2020 Master’s thesis in Automotive Engineering Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle Anil Gopinath Bharadwaj Wael Al Haji DF Department of Mechanics and Maritime Sciences Division of Combustion and Propulsion Systems Chalmers University of Technology Gothenburg, Sweden 2020 Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle ANIL GOPINATH BHARADWAJ WAEL AL HAJI © ANIL GOPINATH BHARADWAJ, WAEL AL HAJI, 2020 Examiner: Sven B Andersson, Prof. Division of Combustion and Propulsion Sys- tems, Chalmers University of Technology Supervisors: Jelmer Rijpkema, Chalmers University of Technology; Patrik Land- berg, Volvo Penta AB; Björn Wessman, Volvo Penta AB; Master’s Thesis in Automotive Engineering Department of Mechanics and Maritime Sciences Division of Combustion and Propulsion Systems Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: Pictures showcasing the engine which WHR system is used for, operating points of interest and a T-s diagram of cyclopentane. Printed by Department of Mechanics and Maritime Sciences Gothenburg, Sweden 2020 iv Waste Heat Recovery in Diesel Engines using the Organic Rankine Cycle Potential of Heat Recovery in the Volvo D13 Engine for Marine and Standby Power Generation Applications Thesis for the degree of Masters in Automotive Engineering/Marine Engineering ANIL GOPINATH BHARADWAJ, WAEL AL HAJI Department of Mechanics and Maritime Sciences, Division of Combustion and Propulsion Systems Chalmers University of Technology Abstract The current global warming situation and various other environmental challenges call for innovative and easy-to-implement technologies to help counter the effect.
    [Show full text]
  • Power Generation Technology by Hot Water Heating of Low Temperature Power Generations Using Ammonia and Ammonia-Water Mixture As Working Fluid
    Proceedings of the 6th Asian Geothermal Symposium, Oct. 26-29, 2004 Mutual Challenges in High- and Low- Temperature Geothermal Resource Fields, 5-7 POWER GENERATION TECHNOLOGY BY HOT WATER HEATING OF LOW TEMPERATURE POWER GENERATIONS USING AMMONIA AND AMMONIA-WATER MIXTURE AS WORKING FLUID Takumi HASHIZUME Waseda Univ., 17 Kikui-cho, Shinjuku-ku, Tokyo, 162-0044, Japan e-mail:[email protected] 1. INTRODUCTION The heat discharged without being used for surroundings including the factory waste heat is not a little. It is widely used when the temperature of the heat source is high, and it is used comparatively effectively. On the other hand, the heat is not effectively used for the heat source of a low temperature of 100℃ or less. As for the geothermal energy, this is similar. It is used as a geothermal power generation when the steam of the high temperature and high pressure is obtained, and the usage is not wide for the steam and the hot water of the low temperature and low pressure. If the use as heat in the hot spring, the indoor air-conditioning (heating), the greenhouse, and the road heating, etc. is excluded for the hot water of 100℃ or less, it is hardly used in Japan. In this paper, it introduces the power generation technology which obtains electricity from the hot water of 100℃ or less by using the power generation cycle when the medium with a low boiling point (low boiling point medium) is made an working fluid. 2. HEAT RECOVERY AND RANKINE CYCLE BY LOW BOILING POINT MEDIUM Rankine cycle consists of the pump, the evaporator, the turbine, and the condenser, and the working fluid circulates around each equipment in this order.
    [Show full text]
  • Investigating Absorption Refrigerator Fires (Part I)
    Orion P. Keifer Peter D. Layson Charles A. Wensley Investigating Absorption Refrigerator Fires (Part I) ATLANTIC BEACH, FLORIDA—In today’s recreational vehicles (RV), the then expels it when perco- most common refrigerator uses absorption refrigeration technology, lated in the boiler. It is this primarily because this type of system can operate on multiple sources action of the water which of power, including propane when electrical power is unavailable. makes the ammonia flow. These refrigerators have been under intense scrutiny in recent years The hydrogen in the re- due to numerous reported fires, apparently starting in the area of the frigeration coil maintains absorption refrigerator. Both the Dometic Corporation and Norcold a positive pressure of ap- Incorporated, two manufacturers of RV refrigerators, have been re- proximately 300-375 PSI quired by the National Highway and Traffic Safety Administration (2.07-2.59 MPa) when (NHTSA) to recall certain models of refrigerators which have been not in operation and, due identified as capable of failing in a fire mode. In summary, the three to its low partial pressure, NHTSA recalls indicate a fatigue crack may develop in the boiler tube promotes the evaporation of the cooling unit which may release sufficient pressurized flammable of the liquid ammonia. It coolant solution into an area where an ignition source is present. The should be noted that unlike NHTSA Recall Campaign ID Numbers are 06E076000 for Dometic conventional refrigeration (926,877 affected units), and 02E019000 (28,144 affected units) and systems which extensively 02E045000 (8,419 affected units) for Norcold. use copper due to its high thermal conductivity, the Applications Engineering Group, Inc.
    [Show full text]
  • Empirical Modelling of Einstein Absorption Refrigeration System
    Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 75, Issue 3 (2020) 54-62 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 Empirical Modelling of Einstein Absorption Refrigeration Open Access System Keng Wai Chan1,*, Yi Leang Lim1 1 School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia ARTICLE INFO ABSTRACT Article history: A single pressure absorption refrigeration system was invented by Albert Einstein and Received 4 April 2020 Leo Szilard nearly ninety-year-old. The system is attractive as it has no mechanical Received in revised form 27 July 2020 moving parts and can be driven by heat alone. However, the related literature and Accepted 5 August 2020 work done on this refrigeration system is scarce. Previous researchers analysed the Available online 20 September 2020 refrigeration system theoretically, both the system pressure and component temperatures were fixed merely by assumption of ideal condition. These values somehow have never been verified by experimental result. In this paper, empirical models were proposed and developed to estimate the system pressure, the generator temperature and the partial pressure of butane in the evaporator. These values are important to predict the system operation and the evaporator temperature. The empirical models were verified by experimental results of five experimental settings where the power input to generator and bubble pump were varied. The error for the estimation of the system pressure, generator temperature and partial pressure of butane in evaporator are ranged 0.89-6.76%, 0.23-2.68% and 0.28-2.30%, respectively.
    [Show full text]
  • The Application of Solar Thermal Technologies for Air Conditioning in Building Energy Efficiency
    AR3A160 Lecture Series Research Methods The application of solar thermal technologies for air conditioning in building energy efficiency Name: Qian LAN Student number: 4185684 Date: 5th Jan 2013 Content 1. Introduction……………………………………………………………………………………………………… 3 2. The benefit……………………………………………………………………………………………………… 3 3. Use of solar thermal cooling / heat pump mode…………………………………………………4 3.1 Solar absorption air conditioning ……………………………………………………………… 4 3.2 Solar absorption refrigeration / Heat pump mode …………………………………… 4 3.3 Solar photovoltaic cells air conditioning cooling mode……………………………… 5 4. Summery………………………………………………………………………………………………………… 5 Notes ……………………………………………………………………………………………………………………… 6 Figure Index …………………………………………………………………………………………………………… 6 Reference ……………………………………………………………………………………………………………… 6 1. Introduction As we all know, solar energy is a type of clean energy, which was widely used throughout the world. Solar thermal technology also has already become one of the most popular strategies for sustainable architecture design at present. Since I will use this strategy in my design this time, I become interested in how the application of solar thermal technologies for air conditioning will contributes to the sustainable design in the aspects of benefits and typology. As a result, I choose this question as my research question, which can lead my design and teach me how to choose the specific technology in the design process with different context. 2. The benefit of “ Solar Energy Using for Air Conditioning” Why I want to choose the “Solar Energy Using for Air Conditioning” as my research question? As it known to all, one of the most important of sustainable architecture design is saving the energy consumption of the building. The energy consumption of the building meant the energy consumption during the process of heating, ventilation, air conditioning, lighting, household appliances, transportation, cooking, hot water supply and drainage and so on.
    [Show full text]
  • A Customer Guide to Combined Heat and Power
    A Customer Guide to Combined Heat and Power A product of the Energy Solutions Center Inc. 400 North Capitol St. NW Commercial Buildings Consortium Washington, DC 20001 Energy Solutions Center Inc. www.ESCenter.org Table of Contents Available Resources www.understandingCHP.com What is Combined Heat & Power 1 www.GasAirConditioning.com Prime Movers 3 Reciprocating Engines 4 U.S. Department of Energy and FEMP https://www.energy.gov/eere/amo/combined-heat- Combustion Turbines 5 and-power-basics https://www.energy.gov/eere/femp/federal-energy- Micro Turbines 6 management-program CHP Installation database: Steam Turbines 7 https://doe.icfwebservices.com/chpdb/ Fuel Cells 8 U.S. Environmental Protection Agency (EPA) https://www.epa.gov/chp Micro CHP 9 Policies & Incentives Database: https://www.epa.gov/chp/dchpp-chp-policies-and- Waste Heat Recovery 10 incentives-database Site vs. Source 12 Environmental Benefits 13 Economics 15 Available Resources 18 What is Combined Heat & Power Combined Heat and Power (CHP) by definition is the generation of two forms of energy from one common source of fuel also known as Cogeneration. Waste Heat Heat & Hot Water Recovered Fuel Prime Mover Electricity & Generator The CHP system is typically located at or near your building and generates electricity or mechanical power with the added benefit of recovering the waste heat in the form of hot water, steam, or warm Spark spread is the relative difference between the price of fuel and air to meet thermal needs. This high quality and very reliable power the price of power. Spark spread is highly dependent on the system provides a secure energy source along with the ability to efficiency of conversion.
    [Show full text]
  • Physical Implementations of Quantum Absorption Refrigerators
    Physical implementations of quantum absorption refrigerators Mark T. Mitchison1, ∗ and Patrick P. Potts2, 3, y 1Institut f¨urTheoretische Physik, Albert-Einstein Allee 11, Universit¨atUlm, D-89069 Ulm, Germany 2Department of Applied Physics, University of Geneva, Chemin de Pinchat 22, 1211 Geneva, Switzerland. 3Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden. (Dated: November 14, 2018) Absorption refrigerators are autonomous thermal machines that harness the spontaneous flow of heat from a hot bath into the environment in order to perform cooling. Here we discuss quantum realizations of absorption refrigerators in two different settings: namely, cavity and circuit quantum electrodynamics. We first provide a unified description of these machines in terms of the concept of virtual temperature. Next, we describe the two different physical setups in detail and compare their properties and performance. We conclude with an outlook on future work and open questions in this field of research. The investigation of quantum thermal machines is a subfield of quantum thermodynamics which is of particular practical relevance. A thermal machine is a device which utilizes a temperature bias to achieve some useful task (for recent reviews see e.g. [1{7] as well as Ref. [8], Part I). The nature of this task can vary, with the most prominent example being the production of work in heat engines. Further examples include the creation of entanglement [9], the estimation of temperature [10] and the measurement of time [11]. This chapter discusses physical implementations of quantum absorption refrigerators. There are two compelling reasons which motivate the pursuit of implementing exactly this thermal machine.
    [Show full text]
  • Study on a Novel Absorption Referigeration System at Low Cooling Temperatures Yijian He Yijian [email protected]
    Purdue University Purdue e-Pubs International Refrigeration and Air Conditioning School of Mechanical Engineering Conference 2012 Study on a Novel Absorption Referigeration System at Low Cooling Temperatures Yijian He [email protected] Zuwen Zhu Xu Gao Guangming Chen Follow this and additional works at: http://docs.lib.purdue.edu/iracc He, Yijian; Zhu, Zuwen; Gao, Xu; and Chen, Guangming, "Study on a Novel Absorption Referigeration System at Low Cooling Temperatures" (2012). International Refrigeration and Air Conditioning Conference. Paper 1267. http://docs.lib.purdue.edu/iracc/1267 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html 2335, Page 1 Study on a Novel Absorption Refrigeration System at Low Cooling Temperatures Yi Jian HE*, Zu Wen ZHU, Xu GAO, Guang Ming CHEN Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou, China (Phone/Fax:+86 571 87952464, [email protected]) * Corresponding Author ABSTRACT A novel absorption refrigeration system is proposed in this context using R134a+R23 mixed refrigerants and DMF solvent. The new system uses two-staged absorber in series to reduce the evaporation pressure and can obtain a lower refrigeration temperature by the low-grade thermal energy. From thermodynamic analysis, the key factors are discussed on the performances of the new system. Under the same working conditions, comparisons on the performances are also conducted between the new one and an auto-cascade absorption refrigeration system with single-absorber.
    [Show full text]
  • A Waste Heat Recovery Strategy for an Integrated Steelworks
    A Waste Heat Recovery Strategy for An Integrated Steelworks By Christopher Lloyd Williams Thesis submitted to the Cardiff University in fulfilment of the requirements for the degree of Doctor of Philosophy. School of Engineering Cardiff University December 2015 Summary UK energy prices have doubled over the last decade, which has driven the UK Iron and Steel Industry to invest in energy efficient technologies. However, even with these relatively high prices the industry still finds it difficult to build a business case to justify waste heat recovery projects. The Steel Industry has large quantities of waste heat and there are technologies readily available for its capture, but often the issue has been finding a cost effective ‘end use’. Individual schemes incorporating both capturing and an ‘end use’ for the waste heat often incur high capital costs with resulting long payback times. This thesis defines the development and modelling of a strategy and methodology for the utilisation of waste heat recovery in a UK based Steelworks. The methodology involves the utilisation of the existing steam distribution circuit to link the possible waste heat schemes together with a single ‘end user’ thus limiting the capital requirement for each subsequent project. The thesis defines the development of a numerical model that is initially verified through extensive comparison to actual plant data from a series of pre-defined operational scenarios. The model is used to predict the pressure and temperature effects on the steam distribution system as the waste heat recovery boilers from various areas of the case study steelworks are connected up to it.
    [Show full text]
  • The Use of Geothermal Energy in Absorption Refrigeration Circuits
    TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE ENVIRONMENT ENGINEERING ŚRODOWISKO 1-Ś/2015 RENATA SIKORSKA-BĄCZEK* THE USE OF GEOTHERMAL ENERGY IN ABSORPTION REFRIGERATION CIRCUITS ZASTOSOWANIE ENERGII GEOTERMALNEJ DO NAPĘDU ZIĘBIAREK ABSORPCYJNYCH Abstract The use of absorption refrigerators to produce cold can definitely reduce energy usage through the use of a heat from the geothermal resources. Absorption refrigerators do not have a negative impact on the natural environment. They are particularly economically attractive when there is a free energy source with a temperature of between 50 and 200°C. This article presents a hybrid absorption-compression refrigerator powered by geothermal energy used for the production of ice slurry for air-conditioning refrigeration. Keywords: hybrid absorption/compression refrigerator, water-ammonia absorption refri- gerator, geothermal energy Streszczenie Zastosowanie ziębiarek absorpcyjnych do produkcji zimna pozwala zdecydowanie ograni- czyć straty energii dzięki wykorzystaniu do ich napędu ciepła pochodzącego ze złóż geotermal- nych. Ziębiarki absorpcyjne nie mają negatywnego wpływu na środowisko naturalne. Są one szczególnie atrakcyjne ekonomicznie gdy istnieje darmowe źródło energii o temperaturze 50‒200°C. W artykule przedstawiono ziębiarkę hybrydową absorpcyjno-sprężarkową zasilaną energią geotermalną wykorzystywaną do produkcji lodu zawiesinowego do celów ziębienia w klimatyzacji. Słowa kluczowe: ziębiarka hybrydowa absorpcyjno/sprężarkowa, ziębiarka absorpcyjna wodno-amoniakalna, energia geotermalna DOI: 10.4467/2353737XCT.15.190.4395 * Ph.D. Eng. Renata Sikorska-Bączek, Institute of Thermal Engineering and Air Protection, Faculty of Environmental Engineering, Cracow University of Technology. 120 1. Introduction Due to the dwindling global resources of fossil fuels, and also because of the need to protect the environment from degradation, methods using alternative energy sources are becoming more and more popular.
    [Show full text]
  • Technology Application of District Heating System with Co-Generation Based on Absorption Heat Exchange: a Renovation Project in Datong City of North China
    Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition IMECE2014 November 14-20, 2014, Montreal, Quebec, Canada IMECE2014-37355 TECHNOLOGY APPLICATION OF DISTRICT HEATING SYSTEM WITH CO-GENERATION BASED ON ABSORPTION HEAT EXCHANGE: A RENOVATION PROJECT IN DATONG CITY OF NORTH CHINA Yan Li1 Lin Fu2 Shuyan Zhang1 Xiling Zhao2 1 College of Civil Engineering&Mechanics, Yanshan University, Qinhuangdao, PR China 2 School of Architecture, Tsinghua University, Beijing, PR China a corresponding construction inconvenience. This limited the ABSTRACT availability of DH technique although the heat supply capacity To explore the energy saving potential of Co-generation and of plants is huge [4-5]. enhance the feasibility of district heating, Tsinghua University (2) Waste heat discharged by the cooling tower: To ensure proposed a new type of district heating system with Co-generation safe operation of the large Co-generation units, the amount of based on absorption heat exchange (Co-ah system). It can improve the exhausted steam from the low-pressure cylinder cannot be less heating capacity and the energy efficiency by recycling the exhausted than the given minimum. The exhausted steam is cooled and the steam waste heat, and enhance the delivery capacity of the heat waste heat is discharged by the cooling tower. The amount of network by increasing the temperature difference between the the waste heat is enormous, but the temperature is too low (35℃ supplying water and the returning water. This paper focuses on the first or so) to be directly utilized for building heating. It will be large-scale industrial application project built in the Datong City First CHP Plant.
    [Show full text]