Photometry of Messier 34

Total Page:16

File Type:pdf, Size:1020Kb

Photometry of Messier 34 Photometry of Messier 34 J. Kielkopf November 12, 2012 1 Messier 34 The open cluster Messier 34 (M34) is in the solar neighborhood, lying roughly in the plane of the Milky Way galaxy in the direction of the constellation Perseus. With an angular size about that of the full Moon, and with many bright stars, it is ideal for study with small telescopes. Since the stars in an open cluster are usually all formed at nearly the same time (at least on a galactic time scale), and the stars originate from the same material, we assume when we observe a cluster such as this that we are seeing a snapshot of an aging population of stars. Their apparent differences now are the result of being formed with different masses, and that very property determines not only what a star is like when it begins its life, but also how it ages. Thus open clusters like this one are a laboratory for exploring the evolution of a stars all with the same initial composition. Distance The cluster M34 is marginally too far from us to find an accurate distance by parallax with current technology. However, the Tycho-2 catalog compiled from Hipparcos satellite data yields a distance of 499 pc (Kharchenko et al. 2005). Another way to establish astronomical distance is to compare the apparent and absolute magnitudes of stars of known spectral type. The distance modulus m−M measures how much fainter stars appear than they would be if seen at 10 pc, the reference distance for absolute magnitude M. This type of measurement is most accurately done by considering an ensemble of many stars and taking into account the aging of the stars in the group too. For example, recently, Sarajedini et al. (2004) found a distance modulus (m − M)V = 8:98 ± 0:06 after adopting a reddening of E(B − V ) = 0:10 giving a distance d of 625 pc from m − M = 5 log d − 5 (1) In earlier similar work, Ianna et al. (1993) found (m−M)V = 8:28, for d of 453 pc. At 3.261 light years per parsec, the cluster M34 is at least 1500 light years from us. 1 Figure 1: The open cluster Messier 34 recorded with the University of Louisville's CDK20 north telescope at Moore Observatory. This is a color composite of 100 second exposures taken in the Sloan i', r' and g' filters, shown here in red, green, and blue. 2 Apparent magnitudes Stars in the cluster will have a range of absolute magnitudes { the brightest ones are those born with the most mass, unless they have already \aged" off the main sequence of the Hertzsprung-Russell (HR) diagram. An HR diagram based on the Hipparcos catalog is shown here. The brightest blue stars on the main sequence of the HR diagram are at absolute mag- nitude -3, but some supergiants are brighter at -5. Red giants are around magnitude -1, and stars like the Sun are about magnitude 5. There is a \knee" where the HR digram turns downward at about magnitude 8, and the low mass red dwarf stars may be as faint as magnitude 15. The brightest white dwarfs on the blue side of the HR diagram at around magnitude 10. You can find the corresponding apparent magnitude for these stars by adding the distance modulus to the absolute magnitude. For example, stars that would be absolute magnitude -1 would have an apparent magnitude of −1 + 8 or +7. Cluster size and age The cluster M34 appears to cover about θ = 30 arcminutes on the sky. If its distance d is known, then its radius in space is approximately r = d tan(θ=2) (2) In this case, with d = 1500 light years, the physical distance across the cluster (2r) is 13 light years: the image shown above covers 13 light years side-to-side at the distance of the cluster. Since most open clusters appear symmetrical, we usually make the assumption they are spherical with a depth along the line of sight about the same as their extent across the sky. The cluster remains compact because its member stars have not had enough time to disperse under the dynamical effects of differential gravitation (e.g. tidal) influences of other stars in the Milky Way. For example, since we know from stellar evolution that M34 is approximately 250 million years old, stars that we see in the cluster cannot be move farther than 13 light years in 250 million years, or 5 × 10−8 light years/year. Since a light year is 9:46 × 1015 meters and a year is 3:16 × 107 seconds, the space velocity of a star that is in the cluster must be less than about 15 m/s. This is a very small velocity on the astronomical scale (Earth's orbital velocity is about 30 km/s.) The small value means than on the time scale of an astronomer's lifetime, all the stars in the cluster must share the same apparent motion through space. We can observer spatial motion in two ways: • Transverse to the line of sight by proper motion. • Along the line of sight by radial velocity. It follows, that to establish membership in the cluster we can require that its stars share the same radial velocity and proper motion. 3 Figure 2: Hertzsprung-Russell diagram. A plot of luminosity (absolute magnitude) against the color of the stars ranging from the high-temperature blue-white stars on the left side of the diagram to the low temperature red stars on the right side. Created by Richard Powell from 22000 stars in the Hipparcos catalog. (Creative Commons License). 4 Table 1: Selected bright stars in M34. Bright Stars in M34 Star Number ID RA Dec V B-V 70 HD16605 02 40 58.94 +42 52 16.579 9.53 0.03 82 HD16627 02 41 11.00 +42 40 41.414 9.37 -0.03 108 HD16655 02 41 31.92 +42 35 39.1420 8.51 0.05 141 HD16679 02 41 48.49 +42 46 14.169 8.88 0.00 156 HD16693 02 41 56.72 +42 47 23.19 8.61 0.00 160 HD16705 02 41 58.43 +42 47 30.37 8.61 0.01 174 HD16719 02 42 05.78 +42 42 26.6937 8.61 -0.01 194 HD16728 02 42 13.13 +42 41 57.1777 8.51 0.00 240 HD16782 02 42 45.75 +42 49 13.075 8.54 0.01 299 HD16857 02 43 32.42 +42 37 17.474 8.79 -0.02 Cluster membership Ianna et al (1993) studied cluster membership and they found that for 354 stars in their program, most showed proper motions less than 0.005 arcseconds/year, as expected. Stars that show much larger proper motion would most likely be in the foreground, but this technique cannot exclude background stars that probably would show much less proper motion. Since the cluster is moving through the galaxy, on the average it has an intrinsic proper motion. These tests are done to insure that the stars share a common behavior. Based on this, the brightest stars that are almost surely in M34 are shown in Table 1. This table is based on data in Ianna et al (1993), with recent coordinates from SIMBAD. Stars 156 and 160 are the bright pair at the center of the cluster. 2 CCD data on cluster We have new images of the cluster taken with the Sloan filter set using the CDK20 north telescope at Moore Observatory. Because the brightest stars in the cluster will saturate the CCD image in typical exposure times of 100 seconds, we recorded exposures with times of 1, 10, and 100 seconds to span the full range of measurable stars. At the longest exposures the images of the fainter stars are comparable to the signal from the urban night sky at the observatory. At the shortest exposures, the bright stars are not saturated and can be compared accurately to one another. All of the images have been dark subtracted to remove the intrinsic dark pattern and offset of the detector, and flat-fielded to divide by a response to the uniformly illuminated sky. As a result, the signal in each pixel is simply the sum of 5 the sky and the star. Subtract a sky background from the measurement, and you have the signal in that pixel from only the star. The images available include: m34_g_100s_00006_dfw.fits m34_g_10s_00007_dfw.fits m34_g_1s_00008_dfw.fits m34_r_100s_00009_dfw.fits m34_r_10s_00010_dfw.fits m34_r_1s_00011_dfw.fits m34_i_100s_00012_dfw.fits m34_i_10s_00013_dfw.fits m34_i_1s_00014_dfw.fits All of them were recorded sequentially on 2012-11-05 at 02:48 to 02:56 UT. Similar images in z' included on our server but needed for this experiment. The coding letters \d", \f", and \w" in the file names indicate dark subtraction, flat fielding, and the addition of a world coordinate system (WCS)header. When the header information is present, ds9, aladin, and AstroImageJ will show you the celestial coordinates of the pixel at the cursor. This is very helpful identifying stars in the images. 3 filters The filters indicated are \g", \r", and \i". These approximately cover the bands g' blue-green (400-530 nm) r' yellow-red (530-700 nm) i' near infrared (700-825 nm) z' infrared (825-1100 nm) The Sloan filter set has replaced the Johnson-Cousins set for most current new photometry, which leaves us with the problem of converting archival data for comparison to new data.
Recommended publications
  • What's up This Month – December 2019 These Pages Are Intended to Help You Find Your Way Around the Sky
    WHAT'S UP THIS MONTH – DECEMBER 2019 THESE PAGES ARE INTENDED TO HELP YOU FIND YOUR WAY AROUND THE SKY The chart above shows the night sky as it appears on 15th December at 21:00 (9 o’clock) in the evening Greenwich Meantime Time (GMT). As the Earth orbits the Sun and we look out into space each night the stars will appear to have moved across the sky by a small amount. Every month Earth moves one twelfth of its circuit around the Sun, this amounts to 30 degrees each month. There are about 30 days in each month so each night the stars appear to move about 1 degree. The sky will therefore appear the same as shown on the chart above at 10 o’clock GMT at the beginning of the month and at 8 o’clock GMT at the end of the month. The stars also appear to move 15º (360º divided by 24) each hour from east to west, due to the Earth rotating once every 24 hours. The centre of the chart will be the position in the sky directly overhead, called the Zenith. First we need to find some familiar objects so we can get our bearings. The Pole Star Polaris can be easily found by first finding the familiar shape of the Great Bear ‘Ursa Major’ that is also 1 sometimes called the Plough or even the Big Dipper by the Americans. Ursa Major is visible throughout the year from Britain and is always easy to find. This month it is in the north east.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Lotto Fever Strikes
    ;r/^ t-. SPORTS FOCUS Air Force wants Whalers advance Speak up, urms shuttle replaced into fourth place speaker at M CC ... pag« 5 □ ... page 9 ... page 13 HJaurliFfilrr HrralJi ) MnnnhRSlcr A City oi Uillafie Charm Thursday, March 27,1986 25 C e n ts Lotto U.S. calls off rV'' fever maneuvers in strikes Gulf of Sidra By John F. Kirch Herald Reporter By Norman Block The Associated Press Related stories, Bob Brown, owner of the Memor­ ial Comer Store on Main Street, WASHINGTON - The U.S. see page 4 stood on the roof of bis store early naval exercises in the Gulf of Sidra this morning wrapping strings of will end later today, the Pentagon. last week's Lotto tickets around announced this morning. the fight posts that jut from the A spokesman, Maj. Fred Lash, spokesman Robert Sims said. front of the building. said only: "You have to do that periodically. "Someone who buys a ticket "The exercise by the 6th Fleet in There’s nothing unusual about a from my store Is going to win this the Gulf of Sidra is ending today.” freedom-of-navigation exercise. week.” Brown, said, as people He would not be more specific. What is unusual is that Mr. passing by waved or laughed. Defense Department sources Khadafy chose to react to it with "Thank you," was his response to said that if the maneuvers within force." the passersby. the gulf do end today, the 6th Fleet On Monday morning Eastern He was one of many people vessels would remain nearby in the time, less than 24 hours after .U.S, thinking about what it would be Mediterranean Sea.
    [Show full text]
  • OBSERVING BASICS by GUY MACKIE
    OBSERVING BASICS by GUY MACKIE Observing Reports The colorful and detailed photographs we see of celestial objects are not at all like the ubiquitous "fuzzy blobs" we see at the eyepiece. Nevertheless, you are freezing your buns off and loosing much needed sleep for work, the next day so why not make a description of your observations that will make the hunt worthwhile. Here are some suggestions to fill the empty spaces in your logbook and to imprint the observing experience more deeply in your memory. The Basics Your website www.m51.ca has a downloadable log sheet template that is just super, but you can also make up one for yourself or customize the website version to your own needs. The main things to start your report should be the circumstances under which you observed: Observing Location Time (of observing session and of the observation of each object) Optics (type of instrument, eyepiece, filters, power of magnification) Transparency (page 56 of the Observers Handbook) Seeing (for me this is a subjective rating of the atmospheric stability based on Planet features and double star observations) It is good to know the field of view (FOV) of each of your eyepieces in minutes of degree, then you can estimate the approximate size of the object. The sketchpad I use has the FOV for every eyepiece I use taped to the back, a handy reference. To calculate your field of view there are websites that will punch out the both the magnification and the FOV for most eyepieces. You can do it yourself: With any motor drives turned off, place a star near the celestial equator just outside the field of view in the eyepiece so that it will drift across the middle of the field of view.
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • Deep Sky Explorer Atlas
    Deep Sky Explorer Atlas Reference manual Star charts for the southern skies Compiled by Auke Slotegraaf and distributed under an Attribution-Noncommercial 3.0 Creative Commons license. Version 0.20, January 2009 Deep Sky Explorer Atlas Introduction Deep Sky Explorer Atlas Reference manual The Deep Sky Explorer’s Atlas consists of 30 wide-field star charts, from the south pole to declination +45°, showing all stars down to 8th magnitude and over 1 000 deep sky objects. The design philosophy of the Atlas was to depict the night sky as it is seen, without the clutter of constellation boundary lines, RA/Dec fiducial markings, or other labels. However, constellations are identified by their standard three-letter abbreviations as a minimal aid to orientation. Those wishing to use charts showing an array of invisible lines, numbers and letters will find elsewhere a wide selection of star charts; these include the Herald-Bobroff Astroatlas, the Cambridge Star Atlas, Uranometria 2000.0, and the Millenium Star Atlas. The Deep Sky Explorer Atlas is very much for the explorer. Special mention should be made of the excellent charts by Toshimi Taki and Andrew L. Johnson. Both are free to download and make ideal complements to this Atlas. Andrew Johnson’s wide-field charts include constellation figures and stellar designations and are highly recommended for learning the constellations. They can be downloaded from http://www.cloudynights.com/item.php?item_id=1052 Toshimi Taki has produced the excellent “Taki’s 8.5 Magnitude Star Atlas” which is a serious competitor for the commercial Uranometria atlas. His atlas has 149 charts and is available from http://www.asahi-net.or.jp/~zs3t-tk/atlas_85/atlas_85.htm Suggestions on how to use the Atlas Because the Atlas is distributed in digital format, its pages can be printed on a standard laser printer as needed.
    [Show full text]
  • SSAS Marmesmad Doc
    The South Shore Astronomical Society and Unistellar Optics present An Initiative to Engage in Astronomical Observing Welcome to the month of March, a time of the year when astronomy enthusiasts can view every object in Charles Messier’s venerable catalog of ‘non-comets’ in the course of just one overnight, should they choose to do so. But seeing every Messier object in one night, also known as a Messier Marathon, is a daunting prospect indeed. The observer needs to be blessed with not only dark enough skies and low enough horizons to see the very first and very last objects on the list, but he also has to get lucky with the weather and have clear skies for a nearly twelve hour stretch throughout the night. The first two requirements can be met by carefully choosing your observing site. The third, unfortunately, cannot. For these reasons and perhaps others, most observers tend to shy away from Messier Marathon participation, especially when the group you’re affiliated with insists on sticking to a purist’s approach – the one where only star hopping to every object and only visual sighting through the eyepiece is considered the right way to do it. While there is something to be said for completing the challenge in that manner, it also has a tendency to push many would-be observers to the sidelines. So what if the rules were changed? And what if a variety of approaches to observing Messier’s during the month of March were considered not only acceptable, but were encouraged? Enter Unistellar Optics, a French company that markets a unique telescope, the Unistellar eVscope.
    [Show full text]
  • Interstellarum 16 7 Dsszene
    interstellarum Editorial fokussiert Das Ziel eines pünktlichen Erscheinens haben wir auch zu Beginn der neuen Folge nicht erreichen können: Unser Liebe Beobachterinnen, liebe Beobachter, Layout-Verantwortlicher hatte leider nur seinen Computer, aber offenkundig interstellarum ist zurück! – Wir freuen nicht sich selbst mit einem ausreichen- uns sehr, Sie wieder an dieser Stelle den Viren-Schutz versehen… Wir wer- begrüßen zu können. Sie alle haben den – nicht zuletzt aus diesem Grund – durch Ihre Anfragen, Ihren Ansporn unser Team verstärken, um in Zukunft und Ihr Abonnement dazu beigetragen, besser auf derartige Situationen reagie- dass interstellarum wieder erscheint. ren zu können. Vielen Dank für Ihre Unterstützung Apropos Zukunft: Eines unserer Haupt- und Ihre Loyalität! anliegen wird für sie sein, sich an die Das Vorhaben, aus interstellarum eine Einsteiger in die astronomische Beobach- große deutschsprachige Astronomiezeit- tung zu richten. interstellarum soll für schrift für alle Amateurdisziplinen zu alle Erfahrungsstufen eine lohnende Lek- machen, konnten wir mit der VdS leider türe sein – den Anfang macht die Ein- nicht realisieren. Wir werden dieses Ziel steiger-Aktion in diesem Heft (ab Seite aber nicht aus den Augen verlieren. 11). Empfehlen Sie interstellarum begin- Verlag, Herausgeber, Erscheinungsbild, nenden Sternfreunden weiter – kennen Redaktionsteam und Service sind neu. Sie eine Zeitschrift, die mehr für Einstei- Vor allem das Selbstkostenprinzip der ger bietet? alten interstellarum-Folge mussten wir Wir möchten Sie
    [Show full text]
  • In This Issue:  a to K, Please Bring a Main Dish 1
    The Rosette Gazette Volume 21,, IssueIssue 1 Newsletter of the Rose CityCity AstronomersAstronomers January, 2009 RCA JANUARY 19 HOLIDAY POTLUCK! As weather prevented the December holiday meeting from taking place the January meeting of the Rose City Astronomers will be a holiday potluck and social gathering for all family members to be held in the OMSI Cafeteria. Each member is asked to bring a dish to serve 10-12 people. If your last name begins with . In This Issue: A to K, please bring a main dish 1 .. General Meeting 2 .. Club Officers L to Q, please bring an appetizer or side dish .... Magazines .... RCA Library R to Z, please bring a dessert 3 .. The Observer’s Corner Plates, silverware, and beverages/ice will be supplied by the club. Just bring your dish 7 .. Southern Galaxies along with a serving utensil and enjoy the holiday spirit of the RCA membership. 10. Dec. Board Minutes The Holiday Social is a great event to pick up some excellent holiday deals! Save time to 11. Telescope Workshop shop at the RCA Sales Table for your favorite astronomy gifts. In addition, the Swap .... Astro Imaging SIG Meet will be back by popular demand and there will be ample empty tables around the .... Science Sig .... Downtowners lobby for everyone who is interested in displaying items for the Swap Meet. 12. Calendar There will also be tables provided for interesting celestial displays. If you have taken any astronomy pictures this year and want to share them, this is your ideal opportu- nity. Members also bring their latest inventions and "astro stuff." If you have a fun gadget, item, or tool, please bring it in and show it off to the rest of the membership! Note that January 19 is the THIRD Monday of the month which is the evening of our normal general meeting.
    [Show full text]
  • Charles Messier (1730-1817) Was an Observational Astronomer Working
    Charles Messier (1730-1817) was an observational Catalogue (NGC) which was being compiled at the same astronomer working from Paris in the eighteenth century. time as Messier's observations but using much larger tele­ He discovered between 15 and 21 comets and observed scopes, probably explains its modern popularity. It is a many more. During his observations he encountered neb­ challenging but achievable task for most amateur astron­ ulous objects that were not comets. Some of these objects omers to observe all the Messier objects. At «star parties" were his own discoveries, while others had been known and within astronomy clubs, going for the maximum before. In 1774 he published a list of 45 of these nebulous number of Messier objects observed is a popular competi­ objects. His purpose in publishing the list was so that tion. Indeed at some times of the year it is just about poss­ other comet-hunters should not confuse the nebulae with ible to observe most of them in a single night. comets. Over the following decades he published supple­ Messier observed from Paris and therefore the most ments which increased the number of objects in his cata­ southerly object in his list is M7 in Scorpius with a decli­ logue to 103 though objects M101 and M102 were in fact nation of -35°. He also missed several objects from his list the same. Later other astronomers added a replacement such as h and X Per and the Hyades which most observers for M102 and objects 104 to 110. It is now thought proba­ would feel should have been included.
    [Show full text]