Portland State University PDXScholar Computer Science Faculty Publications and Presentations Computer Science 11-2012 A System for Bidirectional Robotic Pathfinding Tesca Fitzgerald Portland State University,
[email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac Part of the Artificial Intelligence and Robotics Commons Let us know how access to this document benefits ou.y Citation Details Fitzgerald, Tesca, "A System for Bidirectional Robotic Pathfinding" (2012). Computer Science Faculty Publications and Presentations. 226. https://pdxscholar.library.pdx.edu/compsci_fac/226 This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible:
[email protected]. A System for Bidirectional Robotic Pathfinding Tesca K. Fitzgerald Department of Computer Science, Portland State University PO Box 751 Portland, OR 97207 USA
[email protected] TR 12-02 November 2012 Abstract The accuracy of an autonomous robot's intended navigation can be impacted by environmental factors affecting the robot's movement. When sophisticated localizing sensors cannot be used, it is important for a pathfinding algorithm to provide opportunities for landmark usage during route execution, while balancing the efficiency of that path. Although current pathfinding algorithms may be applicable, they often disfavor paths that balance accuracy and efficiency needs. I propose a bidirectional pathfinding algorithm to meet the accuracy and efficiency needs of autonomous, navigating robots. 1. Introduction While a multitude of pathfinding algorithms navigation without expensive sensors. As low- exist, pathfinding algorithms tailored for the cost navigating robots need to account for robotics domain are less common.