Regulation of Pluripotency and Differentiation by Chromatin Remodeling Factors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FLNC Pathogenic Variants in Patients with Cardiomyopathies
FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations Flavie Ader, Pascal de Groote, Patricia Réant, Caroline Rooryck-Thambo, Delphine Dupin-Deguine, Caroline Rambaud, Diala Khraiche, Claire Perret, Jean-François Pruny, Michèle Mathieu-dramard, et al. To cite this version: Flavie Ader, Pascal de Groote, Patricia Réant, Caroline Rooryck-Thambo, Delphine Dupin-Deguine, et al.. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clinical Genetics, Wiley, 2019, 96 (4), pp.317-329. 10.1111/cge.13594. hal-02268422 HAL Id: hal-02268422 https://hal-normandie-univ.archives-ouvertes.fr/hal-02268422 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FLNC pathogenic variants in patients with cardiomyopathies Prevalence and genotype-phenotype correlations Running Title : FLNC variants genotype-phenotype correlation Flavie Ader1,2,3, Pascal De Groote4, Patricia Réant5, Caroline Rooryck-Thambo6, Delphine Dupin-Deguine7, Caroline Rambaud8, Diala Khraiche9, Claire Perret2, Jean Francois Pruny10, Michèle Mathieu Dramard11, Marion Gérard12, Yann Troadec12, Laurent Gouya13, Xavier Jeunemaitre14, Lionel Van Maldergem15, Albert Hagège16, Eric Villard2, Philippe Charron2, 10, Pascale Richard1, 2, 10. Conflict of interest statement: none declared for each author 1. -
Genetic Variation Screening of TNNT2 Gene in a Cohort of Patients with Hypertrophic and Dilated Cardiomyopathy
Physiol. Res. 61: 169-175, 2012 https://doi.org/10.33549/physiolres.932157 Genetic Variation Screening of TNNT2 Gene in a Cohort of Patients With Hypertrophic and Dilated Cardiomyopathy M. JÁCHYMOVÁ1, A. MURAVSKÁ1, T. PALEČEK2, P. KUCHYNKA2, H. ŘEHÁKOVÁ1, S. MAGAGE2, A. KRÁL2, T. ZIMA1, K. HORKÝ2, A. LINHART2 1Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic, 2Second Department of Internal Medicine – Clinical Department of Cardiology and Angiology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic Received February 1, 2011 Accepted October 17, 2011 On-line January 31, 2012 Summary Introduction Mutations in troponin T (TNNT2) gene represent the important part of currently identified disease-causing mutations in Cardiomyopathies are generally defined as hypertrophic (HCM) and dilated (DCM) cardiomyopathy. The aim myocardial disorders in which the heart muscle is of this study was to analyze TNNT2 gene exons in patients with structurally and functionally abnormal, in the absence of HCM and DCM diagnosis to improve diagnostic and genetic coronary artery disease, hypertension, valvular disease consultancy in affected families. All 15 exons and their flanking and congenital heart disease sufficient to cause the regions of the TNNT2 gene were analyzed by DNA sequence observed myocardial abnormality (Elliott et al. 2008). analysis in 174 patients with HCM and DCM diagnosis. We According to the morphological and functional phenotype identified genetic variations in TNNT2 exon regions in 56 patients the diagnosis of hypertrophic and dilated cardiomyopathy and genetic variations in TNNT2 intron regions in 164 patients. -
Downloaded from NCBI Website [31]
Int. J. Mol. Sci. 2014, 15, 21788-21802; doi:10.3390/ijms151221788 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Interactome Mapping Reveals Important Pathways in Skeletal Muscle Development of Pigs Jianhua Cao, Tinghua Huang, Xinyun Li and Shuhong Zhao * Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education of China, College of Animal Science and Technology, Huazhong Agricultural University, 1 Shizishan St., Wuhan 430070, China; E-Mails: [email protected] (J.C.); [email protected] (T.H.); [email protected] (X.L.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-27-8738-7480; Fax: +86-27-8728-0408. External Editor: Mark L. Richter Received: 15 July 2014; in revised form: 19 October 2014 / Accepted: 6 November 2014 / Published: 26 November 2014 Abstract: The regulatory relationship and connectivity among genes involved in myogenesis and hypertrophy of skeletal muscle in pigs still remain large challenges. Presentation of gene interactions is a potential way to understand the mechanisms of developmental events in skeletal muscle. In this study, genome-wide transcripts and miRNA profiling was determined for Landrace pigs at four time points using microarray chips. A comprehensive method integrating gene ontology annotation and interactome network mapping was conducted to analyze the biological patterns and interaction modules of muscle development events based on differentially expressed genes and miRNAs. Our results showed that in total 484 genes and 34 miRNAs were detected for the duration from embryonic stage to adult in pigs, which composed two linear expression patterns with consensus changes. -
Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors
Cancer Biology & Therapy ISSN: 1538-4047 (Print) 1555-8576 (Online) Journal homepage: http://www.tandfonline.com/loi/kcbt20 Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru To cite this article: Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru (2016) Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors, Cancer Biology & Therapy, 17:3, 262-271, DOI: 10.1080/15384047.2016.1139240 To link to this article: http://dx.doi.org/10.1080/15384047.2016.1139240 Accepted author version posted online: 19 Jan 2016. Published online: 19 Jan 2016. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kcbt20 Download by: [University of Connecticut] Date: 26 May 2016, At: 11:28 CANCER BIOLOGY & THERAPY 2016, VOL. 17, NO. 3, 262–271 http://dx.doi.org/10.1080/15384047.2016.1139240 RESEARCH PAPER Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clarka,*, Anne M. Frielb,*, Cindy A. Prua, Ling Zhangb, Toshi Shiodac, Bo R. Ruedab, John J. Pelusod, and James K. Prua aDepartment of Animal Sciences, -
Genetic Mutations and Mechanisms in Dilated Cardiomyopathy
Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862. Review Series Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. Find the latest version: https://jci.me/62862/pdf Review series Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, Jessica R. Golbus, and Megan J. Puckelwartz Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of conges- tive heart failure. -
2017.08.28 Anne Barry-Reidy Thesis Final.Pdf
REGULATION OF BOVINE β-DEFENSIN EXPRESSION THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF DUBLIN FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 2017 ANNE BARRY-REIDY SCHOOL OF BIOCHEMISTRY & IMMUNOLOGY TRINITY COLLEGE DUBLIN SUPERVISORS: PROF. CLIONA O’FARRELLY & DR. KIERAN MEADE TABLE OF CONTENTS DECLARATION ................................................................................................................................. vii ACKNOWLEDGEMENTS ................................................................................................................... viii ABBREVIATIONS ................................................................................................................................ix LIST OF FIGURES............................................................................................................................. xiii LIST OF TABLES .............................................................................................................................. xvii ABSTRACT ........................................................................................................................................xix Chapter 1 Introduction ........................................................................................................ 1 1.1 Antimicrobial/Host-defence peptides ..................................................................... 1 1.2 Defensins................................................................................................................. 1 1.3 β-defensins ............................................................................................................. -
A Cell Line P53 Mutation Type UM
A Cell line p53 mutation Type UM-SCC 1 wt UM-SCC5 Exon 5, 157 GTC --> TTC Missense mutation by transversion (Valine --> Phenylalanine UM-SCC6 wt UM-SCC9 wt UM-SCC11A wt UM-SCC11B Exon 7, 242 TGC --> TCC Missense mutation by transversion (Cysteine --> Serine) UM-SCC22A Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC22B Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC38 Exon 5, 132 AAG --> AAT Missense mutation by transversion (Lysine --> Asparagine) UM-SCC46 Exon 8, 278 CCT --> CGT Missense mutation by transversion (Proline --> Alanine) B 1 Supplementary Methods Cell Lines and Cell Culture A panel of ten established HNSCC cell lines from the University of Michigan series (UM-SCC) was obtained from Dr. T. E. Carey at the University of Michigan, Ann Arbor, MI. The UM-SCC cell lines were derived from eight patients with SCC of the upper aerodigestive tract (supplemental Table 1). Patient age at tumor diagnosis ranged from 37 to 72 years. The cell lines selected were obtained from patients with stage I-IV tumors, distributed among oral, pharyngeal and laryngeal sites. All the patients had aggressive disease, with early recurrence and death within two years of therapy. Cell lines established from single isolates of a patient specimen are designated by a numeric designation, and where isolates from two time points or anatomical sites were obtained, the designation includes an alphabetical suffix (i.e., "A" or "B"). The cell lines were maintained in Eagle's minimal essential media supplemented with 10% fetal bovine serum and penicillin/streptomycin. -
Mechanism of Action Through an IFN Type I-Independent Responses To
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology , 12 of which you can access for free at: 2012; 188:3088-3098; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1101764 http://www.jimmunol.org/content/188/7/3088 MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action Elena Caproni, Elaine Tritto, Mario Cortese, Alessandro Muzzi, Flaviana Mosca, Elisabetta Monaci, Barbara Baudner, Anja Seubert and Ennio De Gregorio J Immunol cites 33 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/21/jimmunol.110176 4.DC1 This article http://www.jimmunol.org/content/188/7/3088.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 -
Open Dogan Phdthesis Final.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues. -
Inhibition of Β-Catenin Signaling Respecifies Anterior-Like Endothelium Into Beating Human Cardiomyocytes Nathan J
© 2015. Published by The Company of Biologists Ltd | Development (2015) 142, 3198-3209 doi:10.1242/dev.117010 RESEARCH ARTICLE STEM CELLS AND REGENERATION Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes Nathan J. Palpant1,2,3,*, Lil Pabon1,2,3,*, Meredith Roberts2,3,4, Brandon Hadland5,6, Daniel Jones7, Christina Jones3,8,9, Randall T. Moon3,8,9, Walter L. Ruzzo7, Irwin Bernstein5,6, Ying Zheng2,3,4 and Charles E. Murry1,2,3,4,10,‡ ABSTRACT lineages. Anterior mesoderm (mid-streak) gives rise to cardiac and endocardial endothelium, whereas posterior mesoderm (posterior During vertebrate development, mesodermal fate choices are regulated streak) gives rise to the blood-forming endothelium and vasculature by interactions between morphogens such as activin/nodal, BMPs and (Murry and Keller, 2008). Wnt/β-catenin that define anterior-posterior patterning and specify Well-described anterior-posterior morphogen gradients, downstream derivatives including cardiomyocyte, endothelial and including those of activin A/nodal and BMP4, are thought to hematopoietic cells. We used human embryonic stem cells to explore pattern mesoderm subtypes (Nostro et al., 2008; Sumi et al., 2008; how these pathways control mesodermal fate choices in vitro. Varying Kattman et al., 2011). Such gradients are proposed to specify doses of activin A and BMP4 to mimic cytokine gradient polarization anterior mesodermal fates like cardiomyocytes versus posterior in the anterior-posterior axis of the embryo led to differential activity mesodermal fates like blood. Remarkably, a recent study showed of Wnt/β-catenin signaling and specified distinct anterior-like (high activin/ that ectopic induction of a nodal/BMP gradient in zebrafish embryos low BMP) and posterior-like (low activin/high BMP) mesodermal was sufficient to create an entirely new embryonic axis that could populations. -
Transparent Transgenic in Vivo Zebrafish Model To
cells Protocol Development of Tg(UAS:SEC-Hsa.ANXA5-YFP,myl7:RFP); Casper(roy−/−,nacre−/−) Transparent Transgenic In Vivo Zebrafish Model to Study the Cardiomyocyte Function Surendra K. Rajpurohit 1,* , Aaron Gopal 2, May Ye Mon 1 , Nikhil G. Patel 3 and Vishal Arora 2,* 1 Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; [email protected] 2 Department of Medicine, Division of Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; [email protected] * Correspondence: [email protected] (S.K.R.); [email protected] (V.A.) Abstract: The zebrafish provided an excellent platform to study the genetic and molecular approach of cellular phenotype-based cardiac research. We designed a novel protocol to develop the transparent transgenic zebrafish model to study annexin-5 activity in the cardiovascular function by generating homozygous transparent skin Casper(roy−/−,nacre−/−); myl7:RFP; annexin-5:YFP transgenic ze- brafish. The skin pigmentation background of any vertebrate model organism is a major obstruction for in vivo confocal imaging to study the transgenic cellular phenotype-based study. By developing Citation: Rajpurohit, S.K.; Gopal, A.; Casper(roy−/−,nacre−/−); myl7; annexin-5 transparent transgenic zebrafish strain, we established Mon, M.Y.; Patel, N.G.; Arora, V. time-lapse in vivo confocal microscopy to study cellular phenotype/pathologies of cardiomyocytes Development of Tg(UAS:SEC- over time to quantify changes in cardiomyocyte morphology and function over time, comparing Hsa.ANXA5-YFP,myl7:RFP); control and cardiac injury and cardio-oncology. -
Transcriptional Control of Tissue-Resident Memory T Cell Generation
Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.