Original Article Semi-Quantitative Assessment of Lower Limb MRI in Dystrophinopathy

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Semi-Quantitative Assessment of Lower Limb MRI in Dystrophinopathy Int J Clin Exp Med 2016;9(7):13723-13732 www.ijcem.com /ISSN:1940-5901/IJCEM0023830 Original Article Semi-quantitative assessment of lower limb MRI in dystrophinopathy Qi Bing1, Keyou Hu2, Qingbao Tian2, Zhe Zhao1, Hongrui Shen1, Na Li1, Jing Hu1 1Department of Neuromuscular, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China; 2Department of Public Health, Hebei Medical University, Shijiazhuang City, Hebei Province, People’s Republic of China Received January 12, 2016; Accepted May 24, 2016; Epub July 15, 2016; Published July 30, 2016 Abstract: Dystrophinopathy is a group of inherited muscular disorders, including Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy (XLDCM), and manifesting/non-man- ifesting DMD/BMD carriers, which predominantly affects lower limbs. We studied the clinical and lower limb MRI data to assess muscle preservation and muscle choice of dystrophinopathy. Forty-two patients with dystrophinopa- thy underwent clinical, laboratory, and MRI examinations. Semi-quantitative data of muscle strength and muscu- lar MRI were collected and statistical analyzed. Logistic regression was used to assess MRI scores and clinical variables. MRI changes in thigh were more significant than in lower leg (P < 0.001). In addition, the anterior group was more severe than the posterior group in thigh, whereas in lower leg, the posterior was more severe than the anterior. At thigh level, the vastus lateralis was predominantly involved, and the gracilis was less involved. At lower leg level, the long fibular muscle was more involved than the anterior tibial muscle. BMD patients had similar MRI characteristics as DMD. The logistic regression analysis showed that there are three variables (age, weight, proxi- mal muscle strength) affected thigh muscle injury scores. MRI provides a simple, non-invasive means of detecting subtle, subclinical changes in individual muscles that reflects the progression of dystrophinopathy. The selective muscle involvement observed in lower limb MRI can provide diagnostic evidence for DMD and support the argument to initiate therapy at earlier ages. Keywords: Dystrophinopathy, duchenne muscular dystrophy, becker muscular dystrophy, skeletal muscle biopsy, muscle MRI Introduction progressive myocyte degeneration. Boys with DMD experience progressive muscle weakness Dystrophinopathy is caused by mutations in and wasting that results in wheelchair depen- the DMD gene, which encodes the protein dys- dence in later teenage years, cardiorespiratory trophin, and is located on the X-chromo- compromise, and eventually death during young some (Xp21). The dystrophinopathy spectrum adulthood. BMD has a slower progression and encompasses Duchenne muscular dystrophy a longer life expectancy. BMD patients ambu- (DMD), Becker muscular dystrophy (BMD), X- late independently until at least 16 years of linked dilated cardiomyopathy (XLDCM), which age, with a mean age of 30 years. includes asymptomatic hyper-creatine kinase (CK) emia, cramps, myalgia, and quadriceps Muscle involvement in DMD is characterized by myopathy), XLDCM, and manifesting/non- man- repetitive cycles of injury, inflammation, and ifesting DMD/BMD carriers [1]. DMD is the repair that results in progressive degeneration, most severe dystrophinopathy that begins in necrosis, and regeneration of myocytes by fat early childhood and affects 1 in every 3,500- and connective tissue. One of the hallmarks 4,000 male births. DMD gene mutations lead of DMD is a significant loss in bulk of the pro- to defects or deletion of the protein dystrophin, ximal muscles, including those of the pelvis an important cytoskeletal muscle component. and thighs. To precisely diagnose DMD, the cli- This abnormality results in structural fragility, nician is required to make appropriate judg- membrane permeability, metabolic crisis, and ments regarding the distribution of the affect- Lower limb MRI characteristics in dystrophinopathy Figure 1. Immunofluorescence staining of DMD and BMD patients: Normal control (A-C): normal dystrophin presents on the sarcolemma; DMD (D-F): dystrophin is absent on the sarcolemma; BMD (G-I): decreased dystrophin on the sarcolemma. (Bar = 100 μm). ed skeletal muscles, muscular strength, and fatty tissue infiltration. This progressive fatty capacity. Ultrasound (US) has been used as tissue infiltration and muscle weakness report- a well-established and validated diagnostic edly leads to loss of ambulation between the imaging method for evaluating muscle invo- ages of 8-12 years [4, 5]. lvement, but its application is limited to super- ficial muscle groups because it is difficult to Few pelvis and thigh MRI studies in DMD display deeper structures and multiple muscle patients have shown a characteristic pattern groups that overlap. Computed tomography of fatty infiltration that spares the gracilis, sar- (CT) has also been widely used to evaluate the torius, and semimembranosus muscles [6, 7]. presence and extent of changes in myopathy, However, lower leg muscles frequently show en- but its high radiation dose and limited soft largement known as pseudohypertrophy. Re- tissue contrast makes the application obso- search has indicated that the gastrocnemius lete, particularly in children [2]. MRI provides and soleus muscles are predominantly affect- a high soft tissue contrast, thereby allowing ed [8]. Torriani et al. [9] showed that marked excellent assessment of muscles shape, vol- involvement of peroneal muscles is a charac- ume, and tissue architecture [3]. The inflamma- teristic feature of boys with DMD. In addition, tory changes and repair observed during the increased contractile content in both peroneal initial stages of the disease are followed by muscle and medial gastrocnemius with age are 13724 Int J Clin Exp Med 2016;9(7):13723-13732 Lower limb MRI characteristics in dystrophinopathy suggestive of compensatory hypertrophy [10]. pads to restrict leg movement. T1-weighted Furthermore, the degree of adiposity of the axial images were obtained using the follow- lower leg muscles measured by MRI correlated ing parameters: TE: ranged from 13.9 to 18.6 with clinical manifestation, considered quanti- ms, TR: 500 ms, FOV: 38, 18 sections, 6.0/3.0 tative and objective measures of disease se- mm (thickness/gap). This session lasted for verity. We collected muscle MRI data in the 150 seconds. Next, the T1-weighted axial ima- thigh and lower leg of dystrophinopathy pa- ges of fat suppression were obtained using tients and analyzed the MRI characteristics the same parameters. T2-weighted axial imag- of the lower limb. es were acquired using the following para- meters: 3620/85 ms (TR/TE), 20 sections, Materials and methods 6.0/3.0 mm (thickness/gap), and the T2-wei- ghted axial images of fat suppression were The Research Ethics Committee of the Third acquired with the same parameters. Hospital of Hebei Medical University of China approved this study. Written informed con- For the muscle MRI of the lower limb, sections sent was obtained from each participant’s were generally analyzed within the mid to upper parent or guardian, and each child agreed to section of the thigh and lower leg, because the participate in this study. muscle bulk in this section is greatest and mus- cle abnormalities can be more clearly visual- Participants ized. The muscles listed below were assessed in 4 grades. Forty-two patients with dystrophinopathy (age range 4.0-25.0 years) participated in this Thigh: rectus femoris, vastus medialis, vastus study. Patients included 33 boys with DMD, 7 lateralis, vastus intermedius, semitendinosus, boys with BMD, 1 boy with asymptomatic hy- semimembranous, biceps femoris, gracilis, and perCKemia, and 1 female manifesting carrier adductor magnus. (MC). Dystrophinopathy diagnoses were based on a history of progressive muscle weakness, Lower leg: anterior tibial muscle, extensor digi- physical symptoms, and significantly elevated torum longus, extensor hallucis longus, long serum CK levels. Muscle biopsy showed mus- fibular muscle, caput mediale musculi gastroc- cular dystrophy pathologic changes and there nemii, caput laterale musculi gastrocnemii, and was decreased or absent dystrophin immuno- musculus soleus. histochemical staining on the sarcolemma using the dystrophin-N, -C, and -R antibodies Fatty infiltration of the lower limb musculature (Figure 1). Knee flexion and extension were was graded using a semi-quantitative method, evaluated as proximal strength, whereas an- which entailed consensus scoring by two expe- kle plantar flexion and dorsiflexion were eva- rienced musculoskeletal radiologists blinded to luated as distal strength. The proximal and dis- patient data to minimize bias. At the largest tal lower limb muscle strength was evaluated cross-sectional area of each muscle, we used using the Medical Research Council (MRC) the scale described by Mercuri E et al. [12] as scale, as follows [11]: grade 5, normal strength; follows: Stage 0: Normal appearance; Stage 1: grade 4, slight-to-moderate weakness; grade Numerous discrete areas of increased density 3, muscle can move the joint against gravity less than 30% of the muscle volume; Stage 2: but not against any added resistance; grade 2, Numerous discrete areas of increased density muscle cannot move the joint against gravity with early confluence, 30%-60% of the muscle but only in absence of it; grade 1, a trace of volume; Stage 3: Numerous discrete areas of contraction; and grade
Recommended publications
  • Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry
    Journal of Personalized Medicine Article Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry 1, 1, 1,2, Kenji Rowel Q. Lim y , Quynh Nguyen y and Toshifumi Yokota * 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; [email protected] (K.R.Q.L.); [email protected] (Q.N.) 2 The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada * Correspondence: [email protected]; Tel.: +1-780-492-1102 These authors contributed equally to this work. y Received: 29 October 2020; Accepted: 21 November 2020; Published: 23 November 2020 Abstract: Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder generally caused by out-of-frame mutations in the DMD gene. In contrast, in-frame mutations usually give rise to the milder Becker muscular dystrophy (BMD). However, this reading frame rule does not always hold true. Therefore, an understanding of the relationships between genotype and phenotype is important for informing diagnosis and disease management, as well as the development of genetic therapies. Here, we evaluated genotype–phenotype correlations in DMD and BMD patients enrolled in the Canadian Neuromuscular Disease Registry from 2012 to 2019. Data from 342 DMD and 60 BMD patients with genetic test results were analyzed. The majority of patients had deletions (71%), followed by small mutations (17%) and duplications (10%); 2% had negative results. Two deletion hotspots were identified, exons 3–20 and exons 45–55, harboring 86% of deletions. Exceptions to the reading frame rule were found in 13% of patients with deletions.
    [Show full text]
  • Muscular Dystrophies and the Heart: the Emerging Role of Cardiovascular Magnetic Resonance Imaging
    REVIEW Muscular dystrophies and the heart: The emerging role of cardiovascular magnetic resonance imaging Sophie Mavrogeni MD1, George Markousis-Mavrogenis MD1, Antigoni Papavasiliou MD2, Elias Gialafos MD3, Stylianos Gatzonis MD4, George Papadopoulos MD5, Genovefa Kolovou MD1 S Mavrogeni, G Markousis-Mavrogenis, A Papavasiliou, et al. hypertrophy and, potentially, evidence of myocardial necrosis, depend- Muscular dystrophies and the heart: The emerging role of ing on the type of MD. Echocardiography is a routine technique used to cardiovascular magnetic resonance imaging. Curr Res Cardiol assess left ventricular dysfunction, independent of age of onset or muta- 2015;2(2):53-62. tion. In some cases, it can also identify early, silent cardiac dysfunction. CMR is the best technique for accurate and reproducible quantification of ventricular volumes, mass and ejection fraction. CMR has docu- Muscular dystrophies (MD) constitute a group of inherited disorders, mented a pattern of epicardial fibrosis in both dystrophinopathy patients characterized by progressive skeletal muscle weakness and heart involve- and mutation carriers that can be observed even if overt muscular disease ment. Cardiac disease is common and not necessarily related to the is absent. Recently, CMR techniques, such as postcontrast myocardial T1 degree of skeletal myopathy; it may be the predominant manifestation mapping, have been used in Duchenne muscular dystrophy to detect dif- with or without any other evidence of muscular disease. Death is usually fuse myocardial fibrosis. A combined approach using clinical assessment due to ventricular dysfunction, heart block or malignant arrhythmias. and CMR evaluation may motivate early cardioprotective treatment in In addition to MD patients, female carriers may present with cardiac both patients and asymptomatic carriers, and prevent the development of involvement.
    [Show full text]
  • Current and Emerging Therapies in Becker Muscular Dystrophy (BMD)
    Acta Myologica • 2019; XXXVIII: p. 172-179 OPEN ACCESS © Gaetano Conte Academy - Mediterranean Society of Myology Current and emerging therapies in Becker muscular dystrophy (BMD) Corrado Angelini, Roberta Marozzo and Valentina Pegoraro Neuromuscular Center, IRCCS San Camillo Hospital, Venice, Italy Becker muscular dystrophy (BMD) has onset usually in child- tients with a deletion in the dystrophin gene that have nor- hood, frequently by 11 years. BMD can present in several ways mal muscle strength and endurance, but present high CK, such as waddling gait, exercise related cramps with or with- and so far their follow-up and treatment recommenda- out myoglobinuria. Rarely cardiomyopathy might be the pre- senting feature. The evolution is variable. BMD is caused by tions are still a matter of debate. Patients with early cardi- dystrophin deficiency due to inframe deletions, mutations or omyopathy are also a possible variant of BMD (4, 5) and duplications in dystrophin gene (Xp21.2) We review here the may be susceptible either to specific drug therapy and/or evolution and current therapy presenting a personal series of to cardiac transplantation (6-8). Here we cover emerging cases followed for over two decades, with multifactorial treat- therapies considering follow-up, and exemplifying some ment regimen. Early treatment includes steroid treatment that phenotypes and treatments by a few study cases. has been analized and personalized for each case. Early treat- ment of cardiomyopathy with ACE inhibitors is recommended and referral for cardiac transplantation is appropriate in severe cases. Management includes multidisciplinary care with physi- Pathophysiology and rationale of otherapy to reduce joint contractures and prolong walking.
    [Show full text]
  • 226Th ENMC International Workshop: Towards Validated and Qualified Biomarkers for Therapy Development for Duchenne Muscular Dyst
    Available online at www.sciencedirect.com ScienceDirect Neuromuscular Disorders 28 (2018) 77–86 www.elsevier.com/locate/nmd Workshop report 226th ENMC International Workshop: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20–22 January 2017, Heemskerk, The Netherlands Annemieke Aartsma-Rus a,*, Alessandra Ferlini b,c, Elizabeth M. McNally d, Pietro Spitali a, H. Lee Sweeney e, on behalf of the workshop participants a Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands b Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy c Dubowitz Neuromuscular Unit, UCL, London d Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA e Myology Institute, Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA Received 25 July 2017 Keywords: Duchenne muscular dystrophy; Biomarker; Dystrophin; MRI; Biobank 1. Introduction therapeutic biomarkers are designed to predict or measure response to treatment [1]. Therapeutic biomarkers can indicate Twenty-three participants from 6 countries (England; whether a therapy is having an effect. This type of biomarker is Germany; Italy; Sweden, The Netherlands; USA) attended the called a pharmacodynamics biomarker and can be used to e.g. 226th ENMC workshop on Duchenne biomarkers “Towards show that a missing protein is restored after a therapy. Safety validated and qualified biomarkers for therapy development for biomarkers assess likelihood, presence, or extent of toxicity as Duchenne Muscular Dystrophy.” The meeting was a follow-up an adverse effect, e.g. through monitoring blood markers of the 204th ENMC workshop on Duchenne muscular indicative of liver or kidney damage.
    [Show full text]
  • 107Th ENMC International Workshop: the Management of Cardiac Involvement in Muscular Dystrophy and Myotonic Dystrophy
    Neuromuscular Disorders 13 (2003) 166–172 www.elsevier.com/locate/nmd Workshop report 107th ENMC International Workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th–9th June 2002, Naarden, the Netherlands K. Bushby*, F. Muntoni, J.P. Bourke Department of Neuromuscular Genetics, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK Received 1 August 2002; accepted 16 August 2002 1. Introduction symptomatic presentation [13,14]. Although evidence in these rare conditions of the effect of treatment is lacking Sixteen participants from Austria, France, Germany, [15], extrapolation from other conditions causing heart fail- Italy, the Netherlands and the UK met to discuss the cardiac ure with dilated cardiomyopathy means that there is a strong implications of the diagnosis of muscular dystrophy and case for the use of ACE inhibitors and potentially also beta myotonic dystrophy. The group included both myologists blockers, certainly in the presence of detectable abnormal- and cardiologists from nine different European centers. The ities and possibly preventatively [16–25]. aims of the workshop were to agree and report minimum The recommendations of the group are as follows. recommendations for the investigation and treatment of cardiac involvement in muscular and myotonic dystrophies, 2.1. DMD and define areas where further research is needed. During the workshop, all participants contributed to a review and † Patients should have a cardiac investigation (echo and assessment of the published evidence in each area and electrocardiogram (ECG)) at diagnosis. current practice amongst the group. Consensus statements † DMD patients should have cardiac investigations before for the management of dystrophinopathy, myotonic dystro- any surgery, every 2 years to age 10 and annually after phy, limb-girdle muscular dystrophy, Emery Dreifuss age 10.
    [Show full text]
  • The Limb-Girdle Muscular Dystrophies and the Dystrophinopathies Review Article
    Review Article 04/25/2018 on mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== by https://journals.lww.com/continuum from Downloaded Downloaded from Address correspondence to https://journals.lww.com/continuum Dr Stanley Jones P. Iyadurai, Ohio State University, Wexner The Limb-Girdle Medical Center, Department of Neurology, 395 W 12th Ave, Columbus, OH 43210, Muscular Dystrophies and [email protected]. Relationship Disclosure: by mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== Dr Iyadurai has received the Dystrophinopathies personal compensation for serving on the advisory boards of Allergan; Alnylam Stanley Jones P. Iyadurai, MSc, PhD, MD; John T. Kissel, MD, FAAN Pharmaceuticals, Inc; CSL Behring; and Pfizer, Inc. Dr Kissel has received personal ABSTRACT compensation for serving on a consulting board of AveXis, Purpose of Review: The classic approach to identifying and accurately diagnosing limb- Inc; as journal editor of Muscle girdle muscular dystrophies (LGMDs) relied heavily on phenotypic characterization and & Nerve; and as a consultant ancillary studies including muscle biopsy. Because of rapid advances in genetic sequencing for Novartis AG. Dr Kissel has received research/grant methodologies,
    [Show full text]
  • Dystrophin Gene Abnormalities in Two Patients with Idiopathic Dilated Cardiomyopathy
    608 Heart 1997;78:608–612 CASE STUDY Heart: first published as 10.1136/hrt.78.6.608 on 1 December 1997. Downloaded from Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy Francesco Muntoni, Andrea Di Lenarda, Maurizio Porcu, Gianfranco Sinagra, Anna Mateddu, Gianni Marrosu, Alessandra Ferlini, Milena Cau, Jelena Milasin, Maria Antonietta Melis, Maria Giovanna Marrosu, Carlo Cianchetti, Antonio Sanna, Arturo Falaschi, Fulvio Camerini, Mauro Giacca, Luisa Mestroni Abstract Cardiac involvement is an integral part of Neuromuscular Unit, Two new cases of dilated cardiomyopathy DMD and BMD.4–7 In rare instances, however, Department of Paediatrics and (DC) caused by dystrophinopathy are patients can suVer from dilated cardiomyo- Neonatal Medicine, reported. One patient, a 24 year old man, pathy (DC) as the only manifestation of a dys- Hammersmith had a family history of X linked DC, while trophinopathy. This has been now recognised Hospital, London, UK the other, a 52 year old man, had sporadic in families with typical X linked DC8–11 and in F Muntoni patients with sporadic disease.12–14 Unlike A Ferlini disease. Each had abnormal dystrophin immunostaining in muscle or cardiac patients with DMD or BMD, these patients did International Centre biopsy specimens, but neither had muscle not have symptoms of muscle weakness and the for Genetic weakness. Serum creatine kinase activity only sign of neuromuscular involvement was Engineering and was raised only in the patient with familial raised serum creatine kinase (CK) activity. Biotechnology e disease. Analysis of dystrophin gene mu- Several patients had mutations clustered in the Divisione di 91112 tations showed a deletion of exons 48–49 in 5' end of the gene ; a region not aVected by Cardiologia, Ospedale mutations usually found in DMD and BMD.
    [Show full text]
  • Clinical Variability in Calpainopathy: What Makes the Difference?
    European Journal of Human Genetics (2002) 10, 825 – 832 ª 2002 Nature Publishing Group All rights reserved 1018 – 4813/02 $25.00 www.nature.com/ejhg ARTICLE Clinical variability in calpainopathy: What makes the difference? Fla´via de Paula1, Mariz Vainzof1, Maria Rita Passos-Bueno1, Rita de Ca´ssia M Pavanello1, Sergio Russo Matioli1, Louise VB Anderson3, Vincenzo Nigro2 and Mayana Zatz*,1 1Human Genome Research Center-Departamento de Biologia, IB Universidade de Sa˜o Paulo, Brazil; 2TIGEM and Dipartimento di Patologia Generale, Seconda Universita’degli studi di Napoli, Italy; 3Neurobiology Department, University Medical School, Framlington Place, Newcastle upon Tyne, UK Limb girdle muscular dystrophies (LGMD) are a heterogeneous group of genetic disorders characterised by progressive weakness of the pelvic and shoulder girdle muscles and a great variability in clinical course. LGMD2A, the most prevalent form of LGMD, is caused by mutations in the calpain-3 gene (CAPN- 3). More than 100 pathogenic mutations have been identified to date, however few genotype : phenotype correlation studies, including both DNA and protein analysis, have been reported. In this study we screened 26 unrelated LGMD2A Brazilian families (75 patients) through Single-Stranded Conformation Polymorphism (SSCP), Denaturing high-performance liquid chromatography (DHPLC) and sequencing of abnormal fragments which allowed the identification of 47 mutated alleles (approximately 90%). We identified two recurrent mutations (R110X and 2362-2363AG4TCATCT) and seven novel pathogenic mutations. Interestingly, 41 of the identified mutations (approximately 80%) were concentrated in only 6 exons (1, 2, 4, 5, 11 and 22), which has important implications for diagnostic purposes. Protein analysis, performed in 28 patients from 25 unrelated families showed that with exception of one patient (with normal/slight borderline reduction of calpain) all others had total or partial calpain deficiency.
    [Show full text]
  • Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy
    International Journal of Molecular Sciences Review Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy: Exploration of Steroid-Sparing Agents Sandrine Herbelet 1,* , Arthur Rodenbach 1 , Boel De Paepe 1,2 and Jan L. De Bleecker 1,2 1 Department of Head and Skin, Division of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; [email protected] (A.R.); [email protected] (B.D.P.); [email protected] (J.L.D.B.) 2 Neuromuscular Reference Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium * Correspondence: [email protected]; Tel.: +32-9332-89-84; Fax: +32-9332-49-71 Received: 26 May 2020; Accepted: 27 June 2020; Published: 28 June 2020 Abstract: In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described.
    [Show full text]
  • Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations
    International Journal of Molecular Sciences Review Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations Jaione Lasa-Elgarresta 1,2, Laura Mosqueira-Martín 1,2, Neia Naldaiz-Gastesi 1,2, Amets Sáenz 1,2, Adolfo López de Munain 1,2,3,4,* and Ainara Vallejo-Illarramendi 1,2,5,* 1 Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain; [email protected] (J.L.-E.); [email protected] (L.M.-M.); [email protected] (N.N.-G.); [email protected] (A.S.) 2 CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain 3 Departmento de Neurosciencias, Universidad del País Vasco UPV/EHU, 20014 San Sebastian, Spain 4 Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Neurology Department, 20014 San Sebastian, Spain 5 Grupo Neurociencias, Departmento de Pediatría, Hospital Universitario Donostia, UPV/EHU, 20014 San Sebastian, Spain * Correspondence: [email protected] (A.L.d.M.); [email protected] (A.V.-I.); Tel.: +34-943-006294 (A.L.d.M.); +34-943-006128 (A.V.-I.) Received: 4 August 2019; Accepted: 11 September 2019; Published: 13 September 2019 Abstract: Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease.
    [Show full text]
  • Protein Aggregate Myopathies
    Review Article Protein aggregate myopathies M. C. Sharma, H. H. Goebel1 All India Institute of Medical Sciences, New Delhi, India and 1Department of Neuropathology, Johannes Gutenberg University Medical Center, Mainz, Germany Protein aggregate myopathies (PAM) are an emerging group Aggegation of proteins within muscle cells may be of lyso- of muscle diseases characterized by structural abnormali- somal or nonlysosomal nature. The former occurs, for instance, ties. Protein aggregate myopathies are marked by the ag- in the neuronal ceroid-lipofuscinoses (NCL) as components gregation of intrinsic proteins within muscle fibers and fall of lipopigments, their accretion being a morphological hall- into four major groups or conditions: (1) desmin-related mark in the NCL.[1] This lysosomal accumulation of myopathies (DRM) that include desminopathies, a-B lipopigments renders the NCL a member of the lysosomal dis- crystallinopathies, selenoproteinopathies caused by muta- orders among which type-II glycogenosis, Niemann-Pick dis- tions in the, a-B crystallin and selenoprotein N1 genes, (2) ease, mucolipidosis IV and others may affect the skeletal hereditary inclusion body myopathies, several of which have muscle. been linked to different chromosomal gene loci, but with as Nonlysosomal accumulation of proteins within muscle fibers yet unidentified protein product, (3) actinopathies marked is a hallmark of a recently emerging subgroup of myopathies, by mutations in the sarcomeric ACTA1 gene, and (4) called protein aggregate myopathies (PAM). The cause
    [Show full text]
  • The Histopathological Features of Muscular Dystrophies
    SMGr up The Histopathological Features of Muscular Dystrophies Gulden Diniz* Pathologist, Microbiologist and Basic Oncologist, Neuromuscular Diseases’ Centre of Izmir Tepecik Education and Research Hospital, Turkey *Corresponding author: Gulden Diniz, Pathologist, Microbiologist and Basic Oncologist, Neuromuscular Diseases’ Centre of Izmir Tepecik Education and Research Hospital, Turkey. Email: [email protected] Published Date: September 23, 2016 ABSTRACT Muscular dystrophies are degenerative muscle diseases due to mutations in proteins ranging in function such as sarcolemmal structure, nuclear envelope structure, or post-translational suggesting that biological differences exist between individual muscles that predispose them to glycosylation. Each of them affects a specific group of skeletal muscles within the human body, specificClinical pathological manifestation etiologies. of different muscular dystrophies is now well known and documented. Dystrophinopathies are X-linked recessive diseases and the most common form of muscular dystrophies with a relatively poor outcome. Other recognized varieties of muscular dystrophies limb girdle muscular dystrophy is an umbrella name for a group of diseases which exhibits are classified into different groups according to their clinical or genetic similarities. For example, congenital muscular dystrophies is presentation prior to 1 year of age. proximal weakness of the shoulder and pelvic girdles. Similarly, the defining characteristic of Muscular Dystrophy | www.smgebooks.com 1 Copyright Diniz
    [Show full text]