Leonhard Euler 03/20/08 1 / 41 Lisez Euler, Lisez Euler, C’Est Notre Maˆıtre A` Tous

Total Page:16

File Type:pdf, Size:1020Kb

Leonhard Euler 03/20/08 1 / 41 Lisez Euler, Lisez Euler, C’Est Notre Maˆıtre A` Tous Leonhard Paul Euler: his life and his works. Sergey Lapin MATH 398 // March 20, 2008 S. Lapin () Leonhard Euler 03/20/08 1 / 41 Lisez Euler, lisez Euler, c'est notre ma^ıtre a` tous. { Pierre-Simon Laplace S. Lapin () Leonhard Euler 03/20/08 2 / 41 Outline 1 Biography Early years St. Petersburgh Berlin Return to St. Petersburgh 2 Contributions to mathematics Mathematical notation Analysis Number theory Graph theory Applied mathematics Physics and astronomy 3 Selected bibliography S. Lapin () Leonhard Euler 03/20/08 3 / 41 Biography Early years Outline 1 Biography Early years St. Petersburgh Berlin Return to St. Petersburgh 2 Contributions to mathematics Mathematical notation Analysis Number theory Graph theory Applied mathematics Physics and astronomy 3 Selected bibliography S. Lapin () Leonhard Euler 03/20/08 4 / 41 Biography Early years Early years Euler was born in Basel on April 15, 1707. Father: Paul Euler, a pastor of the Reformed Church. Mother: Marguerite Brucker. He had two younger sisters named Anna Maria and Maria Magdalena. Soon after the birth of Leonhard, the Eulers moved to the town of Riehen, where Euler spent most of his childhood. Paul Euler was a friend of the Bernoulli family and Johann Bernoulli, who was then regarded as Europe's foremost mathematician. S. Lapin () Leonhard Euler 03/20/08 5 / 41 Biography Early years Early years Euler's early formal education started in Basel, where he lived with his maternal grandmother. Euler's father wanted his son to follow him into the church and sent him to the University of Basel to prepare for the ministry. He entered the University in 1720, at the age of 13, first to obtain a general education before going on to more advanced studies. Euler was studying theology, Greek, and Hebrew in order to become a pastor. S. Lapin () Leonhard Euler 03/20/08 6 / 41 Biography Early years Early years Johann Bernoulli convinced Paul Euler that Leonhard was destined to become a great mathematician. Euler's own account given in his unpublished autobiographical writings: ... I soon found an opportunity to be introduced to a famous professor Johann Bernoulli. ... True, he was very busy and so refused flatly to give me private lessons; but he gave me much more valuable advice to start reading more difficult mathematical books on my own and to study them as diligently as I could; if I came across some obstacle or difficulty, I was given permission to visit him freely every Sunday afternoon and he kindly explained to me everything I could not understand ... S. Lapin () Leonhard Euler 03/20/08 7 / 41 Biography Early years In 1723 Euler completed his Master's degree in philosophy having compared and contrasted the philosophical ideas of Descartes and Newton. Euler completed his PhD at the University of Basel in 1726. He had studied many mathematical works during his time in Basel. They include works by Varignon, Descartes, Newton, Galileo, van Schooten, Jacob Bernoulli, Hermann, Taylor and Wallis. By 1726 Euler had already a paper in print, a short article on isochronous curves in a resisting medium. In 1727 he published another article on reciprocal trajectories and submitted an entry for the 1727 Grand Prize of the Paris Academy on the best arrangement of masts on a ship. He won second place, losing only to Pierre Bouguer. Euler subsequently won this annual prize twelve times in his career. S. Lapin () Leonhard Euler 03/20/08 8 / 41 Biography St. Petersburgh Outline 1 Biography Early years St. Petersburgh Berlin Return to St. Petersburgh 2 Contributions to mathematics Mathematical notation Analysis Number theory Graph theory Applied mathematics Physics and astronomy 3 Selected bibliography S. Lapin () Leonhard Euler 03/20/08 9 / 41 Biography St. Petersburgh St. Petersburgh Around this time Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg. In July 1726, Nicolas died of appendicitis and when Daniel assumed his brother's position in the mathematics/physics division, he recommended that his post in physiology be filled by his friend Euler. In November 1726 Euler accepted the offer, but delayed the trip to St Petersburg until spring of 1727. Euler arrived in St. Petersburgh on May 17, 1727. He was promoted from his junior post in the medical department of the academy to a position in the mathematics department. Euler mastered Russian and settled into life in St. Petersburg. He also took on an additional job as a medic in the Russian Navy. S. Lapin () Leonhard Euler 03/20/08 10 / 41 Biography St. Petersburgh St. Petersburgh The Academy at St. Petersburg, established by Peter the Great, was intended to improve education in Russia and to close the scientific gap with Western Europe. The academy possessed ample financial resources and a comprehensive library drawn from the private libraries of Peter himself and of the nobility. The academy emphasized research and offered to its faculty both the time and the freedom to pursue scientific questions. Euler rose quickly through the ranks in the academy and was made professor of physics in 1731. S. Lapin () Leonhard Euler 03/20/08 11 / 41 Biography St. Petersburgh St. Petersburgh When Daniel Bernoulli left St Petersburg to return to Basel in 1733 Euler was appointed to be the senior chair of mathematics. On January 7, 1734, he married Katharina Gsell, daughter of a painter from the Academy Gymnasium. They had 13 children, but only five survived their infancy. Euler claimed that he made some of his greatest mathematical discoveries while holding a baby in his arms with other children playing round his feet. The publication of many articles and his book Mechanica (1736-37), which extensively presented Newtonian dynamics in the form of mathematical analysis for the first time, started Euler on the way to major mathematical work. S. Lapin () Leonhard Euler 03/20/08 12 / 41 Biography Berlin Outline 1 Biography Early years St. Petersburgh Berlin Return to St. Petersburgh 2 Contributions to mathematics Mathematical notation Analysis Number theory Graph theory Applied mathematics Physics and astronomy 3 Selected bibliography S. Lapin () Leonhard Euler 03/20/08 13 / 41 Biography Berlin Berlin By 1740 Euler had a very high reputation, having won the Grand Prize of the Paris Academy in 1738 and 1740. Political turmoil in Russia forced Euler to accept an invitation of Frederick the Great of Prussia to take a post in Berlin Academy of Science. He left St. Petersburg on June 19th 1741, arriving in Berlin on July 25th. S. Lapin () Leonhard Euler 03/20/08 14 / 41 Biography Berlin Berlin Euler's 25 years in Berlin were very busy and productive. Besides the great mathematical success he also served on the Library and Scientific Publications Committee of the Berlin Academy and was a government advisor on state lotteries, insurance, annuities and pensions, and artillery. Euler wrote nearly 380 articles during his Berlin period. He also wrote many scientific and popular science books, including famous Letters to a Princess of Germany, which was translated into many languages and published almost 40 times. Euler led the Berlin Academy of Science after the death of Maupertuis in 1759, although he never held the formal title of President. S. Lapin () Leonhard Euler 03/20/08 15 / 41 Biography Berlin Euler's health problems began in 1735 when he had a severe fever and almost lost his life. In his autobiographical writings Euler says that his eyesight problems began in 1738 with overstrain due to his cartographic work and that by 1740 he had ... lost an eye and [the other] currently may be in the same danger. Euler's sight in that eye worsened throughout his stay in Germany, so much so that Frederick referred to him as "Cyclops". S. Lapin () Leonhard Euler 03/20/08 16 / 41 Biography Return to St. Petersburgh Outline 1 Biography Early years St. Petersburgh Berlin Return to St. Petersburgh 2 Contributions to mathematics Mathematical notation Analysis Number theory Graph theory Applied mathematics Physics and astronomy 3 Selected bibliography S. Lapin () Leonhard Euler 03/20/08 17 / 41 Biography Return to St. Petersburgh Return to St. Petersburgh In 1762, the politics in Russia changed. Empress Catherine II, later named Catherine the Great, came to the throne. The atmosphere in Russian society improved dramatically. S. Lapin () Leonhard Euler 03/20/08 18 / 41 Biography Return to St. Petersburgh Return to St. Petersburgh Catherine II aimed to create in Russia a regime of Educated Absolutism. She invited many progressive people to Russia and increased the budget of the St. Petersburgh Academy to 60000 rubles per year, which was much motre than the budget of the Berlin Academy. Catherine II offered Euler an important post in the mathematics department, conference-secretary of the Academy, with a big salary. She instructed her representative in Berlin to agree to Euler's terms if he does not like her first offer. In 1766 Euler returned to St. Petersburg. S. Lapin () Leonhard Euler 03/20/08 19 / 41 Biography Return to St. Petersburgh Return to St. Petersburgh In 1771 Euler's home was destroyed by fire and he was able to save only himself and his mathematical manuscripts. In September 1771, Euler had surgery to remove his cataract. The surgery was very successful - the mathematicians vision was restored. Unfortunately, Euler didnt take care of his eyes; he continued to work and after a few days lost his vision again, this time without any hope of recovery. However, because of his remarkable memory he was able to continue with his work on optics, algebra, and lunar motion. Amazingly after his return to St Petersburg he produced almost half his total works despite the total blindness! S.
Recommended publications
  • Refresher Course Content
    Calculus I Refresher Course Content 4. Exponential and Logarithmic Functions Section 4.1: Exponential Functions Section 4.2: Logarithmic Functions Section 4.3: Properties of Logarithms Section 4.4: Exponential and Logarithmic Equations Section 4.5: Exponential Growth and Decay; Modeling Data 5. Trigonometric Functions Section 5.1: Angles and Radian Measure Section 5.2: Right Triangle Trigonometry Section 5.3: Trigonometric Functions of Any Angle Section 5.4: Trigonometric Functions of Real Numbers; Periodic Functions Section 5.5: Graphs of Sine and Cosine Functions Section 5.6: Graphs of Other Trigonometric Functions Section 5.7: Inverse Trigonometric Functions Section 5.8: Applications of Trigonometric Functions 6. Analytic Trigonometry Section 6.1: Verifying Trigonometric Identities Section 6.2: Sum and Difference Formulas Section 6.3: Double-Angle, Power-Reducing, and Half-Angle Formulas Section 6.4: Product-to-Sum and Sum-to-Product Formulas Section 6.5: Trigonometric Equations 7. Additional Topics in Trigonometry Section 7.1: The Law of Sines Section 7.2: The Law of Cosines Section 7.3: Polar Coordinates Section 7.4: Graphs of Polar Equations Section 7.5: Complex Numbers in Polar Form; DeMoivre’s Theorem Section 7.6: Vectors Section 7.7: The Dot Product 8. Systems of Equations and Inequalities (partially included) Section 8.1: Systems of Linear Equations in Two Variables Section 8.2: Systems of Linear Equations in Three Variables Section 8.3: Partial Fractions Section 8.4: Systems of Nonlinear Equations in Two Variables Section 8.5: Systems of Inequalities Section 8.6: Linear Programming 10. Conic Sections and Analytic Geometry (partially included) Section 10.1: The Ellipse Section 10.2: The Hyperbola Section 10.3: The Parabola Section 10.4: Rotation of Axes Section 10.5: Parametric Equations Section 10.6: Conic Sections in Polar Coordinates 11.
    [Show full text]
  • Differential Calculus and by Era Integral Calculus, Which Are Related by in Early Cultures in Classical Antiquity the Fundamental Theorem of Calculus
    History of calculus - Wikipedia, the free encyclopedia 1/1/10 5:02 PM History of calculus From Wikipedia, the free encyclopedia History of science This is a sub-article to Calculus and History of mathematics. History of Calculus is part of the history of mathematics focused on limits, functions, derivatives, integrals, and infinite series. The subject, known Background historically as infinitesimal calculus, Theories/sociology constitutes a major part of modern Historiography mathematics education. It has two major Pseudoscience branches, differential calculus and By era integral calculus, which are related by In early cultures in Classical Antiquity the fundamental theorem of calculus. In the Middle Ages Calculus is the study of change, in the In the Renaissance same way that geometry is the study of Scientific Revolution shape and algebra is the study of By topic operations and their application to Natural sciences solving equations. A course in calculus Astronomy is a gateway to other, more advanced Biology courses in mathematics devoted to the Botany study of functions and limits, broadly Chemistry Ecology called mathematical analysis. Calculus Geography has widespread applications in science, Geology economics, and engineering and can Paleontology solve many problems for which algebra Physics alone is insufficient. Mathematics Algebra Calculus Combinatorics Contents Geometry Logic Statistics 1 Development of calculus Trigonometry 1.1 Integral calculus Social sciences 1.2 Differential calculus Anthropology 1.3 Mathematical analysis
    [Show full text]
  • Trigonometric Functions
    Trigonometric Functions This worksheet covers the basic characteristics of the sine, cosine, tangent, cotangent, secant, and cosecant trigonometric functions. Sine Function: f(x) = sin (x) • Graph • Domain: all real numbers • Range: [-1 , 1] • Period = 2π • x intercepts: x = kπ , where k is an integer. • y intercepts: y = 0 • Maximum points: (π/2 + 2kπ, 1), where k is an integer. • Minimum points: (3π/2 + 2kπ, -1), where k is an integer. • Symmetry: since sin (–x) = –sin (x) then sin(x) is an odd function and its graph is symmetric with respect to the origin (0, 0). • Intervals of increase/decrease: over one period and from 0 to 2π, sin (x) is increasing on the intervals (0, π/2) and (3π/2 , 2π), and decreasing on the interval (π/2 , 3π/2). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Cosine Function: f(x) = cos (x) • Graph • Domain: all real numbers • Range: [–1 , 1] • Period = 2π • x intercepts: x = π/2 + k π , where k is an integer. • y intercepts: y = 1 • Maximum points: (2 k π , 1) , where k is an integer. • Minimum points: (π + 2 k π , –1) , where k is an integer. • Symmetry: since cos(–x) = cos(x) then cos (x) is an even function and its graph is symmetric with respect to the y axis. • Intervals of increase/decrease: over one period and from 0 to 2π, cos (x) is decreasing on (0 , π) increasing on (π , 2π). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Tangent Function : f(x) = tan (x) • Graph • Domain: all real numbers except π/2 + k π, k is an integer.
    [Show full text]
  • Infinitesimal and Tangent to Polylogarithmic Complexes For
    AIMS Mathematics, 4(4): 1248–1257. DOI:10.3934/math.2019.4.1248 Received: 11 June 2019 Accepted: 11 August 2019 http://www.aimspress.com/journal/Math Published: 02 September 2019 Research article Infinitesimal and tangent to polylogarithmic complexes for higher weight Raziuddin Siddiqui* Department of Mathematical Sciences, Institute of Business Administration, Karachi, Pakistan * Correspondence: Email: [email protected]; Tel: +92-213-810-4700 Abstract: Motivic and polylogarithmic complexes have deep connections with K-theory. This article gives morphisms (different from Goncharov’s generalized maps) between |-vector spaces of Cathelineau’s infinitesimal complex for weight n. Our morphisms guarantee that the sequence of infinitesimal polylogs is a complex. We are also introducing a variant of Cathelineau’s complex with the derivation map for higher weight n and suggesting the definition of tangent group TBn(|). These tangent groups develop the tangent to Goncharov’s complex for weight n. Keywords: polylogarithm; infinitesimal complex; five term relation; tangent complex Mathematics Subject Classification: 11G55, 19D, 18G 1. Introduction The classical polylogarithms represented by Lin are one valued functions on a complex plane (see [11]). They are called generalization of natural logarithms, which can be represented by an infinite series (power series): X1 zk Li (z) = = − ln(1 − z) 1 k k=1 X1 zk Li (z) = 2 k2 k=1 : : X1 zk Li (z) = for z 2 ¼; jzj < 1 n kn k=1 The other versions of polylogarithms are Infinitesimal (see [8]) and Tangential (see [9]). We will discuss group theoretic form of infinitesimal and tangential polylogarithms in x 2.3, 2.4 and 2.5 below.
    [Show full text]
  • Calculus? Can You Think of a Problem Calculus Could Be Used to Solve?
    Mathematics Before you read Discuss these questions with your partner. What do you know about calculus? Can you think of a problem calculus could be used to solve? В A Vocabulary Complete the definitions below with words from the box. slope approximation embrace acceleration diverse indispensable sphere cube rectangle 1 If something is a(n) it В Reading 1 isn't exact. 2 An increase in speed is called Calculus 3 If something is you can't Calculus is the branch of mathematics that deals manage without it. with the rates of change of quantities as well as the length, area and volume of objects. It grew 4 If you an idea, you accept it. out of geometry and algebra. There are two 5 A is a three-dimensional, divisions of calculus - differential calculus and square shape. integral calculus. Differential calculus is the form 6 Something which is is concerned with the rate of change of quantities. different or of many kinds. This can be illustrated by slopes of curves. Integral calculus is used to study length, area 7 If you place two squares side by side, you and volume. form a(n) The earliest examples of a form of calculus date 8 A is a three-dimensional back to the ancient Greeks, with Eudoxus surface, all the points of which are the same developing a mathematical method to work out distance from a fixed point. area and volume. Other important contributions 9 A is also known as a fall. were made by the famous scientist and mathematician, Archimedes. In India, over the 98 Macmillan Guide to Science Unit 21 Mathematics 4 course of many years - from 500 AD to the 14th Pronunciation guide century - calculus was studied by a number of mathematicians.
    [Show full text]
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • Introduction to Differential Equations
    Introduction to Differential Equations Lecture notes for MATH 2351/2352 Jeffrey R. Chasnov k kK m m x1 x2 The Hong Kong University of Science and Technology The Hong Kong University of Science and Technology Department of Mathematics Clear Water Bay, Kowloon Hong Kong Copyright ○c 2009–2016 by Jeffrey Robert Chasnov This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Preface What follows are my lecture notes for a first course in differential equations, taught at the Hong Kong University of Science and Technology. Included in these notes are links to short tutorial videos posted on YouTube. Much of the material of Chapters 2-6 and 8 has been adapted from the widely used textbook “Elementary differential equations and boundary value problems” by Boyce & DiPrima (John Wiley & Sons, Inc., Seventh Edition, ○c 2001). Many of the examples presented in these notes may be found in this book. The material of Chapter 7 is adapted from the textbook “Nonlinear dynamics and chaos” by Steven H. Strogatz (Perseus Publishing, ○c 1994). All web surfers are welcome to download these notes, watch the YouTube videos, and to use the notes and videos freely for teaching and learning. An associated free review book with links to YouTube videos is also available from the ebook publisher bookboon.com. I welcome any comments, suggestions or corrections sent by email to [email protected].
    [Show full text]
  • An Appreciation of Euler's Formula
    Rose-Hulman Undergraduate Mathematics Journal Volume 18 Issue 1 Article 17 An Appreciation of Euler's Formula Caleb Larson North Dakota State University Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Larson, Caleb (2017) "An Appreciation of Euler's Formula," Rose-Hulman Undergraduate Mathematics Journal: Vol. 18 : Iss. 1 , Article 17. Available at: https://scholar.rose-hulman.edu/rhumj/vol18/iss1/17 Rose- Hulman Undergraduate Mathematics Journal an appreciation of euler's formula Caleb Larson a Volume 18, No. 1, Spring 2017 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 [email protected] a scholar.rose-hulman.edu/rhumj North Dakota State University Rose-Hulman Undergraduate Mathematics Journal Volume 18, No. 1, Spring 2017 an appreciation of euler's formula Caleb Larson Abstract. For many mathematicians, a certain characteristic about an area of mathematics will lure him/her to study that area further. That characteristic might be an interesting conclusion, an intricate implication, or an appreciation of the impact that the area has upon mathematics. The particular area that we will be exploring is Euler's Formula, eix = cos x + i sin x, and as a result, Euler's Identity, eiπ + 1 = 0. Throughout this paper, we will develop an appreciation for Euler's Formula as it combines the seemingly unrelated exponential functions, imaginary numbers, and trigonometric functions into a single formula. To appreciate and further understand Euler's Formula, we will give attention to the individual aspects of the formula, and develop the necessary tools to prove it.
    [Show full text]
  • Historical Notes on Calculus
    Historical notes on calculus Dr. Vladimir Dotsenko Dr. Vladimir Dotsenko Historical notes on calculus 1/9 Descartes: Describing geometric figures by algebraic formulas 1637: Ren´eDescartes publishes “La G´eom´etrie”, that is “Geometry”, a book which did not itself address calculus, but however changed once and forever the way we relate geometric shapes to algebraic equations. Later works of creators of calculus definitely relied on Descartes’ methodology and revolutionary system of notation in the most fundamental way. Ren´eDescartes (1596–1660), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 2/9 Fermat: “Pre-calculus” 1638: In a letter to Mersenne, Pierre de Fermat explains what later becomes the key point of his works “Methodus ad disquirendam maximam et minima” and “De tangentibus linearum curvarum”, that is “Method of discovery of maximums and minimums” and “Tangents of curved lines” (published posthumously in 1679). This is not differential calculus per se, but something equivalent. Pierre de Fermat (1601–1665), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 3/9 Pascal and Huygens: Implicit calculus In 1650s, slightly younger scientists like Blaise Pascal and Christiaan Huygens also used methods similar to those of Fermat to study maximal and minimal values of functions. They did not talk about anything like limits, but in fact were doing exactly the things we do in modern calculus for purposes of geometry and optics. Blaise Pascal (1623–1662), courtesy of Christiaan Huygens (1629–1695), Wikipedia courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 4/9 Barrow: Tangents vs areas 1669-70: Isaac Barrow publishes “Lectiones Opticae” and “Lectiones Geometricae” (“Lectures on Optics” and “Lectures on Geometry”), based on his lectures in Cambridge.
    [Show full text]
  • 2. the Tangent Line
    2. The Tangent Line The tangent line to a circle at a point P on its circumference is the line perpendicular to the radius of the circle at P. In Figure 1, The line T is the tangent line which is Tangent Line perpendicular to the radius of the circle at the point P. T Figure 1: A Tangent Line to a Circle While the tangent line to a circle has the property that it is perpendicular to the radius at the point of tangency, it is not this property which generalizes to other curves. We shall make an observation about the tangent line to the circle which is carried over to other curves, and may be used as its defining property. Let us look at a specific example. Let the equation of the circle in Figure 1 be x22 + y = 25. We may easily determine the equation of the tangent line to this circle at the point P(3,4). First, we observe that the radius is a segment of the line passing through the origin (0, 0) and P(3,4), and its equation is (why?). Since the tangent line is perpendicular to this line, its slope is -3/4 and passes through P(3, 4), using the point-slope formula, its equation is found to be Let us compute y-values on both the tangent line and the circle for x-values near the point P(3, 4). Note that near P, we can solve for the y-value on the upper half of the circle which is found to be When x = 3.01, we find the y-value on the tangent line is y = -3/4(3.01) + 25/4 = 3.9925, while the corresponding value on the circle is (Note that the tangent line lie above the circle, so its y-value was expected to be a larger.) In Table 1, we indicate other corresponding values as we vary x near P.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Differentiation Rules (Differential Calculus)
    Differentiation Rules (Differential Calculus) 1. Notation The derivative of a function f with respect to one independent variable (usually x or t) is a function that will be denoted by D f . Note that f (x) and (D f )(x) are the values of these functions at x. 2. Alternate Notations for (D f )(x) d d f (x) d f 0 (1) For functions f in one variable, x, alternate notations are: Dx f (x), dx f (x), dx , dx (x), f (x), f (x). The “(x)” part might be dropped although technically this changes the meaning: f is the name of a function, dy 0 whereas f (x) is the value of it at x. If y = f (x), then Dxy, dx , y , etc. can be used. If the variable t represents time then Dt f can be written f˙. The differential, “d f ”, and the change in f ,“D f ”, are related to the derivative but have special meanings and are never used to indicate ordinary differentiation. dy 0 Historical note: Newton used y,˙ while Leibniz used dx . About a century later Lagrange introduced y and Arbogast introduced the operator notation D. 3. Domains The domain of D f is always a subset of the domain of f . The conventional domain of f , if f (x) is given by an algebraic expression, is all values of x for which the expression is defined and results in a real number. If f has the conventional domain, then D f usually, but not always, has conventional domain. Exceptions are noted below.
    [Show full text]