Exo-Ocean Exploration with Deep-Sea Sensor and Platform

Total Page:16

File Type:pdf, Size:1020Kb

Exo-Ocean Exploration with Deep-Sea Sensor and Platform Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies J Aguzzi, M Flexas, S Flögel, C Lo Iacono, M Tangherlini, C Costa, S Marini, N Bahamon, S Martini, E Fanelli, et al. To cite this version: J Aguzzi, M Flexas, S Flögel, C Lo Iacono, M Tangherlini, et al.. Exo-Ocean Exploration with Deep- Sea Sensor and Platform Technologies. Astrobiology, Mary Ann Liebert, 2020, 20 (7), pp.897 - 915. 10.1089/ast.2019.2129. hal-03203246 HAL Id: hal-03203246 https://hal.archives-ouvertes.fr/hal-03203246 Submitted on 20 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AST-2019-2129-ver9-Aguzzi_1P.3d 02/29/20 4:48am Page 1 AST-2019-2129-ver9-Aguzzi_1P Type: review-article ASTROBIOLOGY Volume 20, Number 7, 2020 Review Article ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2019.2129 Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies J. Aguzzi,1,2 M.M. Flexas,3 S. Flo¨gel,4 C. Lo Iacono,1,5 M. Tangherlini,2 C. Costa,6 S. Marini,7 N. Bahamon,1 S. Martini,8 E. Fanelli,2,9 R. Danovaro,2,9 S. Stefanni,2 L. Thomsen,10 G. Riccobene,11 M. Hildebrandt,12 I. Masmitja,13 J. Del Rio,13 E.B. Clark,14 A. Branch,14 P. Weiss,15 A.T. Klesh,14 and M.P. Schodlok14 Abstract One of Saturn’s largest moons, Enceladus, possesses a vast extraterrestrial ocean (i.e., exo-ocean) that is increasingly becoming the hotspot of future research initiatives dedicated to the exploration of putative life. Here, a new bio-exploration concept design for Enceladus’ exo-ocean is proposed, focusing on the putative presence of organisms across a wide range of sizes (i.e., from uni- to multicellular and animal-like), according to state-of-the-art sensor and robotic platforms, technologies used in terrestrial deep-sea research. In particular, we focus on combined direct and indirect life-detection capabilities, based on optoacoustic imaging and passive acoustics, as well as molecular approaches. Such biologically oriented sampling can be accompanied by concomitant geochemical and oceanographic measurements to provide data relevant to exo-ocean exploration and understanding. Finally, we describe how this multidisciplinary monitoring approach is currently enabled in terrestrial oceans through cabled (fixed) observatories and their related mobile multiparametric platforms (i.e., Autonomous Underwater and Remotely Operated Vehicles, as well as crawlers, rovers, and biomimetic robots) and how their modified design can be used for exo-ocean exploration. Key Words: Exo-ocean—Enceladus— Deep-sea technology—Autonomous underwater vehicles—Crawlers—Cryobots. Astrobiology 20, xxx–xxx. 1. Introduction subsurface ocean, such as Saturn’s moon Dione, Neptune’s icy moon Triton, and the dwarf planet Pluto. Moreover, the iquid water is present in the form of vast extraterres- dwarf planet Ceres seems to have at least a subsurface sea Ltrial oceans (i.e., exo-oceans) on various icy moons of (Henin, 2018). our solar system (NASEM, 2018; Hendrix et al., 2019; Ka- The primary conditions under which we could expect to mata et al., 2019). Five icy moons have been confirmed as find extant life in exo-oceans (although this hypothesis is ocean worlds, namely, three satellites of Jupiter (Europa, still uncertain at this stage of scientific research) are the Ganymede, and Callisto) and two of Saturn (Enceladus and presence of energy sources that facilitate a non-equilibrium Titan, the latter with an exo-ocean below a thick hydrocarbon thermodynamic state of a marine-like medium containing layer; Iess et al., 2012). Another four are likely to host a abundant organic compounds (Schwieterman et al., 2018). 1Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain. 2Stazione Zoologica Anton Dohrn, Naples, Italy. 3California Institute of Technology, Pasadena, California, USA. 4GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany. 5National Oceanographic Center (NOC), University of Southampton, Southampton, United Kingdom. 6Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)-Centro di ricerca Ingegneria e Trasformazioni agroalimentari - Monterotondo, Rome, Italy. 7National Research Council of Italy (CNR), Institute of Marine Sciences, La Spezia, Italy. 8Sorbonne Universite´, CNRS, Laboratoire d’Oce´anographie de Villefranche, Villefranche-sur-mer, France. 9Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy. 10Jacobs University, Bremen, Germany. 11Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud, Catania, Italy. 12German Research Center for Artificial Intelligence (DFKI), Bremen, Germany. 13SARTI, Universitat Polite`cnica de Catalunya (UPC), Barcelona, Spain. 14Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA. 15COMEX, Marseille, France. 1 AST-2019-2129-ver9-Aguzzi_1P.3d 02/29/20 4:48am Page 2 2 AGUZZI ET AL. Among the above-mentioned icy moons, Enceladus and primary producers, grazers, predators, scavengers, and re- Europa meet these conditions. Both host large water-based mineralizing organisms (e.g., Lelie`vre et al., 2018). oceans in which geothermal activity is present and where Unfortunately, exploration for life in Enceladus’ exo- life could be possible (Manga and Wang, 2007; Iess et al., ocean presents technological challenges of much higher 2014; Deamer and Damer, 2017; Rovira-Navarro et al., complexity than the exploration of any location in the deep 2019). In fact, relevant geothermal activity has been imaged sea on Earth. Instrument payloads will likely have a con- on both moons by the Cassini-Huygens probe as well as by straining effect on their use for the exploration of Enceladus the Galileo and Hubble Space Telescope space missions over the next decades, although the weight of their casing (Henin, 2018). Notwithstanding, the presence of organic can be greatly reduced compared to ocean instrumentation molecules as markers for more complex compounds (e.g., on Earth due to the reduced gravity on Enceladus. More- amino acids and nucleotides), dissolved into a salty marine over, the penetration of a potentially large ice shell requires medium, has been directly indicated by the Cassini-Huygens tools to carve or melt tunnels on the scale of kilometers, in probe of Enceladus’ plumes (McKay et al., 2014; Hsu et al., order to open the passage for any marine-like exploring 2015; Kimura and Kitadai, 2015; Mann, 2017; Postberg platforms (Weiss et al., 2008; Flo¨gel et al., 2018). Anyway, et al., 2018). This fact makes Enceladus the most promising those technological efforts are already in place. Different site for extraterrestrial life exploration (Postberg et al., projects such as the Enceladus Explorer (EnEx) and the 2018). Europa Explorer (EurEx) (Konstantinidis et al., 2013), as b AU1 Enceladus is 500 km in diameter with a gravity field of well as the Very-Deep Autonomous Laser-Powered only 1.2% that of Earth (Manga and Wang, 2007). Its vast Kilowatt-Class Yo-Yoing Robotic Ice Explorer (VALK- exo-ocean mechanically decouples the rocky core from the YRIE) are presently focusing on autonomous navigation and exterior ice shell (Thomas et al., 2016). The water body is control of robotic systems on, and especially under, exo- kept fluid by geothermal activity in combination with tidal ocean ice shells. warming through Saturn’s tidal pull forces and by ice shell thickness variations, all likely contributing to abrupt chan- 1.1. Objectives ges in water column pressure (Hussmann et al., 2006; Motivated by data indicating that Enceladus’ exo-ocean Manga and Wang, 2007; Jansen, 2016; Saxena et al., 2018; may host complex organic life and given the time span of its Hemingway and Mittal, 2019; Neveu and Rhoden, 2019). existence as a fluid body (Postberg et al., 2018), we provide Pressure changes result in active geysers, which eject water a perspective for implementing its environmental and life- plumes into space, creating the phenomenon of cryo- oriented exploration based on available deep-sea technologies. F1 c volcanism (Fig. 1). Strong geothermal gradients and high We first describe high-priority sensors that are currently in pressure produce large fluxes of hot water, transported use for marine sciences, when aiming at the characterization through the ice shell via cracks and crevasses (Choblet of pelagic and benthic seascapes, whose environmental et al., 2017). Due to decompression shocks, water suddenly conditions may affect life itself. Then we focus on those evaporates and freezes once it emerges into space, dropping sensors that allow the detection of multicellular life-forms back on the surface as snow (Beˇhounkova´ et al., 2017). (i.e., animal-like), which is, to date, primarily carried out by Exo-ocean salinity conditions on Enceladus seem to be imaging systems. At the same time, we also describe com- similar to those on Earth (Fifer et al., 2019), which would plementary molecular methods for indirect traceability of lead to a water density of approximately 1020 kg/m3,similar life (that would also allow the capability of detection of to that of terrestrial oceans (Hemingway and Mittal, 2019). unicellular life). Later, we illustrate the different marine mon- However, the average depth is much higher, being approxi- itoring platforms and their assemblage into high-tech networks mately between 30 and 50 km (Iess et al., 2014, Hemingway that could be used as test beds for exo-ocean life-detecting and Mittal, 2019). This would generate a total volume of technologies. Ultimately, we propose a forward-looking path- around 40% of the mass of the moon itself (Cˇ adek et al., way for environmental exploration of exo-oceans based on 2016).
Recommended publications
  • Astrometric Reduction of Cassini ISS Images of the Saturnian Satellites Mimas and Enceladus? R
    A&A 551, A129 (2013) Astronomy DOI: 10.1051/0004-6361/201220831 & c ESO 2013 Astrophysics Astrometric reduction of Cassini ISS images of the Saturnian satellites Mimas and Enceladus? R. Tajeddine1;3, N. J. Cooper1;2, V. Lainey1, S. Charnoz3, and C. D. Murray2 1 IMCCE, Observatoire de Paris, UMR 8028 du CNRS, UPMC, Université de Lille 1, 77 av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 2 Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, UK 3 Laboratoire AIM, UMR 7158, Université Paris Diderot – CEA IRFU – CNRS, Centre de l’Orme les Merisiers, 91191 Gif-sur-Yvette Cedex, France Received 2 December 2012 / Accepted 6 February 2013 ABSTRACT Aims. We provide astrometric observations of two of Saturn’s main satellites, Mimas and Enceladus, using high resolution Cassini ISS Narrow Angle Camera images. Methods. We developed a simplified astrometric reduction model for Cassini ISS images as an alternative to the one proposed by the Jet Propulsion Labratory (JPL). The particular advantage of the new model is that it is easily invertible, with only marginal loss in accuracy. We also describe our new limb detection and fitting technique. Results. We provide a total of 1790 Cassini-centred astrometric observations of Mimas and Enceladus, in right ascension (α) and declination (δ) in the International Celestial Reference Frame (ICRF). Mean residuals compared to JPL ephemerides SAT317 and SAT351 of about one kilometre for Mimas and few hundreds of metres for Enceladus were obtained, in α cos δ and δ, with a standard deviation of a few kilometres for both satellites.
    [Show full text]
  • Comparative Saturn-Versus-Jupiter Tether Operation
    Journal of Geophysical Research: Space Physics Comparative Saturn-Versus-Jupiter Tether Operation J. R. Sanmartin1 ©, J. Pelaez1 ©, and I. Carrera-Calvo1 Abstract Saturn, Uranus, and Neptune, among the four Giant Outer planets, have magnetic field B about 20 times weaker than Jupiter. This could suggest, in principle, that planetary capture and operation using tethers, which involve B effects twice, might be much less effective at Saturn, in particular, than at Jupiter. It was recently found, however, that the very high Jovian B itself strongly limits conditions for tether use, maximum captured spacecraft-to-tether mass ratio only reaching to about 3.5. Further, it is here shown that planetary parameters and low magnetic field might make tether operation at Saturn more effective than at Jupiter. Operation analysis involves electron plasma density in a limited radial range, about 1-1.5 times Saturn radius, and is weakly requiring as regards density modeling. 1. Introduction All Giant Outer planets have magnetic field B and corotating plasma, allowing nonconventional exploration. Electrodynamic tethers, which are thermodynamic (dissipative) in character, can 1. provide propellantless drag both for deorbiting spacecraft in Low Earth Orbit at end of mission and for planetary spacecraft capture and operation down the gravitational well, and 2. generate accompanying, useful electrical power, or store it to later invert tether current (Sanmartin et al., 1993; Sanmartin & Estes, 1999). At Jupiter, tethers could be effective because its field B is high (Sanmartin et al., 2008). Tethers would allow a variety of science applications (Sanchez-Torres & Sanmartin, 2011). The Saturn field is 20 times smaller, however, and tether operation involves field B twice, which makes that thermodynamic character manifest: 1.
    [Show full text]
  • Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
    Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets.
    [Show full text]
  • Stone Aerospace Saves 12 Weeks in Cabling Design by Implementing a Digital Design Process
    SUCCESS STORY ® Zuken’s software solution for electrical wiring, control systems and fluid engineering. Stone Aerospace saves 12 weeks in cabling design by implementing a digital design process “We achieved substantial productivity gains because engineers had a very clear picture of what one another were doing, and because of the automated checks performed by the software.“ John Harman, Electrical Engineer, Stone Aerospace ZUKEN - The Partner for Success SUCCESS STORY Stone Aerospace saves 12 weeks in cabling design by implementing a digital design process Stone Aerospace faced the pressure of a tight schedule in designing Results a one-of-a-kind underwater autonomous vehicle (AUV) capable • Elimination of $20,000 in cable of traveling 15km under the Antarctic ice shelf. The AUV acts as a rework and expedited delivery costs testing ground to validate an aircraft-mounted radar system that • Design cycle reduction by 12 weeks will be used in a space mission. The time needed to design the wiring • Ability to view the electrical and harness for the AUV was reduced by around 12 weeks and $20,000 physical design of the entire craft in was saved by using E3.series to automate many aspects of the design a single hierarchical view process, while integrating the logical and physical design on a single • E ective design team collaboration platform. created common nomenclature improving quality and cutting errors The search for life in space aspects such as temperature, depth and water current velocities, and to identify • Automated checks ensured correct Scientists believe that underneath the microbiological communities. connector selections. icy surface of Europa, one of Jupiter’s moons, is a vast ocean thought to be the Cable design challenges most likely location for finding life in our solar system.
    [Show full text]
  • Abernathy, Adams, Addison, Alewine, Allen, Allred
    BUSCAPRONTA www.buscapronta.com ARQUIVO 14 DE PESQUISAS GENEALÓGICAS 168 PÁGINAS – MÉDIA DE 54.100 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.
    [Show full text]
  • Enceladus Explorer: Next Steps in the Development and Testing of a Steerable Subsurface Ice Probe for Autonomous Operation
    Enceladus and the Icy Moons of Saturn (2016) 3031.pdf ENCELADUS EXPLORER: NEXT STEPS IN THE DEVELOPMENT AND TESTING OF A STEERABLE SUBSURFACE ICE PROBE FOR AUTONOMOUS OPERATION. B. Dachwald1, J. Kowalski2, F. Baader1, C. Espe1, M. Feldmann1, G. Francke1, E. Plescher1, 1Faculty of Aerospace Engineering, FH Aachen University of Applied Sciences, Hohenstaufenallee 6, 52064 Aa- chen, Germany, [email protected], 2Aachen Institute for Advanced Study in Computational Engineering Sci- ence, RWTH Aachen University, Germany Introduction: Direct access to subsurface liquid flexibly organized initiative with sub-projects focused material for in-situ analysis at Enceladus' South Polar on key research and development areas. The sub- Terrain is very difficult and requires advanced access project at FH Aachen is called EnEx-nExT (Environ- technology with a high level of cleanliness, robustness, mental Experimental Testing). Since the EnEx- and autonomy. A new technological approach has been IceMole was quite large (15 x 15 x 200 cm) and heavy developed as part of the collaborative research project / (60 kg), a much smaller (8 x 8 x 40 cm) and light- initiative “Enceladus Explorer” (EnEx) [1]. Within weight (< 5 kg) probe is currently developed within EnEx, the required technology for a potential Encela- EnEx-nExT. In the next two years, this smaller probe dus lander mission [2] is developed, evaluated, and will be tested in a vacuum chamber under simulated tested, with a strong focus on a steerable subsurface ice space conditions (pressure < 6 mbar, temperature probe. The EnEx probe shall autonomously navigate < 100 K) to prove the applicability of combined drill- through the ice and find a location where a liquid water ing and melting probes under more Enceladus-like sample can be taken and analyzed in situ.
    [Show full text]
  • November, 1935 Central Edition
    November, 1935 Central Edition k ARMISTICE MURAL PANEL BY EUGENE SAVAGE ELKS NATIONAL MEMORIAL BUILDING CHICAGO, ILL. i What Is Good Taste? And mellow as a lute note That's the kind Old Overholt Good rye whiskey Straight rye whiskey is ... Should taste of good rye Has been for 125 years Should remind you And it's back again now When you sip it Bottled in bond Of tall stalks 4'/^ years old Heavy with sun-plump kernels And as gracious to the palate Nodding in the breeze As barreled Nature Should be extra rich A corking drink to uncork! In body too Robust in flavor Deep in color Grainy in bouquet h- m R«r. V.S.Vtu (jS. BOTTLED IN BOND UNDER U. S. GOVERNMENT SUPERVtSION , A. Ovechoh BiCo.. inc.. BrOsd Ford. Pa. A GOOD GUIDE TO GOOD WHISKCyJ November, 1935 The 7§UfSt AmMUiiQ. SHAKESPEARE 8MiqiCMt ivetOffe^tcd! Yes, Only 98c—in full and with no further pay ments—for this beautiful volume of Shakespeare's Complete Works! And you don't even have to send I the 98c now! Unless you are fully convinced that this is the biggest book bargain you have ever seen after reading the book for 7 days at our risk, you may return it. Just mailing the coupon below will bring your copy at once. But send it NOW—because this offer has never been made before and may never be made again! COMPLETE—Every Word He Ever Wrote IM , Now, in one single volume is the world's marvelous knowledge of language and supreme literature—very word Shakespeare psychology will make you a better ever wrote.
    [Show full text]
  • Visionary Counting on Unmanned Vehicles
    Visionary Counting on Unmanned Vehicles By Rich Tuttle Bill Stone, the founder of Stone Aerospace, has a vision—several visions, in fact—and unmanned vehicles play a part in a number of them. His Austin, Texas-based company developed and built the DEPTHX robot that last May conducted the first comprehensive exploration of the world’s deepest sink hole, El Zacaton in Mexico. It brought back enough data to keep scientists enthralled for some time. An unmanned system based on DEPTHX (DEep Phreatic—meaning underwater cave—THermal eXplorer) will be tested in Antarctica beginning next year to help determine the suitability of such a device to meet, in about 20 years, what’s been called the ultimate robotic challenge: exploring the ice- covered ocean of Europa, a moon of Jupiter. Scientists believe there’s a high probability of detecting the first life off Earth in that remote and ancient sea. That's one vision. The challenges would fill a book: melting through many kilometers of ice just to get to the ocean, for instance. That will be addressed in the Antarctica experiments. But DEPTHX does seem to have demonstrated the possibility of clearing two other key hurdles—surviving in a three-dimensional, unexplored environment without external navigation aids; and carrying out science experiments autonomously. DEPTHX's abilities are two generations beyond those of the Spirit and Opportunity rovers on Mars right now, Stone says in an interview. Every move of the Mars vehicles is based on a carefully prepared script. But, Stone says, “in the case of Europa, it can’t be that way.” The computer brain of a Europa probe would have to be wired to achieve “global” objectives, he says.
    [Show full text]
  • JPL Technology Highlights from 2020
    Jet Propulsion LaboratoryJet Propulsion National Aeronautics and Space Administration Technology Highlights Technology 2020 TECHnOLOGY HIGHLIGHTS Jet Propulsion Laboratory National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California www.jpl.nasa.gov 2020 CL#20-6401 This JPL 2020 Technology Highlights presents a diverse set of technology developments — selected by the Chief Technologist out of many similar efforts at JPL — that are essential for JPL’s continuing contribution to NASA’s future success. These technology snapshots represent the work of individuals whose talents bridge science, technology, engineering, and management, and illustrate the broad spectrum of knowledge and technical skills at JPL. While this document identifies important areas of technology development in 2019, many other technologies remain equally important to JPL’s ability to successfully contribute to NASA’s space exploration missions, including mature technologies that are commercially available and technologies whose leadership is firmly established elsewhere. About the cover: the Mars Helicopter, 1 known as Ingenuity, is set to perform the first powered flight on another world. HIGHLIGHTS TECHNOLOGY 2020 As NASA’s leading center for robotic exploration of the universe, JPL develops technologies that advance our pursuit of discoveries to the benefit of humanity. Although our technologies are to enable science, they often have dual use for commercial and urgent societal needs. Despite the pandemic, JPL accomplished Prioritizing technology development and infusion has OFFICE OF THE its biggest goal of 2020. The next Mars always been a crucial piece of the Laboratory’s mission rover, Perseverance, is healthy and well on its success. No one has tried to dig kilometers through the icy way to the Red Planet.
    [Show full text]
  • Design and Deployment of a 3D Autonomous Subterranean Submarine Exploration Vehicle
    DESIGN AND DEPLOYMENT OF A 3D AUTONOMOUS SUBTERRANEAN SUBMARINE EXPLORATION VEHICLE William C. Stone, Stone Aerospace / PSC, Inc. 3511 Caldwell Lane, Del Valle, TX 78617, Ph: (512) 247-6385, [email protected] ABSTRACT likely include the following components: The NASA Deep Phreatic Thermal Explorer • the parent spacecraft, which will remain in orbit (DEPTHX) project is developing a fully autonomous either about Jupiter or about Europa and which will underwater vehicle intended as a prototype of primarily serve as a data relay back to Earth from the the Europa lander third stage that will search for Lander. microbial life beneath the ice cap of that Jovian • the Lander, which will be a 3-stage device: moon. DEPTHX has two principal objectives: First, to develop and test in an appropriate environment Stage 1: the physical landing system that will contain the ability for an un-tethered robot to explore into propulsion systems, power, and data relay systems to unknown 3D territory, to make a map of what it sees, communicate with the orbiter, and which will control and to use that map to return home; and second, to and carry out the descent and automated landing on demonstrate that science autonomy behaviors can the moon. identify likely zones for the existence of microbial life, to command an autonomous maneuvering Stage 2: the “cryobot” second stage, which will melt platform to move to those locations, conduct localized a hole through up to ten kilometers of ice cap before searches, and to autonomously collect microbial reaching the sub-surface liquid ocean. Although the life in an aqueous environment.
    [Show full text]