The Effect of High Temperature on Physiological and Metabolic Parameters and Reproductive Tissues of Okra (Abelmoschus Esculentus (L.) Moench)

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of High Temperature on Physiological and Metabolic Parameters and Reproductive Tissues of Okra (Abelmoschus Esculentus (L.) Moench) The effect of high temperature on physiological and metabolic parameters and reproductive tissues of okra (Abelmoschus esculentus (L.) Moench) By Shahnoosh Hayamanesh A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Sydney Sydney Institute of Agriculture School of Life and Environmental Sciences Faculty of Science Centre for Carbon, Water and Food 380 Werombi Rd, Brownlow Hill NSW, Australia 2018 Certificate of originality This is to certify that to the best of my knowledge, the content of this thesis is my own work and it contains no material previously published or written by another person for the award of any other degree in any university or institute. I certify that all the assistance received in preparing this thesis and sources have been acknowledged. Shahnoosh Hayamanesh September 2017 i Conferences Oral Presentations Hayamanesh, S., Keitel, C., Ahmad, N., Chattha, T., Trethowan, R., Physiological, Biochemical and Histological Response to High Temperature Stress at Different Stages of Development in Okra (Abelmoschus esculentus (L.) Moench). Symposium on Horticulture in Europe. Chania, Greece, 2016. Hayamanesh, S., High Temperature Affects Okra Productivity. Three minutes thesis competition. Faculty of Agriculture and Environment Research Symposium, The University of Sydney, New South Wales, Australia, 2016. Poster Presentations Hayamanesh, S., Keitel, C., Ahmad, N., Chattha, T., Trethowan, R., Heat Damage to Reproductive Tissue of Okra (Abelmoschus esculentus (L.) Moench). Combio Conference, Adelaide, Australia, 2017. Hayamanesh, S., Keitel, C., Ahmad, N., Chattha, T., Trethowan, R., Physiological Response to High Temperature and Simple Sequence Repeat (SSR) Markers in Diverse Okra (Abelmoschus Esculentus (L.) Moench) Germplasm. Plant and Animal Genome Conference, San Diego, US, 2016. Hayamanesh, S., Keitel, C., Ahmad, N., Chattha, T., Trethowan, R., Heat Tolerance in Diverse Okra (Abelmoschus esculentus (L.) Moench) Germplasm. Combio Conference, Melbourne, Australia, 2015. Hayamanesh, S., Keitel, C., Ahmad, N., Chattha, T., Trethowan, R., Heat Tolerance in Diverse Okra (Abelmoschus esculentus (L.) Moench) Germplasm. Faculty of Agriculture and Environment Research Symposium, The University of Sydney, New South Wales, Australia, 2015. ii Acknowledgments I would like to express my sincere gratitude to all the people who have supported and encouraged me to complete my PhD journey. I cannot thank you enough. Firstly, I would like to thank Hamid Javanmard for his massive support, encouragement, help and most importantly his patience. Thanks for encouraging me to start my PhD, thanks for tolerating all my ups and downs and thanks for being with me up to the end. Thanks for believing in me and wanted me to be a strong and independent woman. Without you I could not do it. I would like to express my special appreciation and gratitude towards my supervisor Dr Claudia Keitel for her invaluable and inspiring guidance, constructive criticism and generosity throughout my research work. Your mentorship and friendship will not be ever forgotten. Thanks for all the help, especially, when I had to work in the field, your presence over there was encouraging and made me believe that you cared about my project the same way as I did. I am glad that I met you and without you completion of this work would not be possible. I also extended my gratefulness to my other supervisors, Dr Nabil Ahmad, Professor Richard Trethowan and Dr Tariq Chattha. Dr Nabil Ahmad, I have learnt so much from you. Thanks for all the guidance and help. Professor Richard Trethowan, thanks for all the positive energy you always gave me, your guidance, encouragement and help. Dr Tariq Chattha, thanks for your financial support and guidance. I would like to acknowledge and thank Dr Haydar Karaoglu for his contribution in regard to my molecular study. I have learnt a lot from you. Working with you was one of my most enjoyable and memorable times during my PhD. You made me believe that my standard was higher than I thought. I appreciate your kindness which was hidden under your tough face. Thanks for noticing and appreciating all my hard work. I extended my gratefulness to Dr Mohammad Pourkheirandish for his valuable advice and comments on my molecular chapter. iii I would like to thank Professor Charles Hocart for helping me in my metabolic study. Dr Charles Hocart, I had a really good time working with you in your lab and I have learnt a lot from you, thanks for that. I extend my profound gratitude to the academics, technical and administration staffs within the University for their support. In particular, I would like to thank Ms Svetlana Ryazanova for her technical support and friendship. Your kindness and calmness never be forgotten. I gratefully thank Ms Kate Rudd, Mr James Bell, Dr James Hull and Mr Matthew Williams, who always helped me with smile and friendly attitude. Ms Kate Rudd, and Mr James Bell thanks for all the consultancies and chats, whenever I talk to you, I felt I am full of energy. Thanks for all the good vibes. I am also thankful to Ms Fiona Lawrence for her administration assistance when I started my PhD. A very special thanks to Ms Erin Lockhart and Ms Janani Vimalathithen for their exquisite helps in a very hot tunnel house during my experiment. Your help and presence over there was a lot to me. I would like to thank Ms Hero Tahaei for her technical support and friendship. When you started working in CCWF, I was so excited that I can have someone to talk to in my own language. My great thanks to Professor Margaret Barbour, Associate Professor Brent Kaiser, Dr Andrew Merchant, and Associate Professor Feike Dijkstra for their professional advices. I would also like to thank Dr David Fuentes for his valuable help in my metabolic study and Associate Professor Peter Thomson in statistics. A big thank to all the other staffs in PBI and CCWF for their friendships and good vibes, surly, I will miss you all. I would also like to take this opportunity to thank all of my colleagues and friends who made my life easier and joyful during my PhD. I am proud to called some of them Doctor and the others Doctor-to-be. I am grateful to have you people in my life, you made my life enjoyable and full of colourful memories. My friends: Lisa, Alice, Eisrat, Shamim, Sonam, Mumta, Kamal, Kathryn, Millicent, Karen, Wenjing, Teng, Yaojun, Rouja, Himu, Carola, Shiva, Ylenia, Jiapeng, Helen, Alberto, Juri, Paula, Albert, Pierre, James, Peter, Augusto, Huda, Mesfin, Anber, Usman, Rohayu, Vallence, Misbah, Huma, Sami, Vanessa, Muhammed, Ahmed, Nirmol, Rose, Shengwei, Hongbin, Alicia, Tam, Barbara, Gaelle, Laurene, Caroline, Marshall, Maggie, Jaime, Irum, Naeela, Peace, iv Fatima and Mathilde (sorry if I missed someone). Dr Julie Dechorgnat and Dr Arjina Shrestha, thank you for your professional advices and friendship. You are amazing friends and I wish our friendship never ends. Dr Zhengyu Wen, work place would not be fun without you. Thanks for all the good and funny memories. Finally, the biggest gratitude goes to my family and friends all over the world who encouraged me endlessly. Special thanks to my beautiful sister Mehrnoosh who helped me to sort out my data instead of enjoying her vacation here in Australia. Thanks to my lovely sister-in-law Pantea,and my nephew Ramtin who patiently edited some of my data and helped me in some scoring. Thanks to my uncle, Hosein who helped me with seeds counting. Writing acknowledgment was the hardest part of my thesis. It was the most emotional time I ever had as I realised this is the end. When I started to write, all the good and bad things, happiness and sadness, excitements and frustrations, all laughter and cries came to my mind. I remembered all the people who came to my life and left. I realised I made a lot of friends from every corner of the world and I have learnt so much about them and their cultures. I realized how much this journey has changed my life and my personality. I am thankful to my God for this amazing opportunity. v Dedication I dedicate my PhD to my amazing father, BABA SHAFIEI, who is not in this world that I can celebrate my victory with. My dear father, you always wanted the best for me. You wanted me to be educated and successful and you always wanted me to be a doctor. It was hard to start without your encouragement and it is even hard to finish without seeing your happiness and satisfaction. I am proud with who I am today, as I was raised by your love and kindness. vi Summary Okra is an important summer vegetable crop grown in tropical and subtropical areas of Asia, Africa, the Middle East, the southern United States and northern Australia. Demand for this crop has increased worldwide due to an increasing population and increasing demand for this nutritious vegetable. Edible pods (fruits) of okra are a good source of fibre, vitamins, proteins, carbohydrates and amino acids. Although okra is native to warm regions, high temperature has been shown to lower its germination, growth and yield. High temperature damages the plant photosystem, impairs cellular function by damaging membranes, alters sugar content and affects reproductive tissues; all potentially lowering yield. There is, however, limited information on where heat damage occurs in okra and how heat stress affects okra at different growth stages. The current study aimed to characterise the effect of heat stress on the physiological, biochemical, morphological and histological level and identify the developmental stages that are more vulnerable in okra genotypes which have distant genetic background. Physiological parameters and molecular techniques (e.g. SSR markers) are useful tools to screen for specific environmental stress (e.g.
Recommended publications
  • EPIDERMAL MORPHOLOGY of WEST AFRICAN OKRA Abelmoschus Caillei (A
    Science World Journal Vol 6 (No 3) 2011 www.scienceworldjournal.org ISSN 1597-6343 EPIDERMAL MORPHOLOGY OF WEST AFRICAN OKRA Abelmoschus caillei (A. Chev.) Stevels FROM SOUTH Full Length Research Article Research Full Length WESTERN NIGERIA. *OSAWARU, M. E.; DANIA-OGBE, F. M.; CHIME, A. O. Abelmoschus section particularly the group known as West African & OGWU, M. C. Okra. The group is quite diverse and shows a wide range of morpho-agronomic characters displayed in same and different Department of Plant Biology and Biotechnology, Faculty of Life ecogeographical, adaptive, and environmental conditions Sciences, University of Benin, Edo State, Nigeria. (Osawaru, 2008). The group also shares a wide range of similar *[email protected] traits with the cultivated common Okra (A. esculentus). Consequently, there appears to be confusion about their ABSTRACT classification, which often leads to mis-identification and A study of the micro-morphology of 53 accessions of West African uncertainty among taxonomists and hinders breeders selection Okra was undertaken using light microscopy techniques. Results effort. However, this taxon was first described by Chavalier (1940) showed that epidermal cells are polygonal, isodiametric and as a taxon resembling A. esculentus and later elevated to a district irregularly shaped with different anticlinal cell wall patterns. Stomata type is 100% paracytic and 100% amphistomatic in distribution species by Stevels (1988) on the basis of gross morphology. among the accessions studied. Stomatal indices ranged from 12.23 to 24.34 with 43.40% accessions ranging between 18.00 to 21.00. This present study seek to clarify the complexity expressed by the Stomatal were more frequently on the abaxial surface.
    [Show full text]
  • Comparative Micro-Anatomical Studies of the Wood of Two Species of Okra [Abelmoschus Species]
    COMPARATIVE MICRO-ANATOMICAL STUDIES OF THE WOOD OF TWO SPECIES OF OKRA [ABELMOSCHUS SPECIES] 1Osawaru, M. E., 1Aiwansoba, R. O. and 1*Ogwu, M. C. 1Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria *Corresponding author: [email protected] ABSTRACT Okra belongs to the family Malvaceae. Common edible species are either Abelmoschus caillei [A. Chev.] Stevels or A. esculentus Moench. Seeds of the two species were obtained from the Gene bank of National Centre for Genetic Resources and Biotechnology, Ibadan, Nigeria. This study anatomically investigated the accessions to determine their distinctiveness and assess their level of diversity. Field trials were conducted at the University of Benin, Nigeria. The main stem from tagged point at seven weeks interval at three points were investigated from three dimensional views (transverse, radial and tangential section). Using light microscopy, the nature and composition of the wood were determined from the macerated part. Twenty random fibers were measured from each representative sample slide. The occurrence of the growth rings were consistent in both species showing ring porous arrangements. The vessels in A. esculentus were solitary and short radial multiples in arrangement and A. caillei were short radial multiples and irregular clusters in arrangement but both species had mainly simple perforation vessels. More so, the distribution of axial parenchyma was of paratracheal orientation. A. caillei had wide and high multiseriate rays while in A. esculentus only high multiseriate rays were observed. There was a reduction in vessel diameter and fiber length across the age in both species. Fiber diameter, fiber lumen and fiber cell wall showed different degree of fluctuations with age in both species.
    [Show full text]
  • Comparative Study of Microflora Population on the Phylloplane of Common Okra [Abelmoschus Esculentus L
    Nig J. Biotech. Vol. 28 (2014) 17-25 ISSN: 0189 17131 Available online at http://www.ajol.info/index.php/njb/index and www.biotechsocietynigeria.org. Comparative Study of Microflora Population on the Phylloplane of Common Okra [Abelmoschus esculentus l. (Moench.)] Ogwu, M. C.1 and Osawaru, M. E.1, 2 1Department Of Plant Biology And Biotechnology, Faculty Of Life Sciences, University Of Benin, Benin City, Nigeria, 2Present Address: Department Of Biological Science, University Of Abuja, Gwagwalada, FCT Abuja, Nigeria (Received 16:01:14; Accepted 03:12:14) Abstract Microflora isolates on healthy green leaves of mature Okra were estimated. The leaves were categorized based on their point of harvest into old, new and middle with a week interval between each harvest. The diversity and frequency of occurrence was higher [18 (60.00 %)] at first sampling than at second sampling [9 (60.00 %)] for fungi, bacteria [12 (40.00 %)] and [6 (40.00 %)] respectively. Total microbial population in the second sampling was higher [177.5 cfu/ml] than the first [160 cfu/ml]. The total cumulative bacteria count was 390 cfu/ml and 366 cfu/ml for fungi during the studies. Ten genera of fungi and six genera of bacteria were examined. The predominant flora was identified to the genera Rhodotorula, Saccharomyces, Mucor, Aspergillus and Penicilum, for the fungi while Micrococcus, Staphylococcus, and Serratia for the bacteria. Further studies could help identify major players in the phylloplane microbial ecology. Keywords: Okra (Abelmoschus esculentus), Phylloplane, Microflora population, Bacteria and Fungi Correspondence: [email protected] Introduction Common Okra [Abelmoschus esculentus L. (Moench] is thought to be native to West Africa (Tindall and Rice, 1983).
    [Show full text]
  • African Vegetables
    A Guide to African Vegetables New Entry Sustainable Farming Project New Entry Sustainable Farming Project To assist recent immigrants to begin sustainable farming enterprises in Massachusetts Sponsors: • Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, AFE Program* at Tufts University • Community Teamwork, Inc. *AFE: Agriculture, Food, and the Environment - Graduate education and re- search opportunities in nutrition, sustainable agriculture, local food systems, and consumer behavior related to food and the environment. For more information, visit our website: www.nesfp.org Contact 617-636-3788, ext. 2 or 978-654-6745 Email: [email protected] Guide prepared by Colleen Matts and Cheryl Milligan, May 2006 22 Table of Contents Amaranth…………………………….………………………1 Cabbage………………………………………………………2 Cassava..…………………………………………….………..3 Collard Greens……………………………………………….4 African Eggplant…………………………………………….5 Groundnut……………………………………………………6 Huckleberry………………………………………………….7 Kale…………………………………………………………..8 Kittely………………………………………………………...9 Mustard Greens……………………………………………10 Okra……………………………………………….……..…11 Palava Sauce (Jute Greens).…………………………….…12 Hot Peppers………………………………………………..13 Purslane…………………………………………………….14 African Spinach…………………………………………….15 Sweet Potato Greens……………………………………….16 Tomatoes…………………………………………………...17 Hardy Yam..……………………………………………..…18 Yard Long Beans…………………………………………...19 Map of Africa…………………………………..……….20-21 NESFP Photos……………………………………………..22 21 Amaranth Amaranthus creuentus Other Common Names: African spinach, Calaloo History and Background of Crop Thousands of years ago, grain amaranth was domesticated as a cereal. Now, vegetable amaranth is a widespread traditional vegetable in the African tropics. It is more popular in humid lowland areas of Africa than highland or arid areas. It is the main leafy vege- table in Benin, Togo, Liberia, Guinea, and Sierra Leone. Common Culinary Uses Amaranth is consumed as a vegetable dish or as an ingredient in sauces. The leaves and tender stems are cut and cooked or sometimes fried in oil.
    [Show full text]
  • HYBIDIZATION STUDIES in OKRA (Abelmoschus Spp (L.) Moench)
    HYBIDIZATION STUDIES IN OKRA (Abelmoschus spp (L.) Moench) A Thesis Submitted to the DEPARTMENT OF NUCLEAR AGRICULTURE AND RADIATION PROCESSING (COLLEGE OF BASIC AND APPLIED SCIENCES) UNIVERSITY OF GHANA BY AMITAABA THEOPHILUS (ID: 10444179) B Sc. Agricultural Technology (2010) (University for Development Studies, Tamale) IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN NUCLEAR AGRICULTURE (MUTATION BREEDING AND PLANT BIOTECHNOLOGY OPTION) JULY, 2016 i DECLARATION This thesis is the result of research work undertaken by AMITAABA THOPHILUS in the Department of Nuclear Agriculture and Radiation Processing, School of Nuclear and Allied Sciences, University of Ghana, under the supervision of PROF. H.M AMOATEY and DR. SAMUEL AMITEYE ....................................... Date................................. AMITAABA THEOPHILUS (CANDIDATE) ……………………... Date …………………..... PROF. H.M AMOATEY (PRINCIPAL SUPERVISOR) .................................... Date............................ DR. SAMUEL AMITEYE (SUPERVISOR) ii DEDICATION To JEHOVAH God Almighty be all the Glory This work is dedicated to my guardians and family especially my belovered wife Rebecca for their immeasurable support, inspiration, guidance, love and prayers. iii ACKNOWLEDGEMNT I am grateful, first and foremost to Jehovah God Almighty, for His Divine Grace, favour and sustenance to complete this work. I would like to express my deep gratitude and appreciation to my supervisors PROF. H.M AMOATEY and DR. SAMUEL AMITEYE for their valuable contributions, guidance, patience, encouragement and constructive suggestions towards the completion of this thesis. I would also like to acknowledge Mr. E.E Quartey, Manager of Nuclear Agriculture Centre of the Biotechnology and Nuclear Agriculture Research Institute (BNARI)-GAEC for his support and valuable contributions toward the acquisition of land and Mr. Ahiakpa John, for some okra accessions for this thesis work.
    [Show full text]
  • Ethnobotanical Studies of West African Okra
    Science World Journal Vol 5 (No 1) 2010 www.scienceworldjournal.org ISSN 1597-6343 ETHNOBOTANICAL STUDIES OF WEST AFRICAN ength Research Article Research ength OKRA [Abelmoschus caillei (A. chev) Stevels] FROM L SOME TRIBES OF SOUTH WESTERN NIGERIA Full *OSAWARU, M. E. & DANIA-OGBE, F. M. problems and challenges in a local community. Warren (1992) also emphasized that indigenous knowledge represents an immense Department of Plant Biology and Biotechnology, Faculty of Life valuable database that provides mankind with an insight on how Sciences, University of Benin, Benin City, Nigeria. numerous communities have interacted with the changing *[email protected] environment, providing local solutions for local problems and suitable ways for coping with challenges posed by specific ABSTRACT conditions. West African Okra [Abelmoschus caillei (A. Chev) Stevels] is a multipurpose annual, biennal herb sometime perennial woody crop plant In Nigeria, Igbokwe (1999) found how local small farmers common in the humid West African subcontinent. It is produced in selectively adopted their local knowledge for increasing rice traditional agriculture especially when other vegetables are not in season production in a community in Igbo land. Pressure on land and and an important cash crop in the local economy. This study is aimed at other attendance problems of agricultural land is on the increase generating information and documenting the ethnobotany of A. caillei via the indigenous knowledge among tribes of Delta, Edo and Ondo States of as a result of increasing population and urbanization. Instead of Nigeria). Primary information was collected from randomly selected longer fallow periods, cultivation techniques of clearing, gathering respondents through survey using structured questionnaires and guided in heaps left to decay or thinly spread and buried was adopted.
    [Show full text]
  • Heritability and Genes Governing Number of Seeds Per Pod in West African Okra Abelmoschus Caillei ( A
    Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.9, 2013 Heritability and Genes Governing Number of Seeds per Pod in West African Okra Abelmoschus caillei ( A. Chev.) Stevels. O.F . Adewusi* 1, O.B. Kehinde 2, D.K. Ojo 2. 1 Department of Crop, Soil and Pest Management, Federal University of Technology, Akure. 2Department of Plant Breeding and Seed Technology, University of Agriculture, P.M.B. 2240 Abeokuta, Nigeria. *[email protected] Abstract Heritability and genetic action moderating the inheritance of number of seeds per pod was investigated in four crosses of West African Okra accessions. Parents with variation for number of seeds per pod were used in hybridization process. Generations developed (Parents, F 1, F 2, BC 1 and BC 2) were planted for evaluation in a randomized complete block design with four replications. The results showed the adequacy of the additive – dominance model for one out of the four crosses (Acc6 x Acc1) and the inadequacy of the model for the remaining crosses. This was ascribed to significant estimates of A, B and C scaling test. The results of the generation mean analysis indicated that the additive genetic effect (d) significantly accounted for a large proportion of variability observed for number of seeds per pod in the crosses evaluated. The narrow sense heritability estimates were moderately high in all the crosses. An additive genetic effect suggests that selection among the segregating population could provide an average improvement in the performance of seed yield in subsequent generations.
    [Show full text]
  • Physiological and Biochemical Effect of Biostimulants on Abelmoschus Esculentus (L.) and Cleome Gynandra (L.)
    PHYSIOLOGICAL AND BIOCHEMICAL EFFECT OF BIOSTIMULANTS ON ABELMOSCHUS ESCULENTUS (L.) AND CLEOME GYNANDRA (L.) By Gugulethu Makhaye Submitted in fulfilment of the requirement for the degree of Master of Science (Agriculture), Horticultural Science School of Agricultural, Earth and Environmental Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg Republic of South Africa Supervisor: Prof S. Tesfay (UKZN) Co-Supervisor: Prof S.O. Amoo (ARC) Co-Supervisor: Prof O.A. Aremu (UKZN & NWU) i Table of Contents College of Agriculture, Engineering and Science; Declaration 1 – Plagiarism ........................ vi Student Declaration ..................................................................................................................... vii Declaration by Supervisors ........................................................................................................ viii Conference Contributions from this Thesis ................................................................................ ix Publications from this Thesis ......................................................................................................... x Potential Publications from this Thesis ....................................................................................... xi Acknowledgements ...................................................................................................................... xii List of Figures ............................................................................................................................
    [Show full text]
  • Assessing the Relatedness of Abelmoschus Accessions Using Morphological Characters
    Journal of Tropical Biology and Conservation 16: 197–211, 2019 ISSN 1823-3902 E-ISSN 2550-1909 Short Notes Assessing the Relatedness of Abelmoschus Accessions using Morphological Characters Aiwansoba RO1*, Ogwu MC2,Osawaru ME1 1Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria 2School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Marche – Floristic Research Center of the Apennines, Gran Sasso and Monti della Laga National Park, San Colombo, 67021 Barisciano, L'Aquila, Italy. *Corresponding author: [email protected] Abstract Character analysis of Okra (Abelmoschus [Medik.] species, Malvaceae) accessions was carried out using morphological data to evaluate their genetic distinction and relatedness. Seeds of five Abelmoschus accessions (NG/MR/01/10/002, A.E 3, NG/MR/MAY/09/009, NGAE-96-0065 and NG/OA/05/12/160) were obtained from the Gene Bank of National Centre for Genetic Resources and Biotechnology, Ibadan, Nigeria. Based on the International Board for Plant Genetic Resources standard descriptors for Okra, 16 qualitative morphological characters were selected based on their relevance to Abelmoschus breeding, crop distinction, utilization and conservation. The five accessions present significant differences with two of the accessions (NG/MR/MAY/09/009 and NG/OA/05/12/160) closely related and other three (NG/MR/01/10/002, A.E 3 and NGAE-96-0065) closely related too. Accessions NG/MR/01/10/002, A.E 3 and NGAE-96-0065 had medium or intermediate growth habit while accession NG/MR/MAY/09/009 and NG/OA/05/12/160 shows erect growth habit.
    [Show full text]
  • Growth Responses of Two Cultivated Okra Species (Abelmoschus Caillei (A
    Available online at http://www.ajol.info/index.php/njbas/index ISSN 0794-5698 Nigerian Journal of Basic and Applied Science (September, 2013), 21(3): 215-226 DOI: http://dx.doi.org/10.4314/njbas.v21i3.7 Growth Responses of Two Cultivated Okra Species (Abelmoschus caillei (A. Chev) Stevels and Abelmoschus esculentus (Linn.) Moench) in Crude Oil Contaminated Soil *M. E. Osawaru, M. C. Ogwu and L. Braimah 1Plant Conservation Unit, Department of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria. [*Correspondence author: Email: [email protected]; : +2348130762709] Full Length Article Research ABSTRACT: The morphological distinctiveness of two cultivated Okra species- Abelmoschus caillei and Abelmoschus esculentus was investigated using six accessions; three for each species in crude oil contaminated soil. The seeds were collected from home gardens in Benin City and NIHORT. Morpho-agronomic characters such as numbers of days from sowing to germination, plant height, stem base diameter, stem color and pubescence, leaf shape and color, number of leaves produced, growth habit, branching, fruit and fruiting characters were determined. The growth response of the different accessions varied significantly (p< 0.05). Soil chemical analysis revealed decreased levels of pH, Phosphorus and Potassium in the contaminated soil. Generally, all the quantitative characters including number of flower buds and flowers produced, fruit length, height of plant and stem girth were reduced in plants (Okra) grown in the contaminated soil while most of the qualitative characters such as pigmentation and shape of plant organs were less affected. Thus, it can be suggested from the study that crude oil contamination of soil may lead to reduction in growth characteristics.
    [Show full text]
  • Genetic Relationships Among West African Okra (Abelmoschus Caillei) and Asian Genotypes (Abelmoschus Esculentus) Using RAPD
    African Journal of Biotechnology Vol. 7 (10), pp. 1426-1431, 16 May, 2008 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2008 Academic Journals Full Length Research Paper Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD Sunday E. Aladele1, O. J. Ariyo2 and Robert de Lapena3 1National Centre for Genetic Resources and Biotechnology, P.M.B 5382, Moor Plantation, Ibadan, Nigeria. 2University of Agriculture, Abeokuta. 3Asian Vegetable Research and Development Centre (AVRDC), The World Vegetable Centre, Tainan, Taiwan. Accepted 24 March, 2008 Ninety-three accessions of okra which comprises of 50 West African genotypes (Abelmoschus caillei) and 43 Asian genotypes (A. esculentus) were assessed for genetic distinctiveness and relationships using random amplified polymorphic DNA (RAPD). The molecular analysis showed that all the thirteen primers used revealed clear distinction between the two genotypes. There were more diversity among the Asian genotypes; this might be due to the fact that they were originally collected from six different countries in the region. Six duplicates accessions were discovered while accession TOT7444 distinguished itself from the other two okra species, an indication which suggests that it might belong to a different species. Key words: West African okra, genetic relationship, Abelmoschus caillei, Abelmoschus esculentus. INTRODUCTION Okra is an important vegetable crop in India, West Africa, and morphological characters usually varies with environ- South-East, Asia, U.S.A, Brazil, Australia and Turkey. In ments and evaluation of traits requires growing the plants some regions, the leaves are also used for human to full maturity prior to identification.
    [Show full text]
  • Growth and Yield Response of Okra (Abelmoschus Esculentus (L.) Moench) Varieties to Weed Interference in South-Eastern Nigeria by Iyagba A.G, Onuegbu, B.A & IBE, A.E
    Global Journal of Science Frontier Research Agriculture and Veterinary Sciences Volume 12 Issue 7 Version 1.0 Year 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Growth and Yield Response of Okra (Abelmoschus esculentus (L.) Moench) Varieties to Weed Interference in South-Eastern Nigeria By Iyagba A.G, Onuegbu, B.A & IBE, A.E. Ignatius Ajuru University of Education, Nigeria Abstract - Field Studies were conducted at the Federal University of Technology, Owerri, Nigeria to determine the influence of weed interference on the growth and yield of three okra (Abelmochus esculentus (L) Moench) varieties. Three varieties of okra (NHAe47-4, Lady’s finger and V35) were weeded using five weeding regimes (weedy check, unweeded till 5 weeks after sowing (WAS), weeding once each at 3 WAS and 4 WAS and weed free). The treatment combinations were laid out in a randomized complete block design with three replications. Plant height for okra varieties was in the decreasing order of Lady’s finger < NHAe47-4 < V35 while leaf area was in the increasing order of NHAe47-4>V35> lady’s finger in both years. More flowers/plant were obtained from NHAe47-4 while the least number of flowers aborted were obtained from the Lady’s finger. Among the weeded plots, NHAe47-4 produced the highest fresh fruit yield (23.63t ha-1 in 2007 and 22.96t ha-1 in 2008) which were not insignificantly different from the yields obtained from weed free plots that produced 24.20t ha-1 in 2007 and 22.13t ha-1 in 2008.
    [Show full text]