Accretion Rates Using OSL on a Subsiding Salt Marsh Msc Thesis Sjoerd Postma SGL-80436

Total Page:16

File Type:pdf, Size:1020Kb

Accretion Rates Using OSL on a Subsiding Salt Marsh Msc Thesis Sjoerd Postma SGL-80436 Reconstructing accretion rates using OSL on a subsiding salt marsh MSc Thesis Sjoerd Postma SGL-80436 3/26/2017 Wageningen UR Postma, Sjoerd Wageningen UR: Alterra: Prof. dr. J. Wallinga Ing. P.A. Slim Dr. T. Reimann Dr. A.T. Kuiters Reconstructing accretion rates using OSL on a subsiding salt marsh MSc Thesis, 2017 Figure front page: View from the sampling location at the Neerlands Reid, Ameland. Photograph Nanny Heidema S Postma 89 06 06 668 120 MSc Earth and Environment, specialisation Soil Geography and Landscape Wageningen University Supervisors: Prof. dr. J. Wallinga Ing. P.A. Slim Dr. T. Reimann Dr. A.T. Kuiters Wageningen University Wageningen Environmental Research (Alterra) i Abstract To see whether it is possible to reconstruct accretion rates using high resolution OSL dating combined with Bayesian statistics, a subsiding salt marsh on the Dutch Wadden island Ameland was sampled. A secondary goal of the research was to investigate the marsh response on human-caused subsidence mimicking sea-level rise as predicted for the Dutch coast in the coming century. The accretion rate on the salt marsh had already been physically monitored for the last thirty years, but to see whether an acceleration of accretion rate had occurred, accretion rates from before that period had to be reconstructed. It has been possible to date the profile at multiple depths and the reconstructed accretion rate is in agreement with the physically measured accretion rates on the upper part of the salt marsh. However, no indications of an increase in accretion rate were found, as the accretion rate seems to have been very stable for the last 50 years. In the period before 1960 there seems to have been a short period of higher accretion rates and before the 1940’s a long period of lower accretion since the onset of salt marsh formation around 1890. It is not unlikely that factors such as the closing of the nearby Lauwerszee in 1969 have played a role in the accretion rates on the salt marsh and lack of a reaction to the subsidence in the deep subsoil. ii Contents Abstract ................................................................................................................................... ii List of Figures ............................................................................................................................ v List of Tables ............................................................................................................................ vi 1. Introduction .......................................................................................................................... 1 1.1 Research objectives ........................................................................................................... 2 2. Study area ............................................................................................................................ 3 3. Accretion on Salt Marshes ........................................................................................................ 5 4. Methods ................................................................................................................................ 7 4.1 OSL-dating ....................................................................................................................... 7 4.1.1 Analysis protocols ......................................................................................................... 7 4.1.2 Bleaching .................................................................................................................... 8 137 4.2 Cs-dating ...................................................................................................................... 8 4.3 Sampling .......................................................................................................................... 9 4.4 Lab procedures ................................................................................................................ 12 4.5 Performance testing ......................................................................................................... 13 4.6 De determination ............................................................................................................. 15 4.6.1 Sequence .................................................................................................................. 15 4.6.2 Grain count ............................................................................................................... 15 4.6.3 Analyst settings ......................................................................................................... 15 4.7 Age Models ..................................................................................................................... 16 4.7.1 Iterative model .......................................................................................................... 16 4.7.2 Central Age model ...................................................................................................... 17 4.7.3 Minimum Age model ................................................................................................... 17 4.8 Dose Rate determination ................................................................................................... 18 4.8.1 Attenuation factors ..................................................................................................... 19 4.8.2 Beta Dose rate ........................................................................................................... 19 4.8.3 Gamma Dose Rate ...................................................................................................... 21 4.9 OxCal model ................................................................................................................... 21 5. Results ............................................................................................................................... 22 5.1 Results of the De measurements ........................................................................................ 22 5.2 Bleaching indicators ......................................................................................................... 24 5.2.1 Skewness .................................................................................................................. 24 5.2.2 Kurtosis .................................................................................................................... 24 5.3 Iterative model outcomes ................................................................................................. 25 5.4 Bootstrap likelihood functions ............................................................................................ 26 5.5 Equivalent Doses according to different age models .............................................................. 28 5.6 Dose Rates ..................................................................................................................... 29 5.7 Ages for the different models ............................................................................................. 30 5.8 Choice of appropriate model .............................................................................................. 31 5.9 OxCal outputs ................................................................................................................. 31 iii 5.10 Final age determination................................................................................................... 35 5.11 137Cs dates .................................................................................................................... 35 5.12 Accretion rates .............................................................................................................. 37 6. Discussion ........................................................................................................................... 38 7. Conclusion .......................................................................................................................... 40 8. Recommendations ................................................................................................................ 41 9. Acknowledgements ............................................................................................................... 41 References .............................................................................................................................. 42 Appendix A: Sieving results ....................................................................................................... 46 Appendix B: Porosity and Field capacity per texture class ............................................................... 47 Appendix C: Used formulas for calculations .................................................................................. 48 Appendix D: Oxcal script ........................................................................................................... 48 Appendix E: Map of the research area in 1854 .............................................................................. 49 Appendix F: Map of the research area in 1888 .............................................................................. 50 Appendix G: Map of the research area in 1897, created in 1910 ...................................................... 51 iv List of Figures Figure 1: Location of the study area, with the North Sea on the north side of the map, the Neerlands Reid, Kooioerdstuifdijk and Oerdsloot
Recommended publications
  • Annual Report Fishing for Litter 2011
    Annual Report Fishing for Litter 2011 Fishing For Litter Annual Report Fishing for Litter project 2011 Edited by KIMO Nederland en België March 2012 Bert Veerman Visual design: Baasimmedia Annual Report Fishing for Litter project 2011 Index: Pag: Message from the Chairman ................................................................................................. 5 1.0 Introduction .............................................................................................................. 7 2.0 Project description ................................................................................................... 8 3.0 Goals of the project .................................................................................................. 9 4.0 Monitors ................................................................................................................ 10 4.1 Waste from the beaches of Ameland ......................................................... 10 4.2 Waste through the ports ............................................................................ 10 5.0 Consultation structure ............................................................................... 11 6.0 Administration ........................................................................................... 11 7.0 Publicity .................................................................................................... 11 7.1 Documentary “Fishing for Litter” ................................................................ 11 8.0 A summary of activities
    [Show full text]
  • Wadden Sea Quality Status Report Geomorphology
    Photo: Rijkswaterstaat, NL (https://beeldbank.rws.nl). Zuiderduin 2011. Wadden Sea Quality Status Report Geomorphology A. P. Oost, C. Winter, P. Vos, F. Bungenstock, R. Schrijvershof, B. Röbke, J. Bartholdy, J. Hofstede, A. Wurpts, A. Wehrmann This report downloaded: 2018-11-23. This report last updated: 2017-12-21. This report should be cited as: Oost A. P., Winter C., Vos P., Bungenstock F., Schrijvershof R., Röbke B., Bartholdy J., Hofstede J., Wurpts A. & Wehrmann A. (2017) Geomorphology. In: Wadden Sea Quality Status Report 2017. Eds.: Kloepper S. et al., Common Wadden Sea Secretariat, Wilhelmshaven, Germany. Last updated 21.12.2017. Downloaded DD.MM.YYYY. qsr.waddensea-worldheritage.org/reports/geomorphology 1. Introduction The hydro- and morphodynamic processes of the Wadden Sea form the foundation for the ecological, cultural and economic development of the area. Its extraordinary ecosystems, its physical and geographical values and being an outstanding example of representing major stages of the earth’s history are factors why the Wadden Sea received a World Heritage area qualification (UNESCO, 2016). During its existence, the Wadden Sea has been a dynamic tidal system in which the geomorphology of the landscape continuously changed. Driving factors of the morphological changes have been: Holocene sea-level rise, geometry of the Pleistocene surface, development of accommodation space for sedimentation, sediment transport mechanisms (tides and wind) and, the relatively recent, strong human interference in the landscape. In this report new insights into the morphology of the trilateral Wadden Sea gained since the Quality Status Report (QSR) in 2009 (Wiersma et al., 2009) are discussed. After a summary of the Holocene development (sub-section 2.1), the sand-sharing inlet system approach as a building block for understanding the morhodynamic functioning of the system with a special emphasis on the backbarrier (sub-section 2.2) is discussed, followed by other parts of the inlet-system.
    [Show full text]
  • Putting Frisian Names on the Map
    GEGN.2/2021/68/CRP.68 15 March 2021 English United Nations Group of Experts on Geographical Names Second session New York, 3 – 7 May 2021 Item 12 of the provisional agenda * Geographical names as culture, heritage and identity, including indigenous, minority and regional languages and multilingual issues Putting Frisian names on the map Submitted by the Netherlands** * GEGN.2/2021/1 ** Prepared by Jasper Hogerwerf, Kadaster GEGN.2/2021/68/CRP.68 Introduction Dutch is the national language of the Netherlands. It has official status throughout the Kingdom of the Netherlands. In addition, there are several other recognized languages. Papiamentu (or Papiamento) and English are formally used in the Caribbean parts of the Kingdom, while Low-Saxon and Limburgish are recognized as non-standardized regional languages, and Yiddish and Sinte Romani as non-territorial minority languages in the European part of the Kingdom. The Dutch Sign Language is formally recognized as well. The largest minority language is (West) Frisian or Frysk, an official language in the province of Friesland (Fryslân). Frisian is a West Germanic language closely related to the Saterland Frisian and North Frisian languages spoken in Germany. The Frisian languages as a group are closer related to English than to Dutch or German. Frisian is spoken as a mother tongue by about 55% of the population in the province of Friesland, which translates to some 350,000 native speakers. In many rural areas a large majority speaks Frisian, while most cities have a Dutch-speaking majority. A standardized Frisian orthography was established in 1879 and reformed in 1945, 1980 and 2015.
    [Show full text]
  • Routes Over De Waddenzee
    5a 2020 Routes over de Waddenzee 7 5 6 8 DELFZIJL 4 G RONINGEN 3 LEEUWARDEN WINSCHOTEN 2 DRACHTEN SNEEK A SSEN 1 DEN HELDER E MMEN Inhoud Inleiding 3 Aanvullende informatie 4 5 1 Den Oever – Oudeschild – Den Helder 9 5 2 Kornwerderzand – Harlingen 13 5 3 Harlingen – Noordzee 15 5 4 Vlieland – Terschelling 17 5 5 Ameland 19 5 6 Lauwersoog – Noordzee 21 5 7 Lauwersoog – Schiermonnikoog – Eems 23 5 8 Delfzijl 25 Colofon 26 Het auteursrecht op het materiaal van ‘Varen doe je Samen!’ ligt bij de Convenantpartners die bij dit project betrokken zijn. Overname van illustraties en/of teksten is uitsluitend toegestaan na schriftelijke toestemming van de Stichting Waterrecreatie Nederland, www waterrecreatienederland nl 2 Voorwoord Het bevorderen van de veiligheid voor beroeps- en recreatievaart op dezelfde vaarweg. Dat is kortweg het doel van het project ‘Varen doe je Samen!’. In het kader van dit project zijn ‘knooppunten’ op vaarwegen beschreven. Plaatsen waar beroepsvaart en recreatievaart elkaar ontmoeten en waar een gevaarlijke situatie kan ontstaan. Per regio krijgt u aanbevelingen hoe u deze drukke punten op het vaarwater vlot en veilig kunt passeren. De weergegeven kaarten zijn niet geschikt voor navigatiedoeleinden. Dat klinkt wat tegenstrijdig voor aanbevolen routes, maar hiermee is bedoeld dat de kaarten een aanvulling zijn op de officiële waterkaarten. Gebruik aan boord altijd de meest recente kaarten uit de 1800-serie en de ANWB-Wateralmanak. Neem in dit vaargebied ook de getijtafels en stroomatlassen (HP 33 Waterstanden en stromen) van de Dienst der Hydrografie mee. Op getijdenwater is de meest actuele informatie onmisbaar voor veilige navigatie.
    [Show full text]
  • The Cultural Heritage of the Wadden Sea
    The Cultural Heritage of the Wadden Sea 1. Overview Name: Wadden Sea Delimitation: Between the Zeegat van Texel (i.e. Marsdiep, 52° 59´N, 4° 44´E) in the west, and Blåvands Huk in the north-east. On its seaward side it is bordered by the West, East and North Frisian Islands, the Danish Islands of Fanø, Rømø and Mandø and the North Sea. Its landward border is formed by embankments along the Dutch provinces of North- Holland, Friesland and Groningen, the German state of Lower Saxony and southern Denmark and Schleswig-Holstein. Size: Approx. 12,500 square km. Location-map: Borders from west to east the southern mainland-shore of the North Sea in Western Europe. Origin of name: ‘Wad’, ‘watt’ or ‘vad’ meaning a ford or shallow place. This is presumably derives from the fact that it is possible to cross by foot large areas of this sea during the ebb-tides (comparable to Latin vadum, vado, a fordable sea or lake). Relationship/similarities with other cultural entities: Has a direct relationship with the Frisian Islands and the western Danish islands and the coast of the Netherlands, Lower Saxony, Schleswig-Holstein and south Denmark. Characteristic elements and ensembles: The Wadden Sea is a tidal-flat area and as such the largest of its kind in Europe. A tidal-flat area is a relatively wide area (for the most part separated from the open sea – North Sea ̶ by a chain of barrier- islands, the Frisian Islands) which is for the greater part covered by seawater at high tides but uncovered at low tides.
    [Show full text]
  • Het Recreatielandschap Van Ameland
    Het recreatielandschap van Ameland Een interdisciplinair onderzoek naar de historische ontwikkeling van de relatie tussen de recreatie en het landschap op Ameland tussen 1855 en 1980 Robin Weiland Voorblad: Duinoord 1929. Familie Postma:Jacob Postma en Hiske Westhof met hun kinderen Metty, Klaas, Jelly, Jan en Grietje (en nog meer families). Foto is van Jaap Postma, zoon van Jan. Het Postmapad is naar hen vernoemd. 1e overgang vanaf de Strandweg. (Amelander historie) Opgeweld uit wier en zand gans omspoeld door zilte baren Moge God het steeds bewaren ons plekje, rijk aan duin en strand het ons zo lieve Ameland! 2 Kollum, april 2019. Auteur: Robin Weiland Masterscriptie Landschapsgeschiedenis Rijksuniversiteit Groningen Scriptiebegeleider: prof. dr. ir. Th. (Theo) Spek (Rijksuniversiteit Groningen) Tweede lezer: drs. Anne Wolff (Rijksuniversiteit Groningen) Het recreatielandschap van Ameland Een interdisciplinair onderzoek naar de historische ontwikkeling van de relatie tussen de recreatie en het landschap op Ameland tussen 1852 en 1980 3 Samenvatting Recreatie is een betrekkelijk nieuw verschijnsel, dat echter zijn stempel stevig op het landschap heeft gedrukt. Dit onderzoek richt zich op de recreatie aan zee, specifiek op het eiland Ameland. Hoe is de recreatie hier ontstaan, hoe reguleerde de lokale, regionale en nationale overheden de toeristenstroom en hoe pasten de Amelanders de recreatie in in de beperkte ruimte die het eiland verschaft? In het eerste deel staat het landschap van Ameland centraal. Hoe is Ameland ontstaan en met welke omstandigheden hebben de eilanders te doen gehad? Ook wordt er uiteengezet welke bodemtypen Ameland bevat en hoe een standaardeiland is opgebouwd. Dit verklaart de ligging van de dorpen en schijnt een licht op waar de ruimtelijke kansen voor recreatie lagen.
    [Show full text]
  • Status, Threats and Conservation of Birds in the German Wadden Sea
    Status, threats and conservation of birds in the German Wadden Sea Technical Report Impressum – Legal notice © 2010, NABU-Bundesverband Naturschutzbund Deutschland (NABU) e.V. www.NABU.de Charitéstraße 3 D-10117 Berlin Tel. +49 (0)30.28 49 84-0 Fax +49 (0)30.28 49 84-20 00 [email protected] Text: Hermann Hötker, Stefan Schrader, Phillip Schwemmer, Nadine Oberdiek, Jan Blew Language editing: Richard Evans, Solveigh Lass-Evans Edited by: Stefan Schrader, Melanie Ossenkop Design: Christine Kuchem (www.ck-grafik-design.de) Printed by: Druckhaus Berlin-Mitte, Berlin, Germany EMAS certified, printed on 100 % recycled paper, certified environmentally friendly under the German „Blue Angel“ scheme. First edition 03/2010 Available from: NABU Natur Shop, Am Eisenwerk 13, 30519 Hannover, Germany, Tel. +49 (0)5 11.2 15 71 11, Fax +49 (0)5 11.1 23 83 14, [email protected] or at www.NABU.de/Shop Cost: 2.50 Euro per copy plus postage and packing payable by invoice. Item number 5215 Picture credits: Cover picture: M. Stock; small pictures from left to right: F. Derer, S. Schrader, M. Schäf. Status, threats and conservation of birds in the German Wadden Sea 1 Introduction .................................................................................................................................. 4 Technical Report 2 The German Wadden Sea as habitat for birds .......................................................................... 5 2.1 General description of the German Wadden Sea area .....................................................................................5
    [Show full text]
  • 1 Morphological Development of the Rif and The
    MORPHOLOGICAL DEVELOPMENT OF THE RIF AND THE ENGELSMANPLAAT, AN INTERTIDAL FLAT COMPLEX IN THE FRISIAN INLET, DUTCH WADDEN SEA Z.B. Wang1 and A.P. Oost2 The Rif and the Engelsmanplaat form together a supra- to intertidal flat-complex at the fringe of the ebb-tidal delta and the back barrier area in the Frisian Inlet, located between the Dutch Wadden Sea Islands Ameland and Schiermonnikoog. The complex divides the Frisian Inlet into the Pinkegat Inlet in the west and the Zoutkamperlaag Inlet in the east. During the last decades the Engelsmanplaat has been suffering from serious erosion. This paper presents a study meant to find the causes for the recent erosion, especially to answer the question if the erosion is related to the human interferences in the area. The study is based on literature survey, data analysis and modelling of hydrodynamic processes. It is concluded that the recent erosion fits into the pseudo-cyclic development of the intertidal flat complex. However, the period of erosion may have been longer than normal and the rate of erosion may have been higher than normal. It is also concluded that such abnormal development is probably effects of the closure of the Lauwerszee in 1969 and not due to land subsidence caused by gas mining. Keywords: Intertidal flats, Wadden Sea, Land subsidence, Closure, Morphology, Long-term development INTRODUCTION The Rif and the Engelsmanplaat form together a supra- to intertidal flat-complex at the fringe of the ebb-tidal delta and the backbarrier area in the Frisian Inlet, located between the Dutch Wadden Sea Islands Ameland and Schiermonnikoog (Figure 1).
    [Show full text]
  • Migratory Waterbirds in the Wadden Sea 1980 – 2000
    Numbers and Trends 1 Migratory Waterbirds in the Wadden Sea 1980 – 2000 Overview of Numbers and Trends of Migratory Waterbirds in the Wadden Sea 1980-2000 Recent Population Dynamics and Habitat Use of Barnacle Geese and Dark-Bellied Brent Geese in the Wadden Sea Curlews in the Wadden Sea - Effects of Shooting Protection in Denmark Shellfi sh-Eating Birds in the Wadden Sea - What can We Learn from Current Monitoring Programs? Wadden Sea Ecosystem No. 20 - 2005 2 Numbers and Trends Colophon Publisher Common Wadden Sea Secretariat (CWSS), Wilhelmshaven, Germany; Trilateral Monitoring and Assessment Group (TMAG); Joint Monitoring Group of Migratory Birds in the Wadden Sea (JMMB). Editors Jan Blew, Theenrade 2, D - 24326 Dersau; Peter Südbeck, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN), Direktion Naturschutz, Göttingerstr. 76, D - 30453 Hannover Language Support Ivan Hill Cover photos Martin Stock, Lieuwe Dijksen Drawings Niels Knudsen Lay-out Common Wadden Sea Secreatariat Print Druckerei Plakativ, Kirchhatten, +49(0)4482-97440 Paper Cyclus – 100% Recycling Paper Number of copies 1800 Published 2005 ISSN 0946-896X This publication should be cited as: Blew, J. and Südbeck, P. (Eds.) 2005. Migratory Waterbirds in the Wadden Sea 1980 – 2000. Wadden Sea Ecosystem No. 20. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Joint Monitoring Group of Migratory Birds in the Wadden Sea, Wilhelmshaven, Germany. Wadden Sea Ecosystem No. 20 - 2005 Numbers and Trends 3 Editorial Foreword We are very pleased to present the results of The present report entails four contributions. the twenty-year period 1980 - 2000 of the Joint In the fi rst and main one, the JMMB gives an Monitoring on Migratory Birds in the Wadden Sea overview of numbers and trends 1980 - 2000 for (JMMB), which is carried out in the framework of all 34 species of the JMMB-program.
    [Show full text]
  • Geology of the Dutch Coast
    Geology of the Dutch coast The effect of lithological variation on coastal morphodynamics Deltores Title Geology of the Dutch coast Client Project Reference Pages Rijkswaterstaat Water, 1220040-007 1220040-007-ZKS-0003 43 Verkeer en Leefomgeving Keywords Geology, erodibility, long-term evolution, coastal zone Abstract This report provides an overview of the build-up of the subsurface along the Dutch shorelines. The overview can be used to identify areas where the morphological evolution is partly controlled by the presence of erosion-resistant deposits. The report shows that the build-up is heterogeneous and contains several erosion-resistant deposits that could influence both the short- and long-term evolution of these coastal zones and especially tidal channels. The nature of these resistant deposits is very variable, reflecting the diverse geological development of The Netherlands over the last 65 million years. In the southwestern part of The Netherlands they are mostly Tertiary deposits and Holocene peat-clay sequences that are relatively resistant to erosion. Also in South- and North-Holland Holocene peat-clay sequences have been preserved, but in the Rhine-Meuse river-mouth area Late Pleistocene• early Holocene floodplain deposits form additional resistant layers. In northern North-Holland shallow occurrences of clayey Eemian-Weichselian deposits influence coastal evolution. In the northern part of The Netherlands it are mostly Holocene peat-clay sequences, glacial till and over consolidated sand and clay layers that form the resistant deposits. The areas with resistant deposits at relevant depths and position have been outlined in a map. The report also zooms in on a few tidal inlets to quick scan the potential role of the subsurface in their evolution.
    [Show full text]
  • Nota Van Antwoord
    > www.vrom.nl Nota van Antwoord Aangepast deel 3 pkb Derde Nota Waddenzee mei 2006 Nota van Antwoord w Aangepast deel 3 pkb Derde Nota Waddenzee Nota van Antwoord Aangepast deel 3 pkb Derde Nota Waddenzee mei 2006 De pkb is opgesteld door het ministerie van VROM in samenwerking met de ministeries van LNV, VenW en EZ. 02 Samenvatting Deze Nota van Antwoord beschrijft in hoofdlijnen het proces Bij de ter inzage legging heeft het kabinet het publiek en de resultaten van de inspraak op de passende beoordeling uitgenodigd te reageren op twee inspraakvragen: (pb), de strategische milieubeoordeling (smb) en de verwer- • Kunt u zich vinden in de conclusies uit de passende king van beide beoordelingen in het aangepast deel 3 van de beoordeling en de strategische milieubeoordeling? pkb Derde Nota Waddenzee. De inspraak heeft open gestaan • Vindt u dat de beide beoordelingen voldoende zijn voor iedereen. Ook de Duitse en Deense contactpersonen zijn verwerkt in het concept aangepast deel 3 pkb Derde Nota op de hoogte gebracht, waarbij op de mogelijkheid is gewezen Waddenzee? om een zienswijze in te dienen van buiten onze landsgrenzen. Deze samenvatting gaat achtereenvolgens in op het proces, Mondelinge en schriftelijke inspraak, bestuurlijk overleg en het profiel van de insprekers en hun reacties en de wijzigingen advisering in de pb, smb en pkb die daaruit voort zijn gevloeid. In de periode van 16 tot en met 26 januari 2006 organiseerde Het kabinet bedankt iedereen die een bijdrage heeft geleverd het ministerie van VROM acht inspraakavonden in het wadden- aan de inspraak. De inspraak heeft geleid tot waardevolle gebied.
    [Show full text]
  • Important Bird Areas and Potential Ramsar Sites in Europe
    cover def. 25-09-2001 14:23 Pagina 1 BirdLife in Europe In Europe, the BirdLife International Partnership works in more than 40 countries. Important Bird Areas ALBANIA and potential Ramsar Sites ANDORRA AUSTRIA BELARUS in Europe BELGIUM BULGARIA CROATIA CZECH REPUBLIC DENMARK ESTONIA FAROE ISLANDS FINLAND FRANCE GERMANY GIBRALTAR GREECE HUNGARY ICELAND IRELAND ISRAEL ITALY LATVIA LIECHTENSTEIN LITHUANIA LUXEMBOURG MACEDONIA MALTA NETHERLANDS NORWAY POLAND PORTUGAL ROMANIA RUSSIA SLOVAKIA SLOVENIA SPAIN SWEDEN SWITZERLAND TURKEY UKRAINE UK The European IBA Programme is coordinated by the European Division of BirdLife International. For further information please contact: BirdLife International, Droevendaalsesteeg 3a, PO Box 127, 6700 AC Wageningen, The Netherlands Telephone: +31 317 47 88 31, Fax: +31 317 47 88 44, Email: [email protected], Internet: www.birdlife.org.uk This report has been produced with the support of: Printed on environmentally friendly paper What is BirdLife International? BirdLife International is a Partnership of non-governmental conservation organisations with a special focus on birds. The BirdLife Partnership works together on shared priorities, policies and programmes of conservation action, exchanging skills, achievements and information, and so growing in ability, authority and influence. Each Partner represents a unique geographic area or territory (most often a country). In addition to Partners, BirdLife has Representatives and a flexible system of Working Groups (including some bird Specialist Groups shared with Wetlands International and/or the Species Survival Commission (SSC) of the World Conservation Union (IUCN)), each with specific roles and responsibilities. I What is the purpose of BirdLife International? – Mission Statement The BirdLife International Partnership strives to conserve birds, their habitats and global biodiversity, working with people towards sustainability in the use of natural resources.
    [Show full text]