(12) Patent Application Publication (10) Pub. No.: US 2004/0175344 A1 Woer (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2004/0175344 A1 Woer (43) Pub US 2004O175344A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0175344 A1 WOer (43) Pub. Date: Sep. 9, 2004 (54) SILICONE-BASED MOSTURE ABSORBING (30) Foreign Application Priority Data MATRIX, PARTICULARLY FOR CARING FOR WOUNDS AND/OR FOR THE Mar. 23, 2001 (DE)..................................... 101. 14382.6 PHARMACEUTICAL/COSMETIC TREATMENT OF SKIN Publication Classification (76) Inventor: Karl-Heinz Woller, Hamburg (DE) (51) Int. Cl." .............................. A61K 7/06; A61K 7/11; A61K 35/78 Correspondence Address: (52) U.S. Cl. ........................ 424/70.12; 424/74; 424/745; ALSTON & BIRD LLP 424/747; 424/764; 424/769; BANK OF AMERICA PLAZA 424/778 101 SOUTH TRYON STREET, SUITE 4000 CHARLOTTE, NC 28280-4000 (US) (57) ABSTRACT (21) Appl. No.: 10/472,872 The invention relates to a Silicone-based moisture absorbing matrix, particularly for caring for wounds and/or for the (22) PCT Filed: Mar. 22, 2002 pharmaceutical/cosmetic treatment of skin, whereby the Sticky matrix is comprised of: a) Silicone; b) a gelling agent, (86) PCT No.: PCT/EP02/03227 and; c) optionally, a Silicone resin. Patent Application Publication Sep. 9, 2004 US 2004/0175344 A1 06/1vAf {}6/99,ÀÅ i •• * t.~--~~~~· ---- * s R SR w late 6usseppunoM 6 foal-f Figure 1 US 2004/0175344 A1 Sep. 9, 2004 SILICONE-BASED MOSTURE ABSORBING containing patch again after a relatively long period of MATRIX, PARTICULARLY FOR CARING FOR wearing is frequently also observed. WOUNDS AND/OR FOR THE 0010 Repeated and long-lasting applications of adhesive PHARMACEUTICAL/COSMETIC TREATMENT OF Systems to regions of the human body which are always the SKIN Same are especially to be encountered in the field of Stoma 0001. The invention relates to a silicone-based moisture care. Hydrocolloids have been employed as an adhesive here absorbing matrix, in particular for wound care and/or phar for a long period and with great Success. These in principle maceutical/cosmetic Skin treatment. consist of a hydrophilic adhesive polymer matrix based on 0002 Products comprising silicone are distinguished by synthetic rubber, in which hydrophilic fillers based on, for very good skin compatibility and are widespread in medical example, alginates, cellulose or pectins which are insoluble technology. For example, catheters, electrode holders, tub in this matrix are present in disperse form. ing, implants and wound dressings are made of Silicone. 0011. In the development of hydrocolloids for stoma Adhesive products comprising Silicone can at the same time care, however, the adhesive properties to moist skin and the have a very high adhesive force and despite this can be capability for liquid absorption are predominant. removed again very easily and without pain. A further 0012 EP 0 186 019 A1 describes an invention of an advantage is the reduced Scar formation of injuries which are active compound patch using fillers which are Swellable in covered with a Silicone wound dressing. water. Here, however, the positive influence of the organic 0003. It turns out to be disadvantageous that silicone is filler on the release rate of the active compound is described. water repellent and cannot absorb any wound exudation at The filler component according to the invention is restricted all. The principle of moist wound treatment can therefore not to 30% by weight. The aspect of the reduction of skin be carried out using wound dressings comprising Silicone. irritation is not discussed. Additionally, the Systems 0004 Transdermal therapeutic systems (TTS) for the described are produced using adhesive resins. delivery of active compounds through the skin have been 0013. It is the aim of the present invention to make known for a long time. available a Silicone-based moisture-absorbing matrix, in particular for wound care and/or pharmaceutical/cosmetic 0005 The topical application of medicaments by means skin treatment. In addition, this should be capable of the of active compound-containing patch Systems offers two controlled delivery of a pharmaceutical, for example from main advantages: the group consisting of the ethereal oils. 0006 Firstly, by means of this administration form 0014. If the moisture-absorbing matrix is equipped to be release kinetics of the active compound of first order Self-adhesive, the Side effects of a contact adhesive for are realized, whereby a constant active compound transdermal Systems mentioned-skin irritation and painful level in the body can be maintained over a very long removal again-should be avoided, which results in a period of time. marked increase in wearer comfort for the patient. 0007 Secondly, by means of the absorption route 0015 This object is achieved by a moisture-absorbing through the skin, the gastrointestinal tract and the matrix according to the main claim. The Subject of the first liver passage are avoided. As a result, Selected Subclaims are advantageous embodiments of the matrix pharmaceuticals can be administered effectively in a according to the invention. low dose. This is advantageous in particular if a local action of the pharmaceutical with circumvention of a 0016. Accordingly, the invention relates to a silicone Systemic action is desired. This is the case, for based moisture-absorbing matrix, in particular for wound example, in the treatment of rheumatic joint Symp care and/or pharmaceutical/cosmetic skin treatment, the toms or myositis. adhesive matrix consisting of 0008 An embodiment of such transdermal systems 0017 a) silicone which is well described in the Specialist literature are matrix 0018 b) gel-forming agent Systems or monolithic Systems in which the pharmaceutical is incorporated directly into the preSSure-Sensitive adhesive. 0019) c) optionally a Silicone resin. Such an adhesive, active compound-containing matrix is equipped in the ready-to-use product on the one Side with a 0020. In a first advantageous embodiment of the inven carrier which is impermeable for the active compound, on tion, the matrix has the following composition: the opposite Side there is a carrier film equipped with a Separating layer which is removed before application to the skin (kleben&dichten, No. 42, 1998, pp. 26 to 30). a) silicone: 55 to 80% by weight, in particular 60 to 75% by weight 0009. A basic requirement for a TTS is a very good b) gel-forming agent: 20 to 40% by weight, in particular 25 to 40% by adhesion to the skin, which must be maintained over the weight entire period of time of the intended active compound dose. A frequently observed side effect, however, is the occurrence of Skin irritation, which occurs particularly on relatively 0021. The inorganic gel-forming agent(s) or thickener(s) long or repeated application of a TTS to a constant body can be advantageously chosen, for example, from the group region. It is mainly caused by the constituents of the consisting of the modified or unmodified, naturally occur adhesive matrix. Painful removal of the active compound ring or Synthetic layered Silicates. US 2004/0175344 A1 Sep. 9, 2004 0022. Although it is perfectly convenient to employ pure and their derivatives Such as quaternium-18 bentonite, components, it is also possible, however, in an advantageous quaternium-18 hectorite, Stearalkonium bentonites or Stear manner to incorporate mixtures of various modified and/or alkonium hectorites) or else magnesium aluminum silicates unmodified layered Silicates into the compositions according (Veegum(E) types) and Sodium magnesium silicates (Lapo to the invention. nite(E) types). 0023 Layered silicates, which are also called phyllosili 0034) Montmorillonites are clay minerals belonging to cates, are to be understood in the context of this application the dioctahedral Smectites and are materials which Swell in as meaning Silicates and aluminosilicates in which the water, but do not become plastic. The layer packets in the Silicate or aluminate units are linked to one another by three-layered Structure of the montmorillonites can be Swol means of three Si-O or Al-O bonds and form a corrugated len by reversible intercalation of water (in a 2-7 fold sheet or layered structure. The fourth Si-O or Al-O amount) and other Substances Such as, for example, alco valence is neutralized by cations. Between the individual hols, glycols, pyridine, C-picoline, ammonium compounds, layers exist weaker electrostatic interactions, for example hydroxyaluminosilicate ions etc. hydrogen bonds. The layered Structure, however, is mainly 0035. The chemical formula indicated above is only formed by Strong, covalent bonds. approximate; since M. possesses a great ion-exchange abil 0024. The stoichiometry of the sheet silicates is ity, Al can be exchanged for Mg, Fe", Fe", Zn, Pb (for example from pollutants in waste waters) Cr, also Cu and 0025 (SiO5) for pure silicate structures and others. The negative charge of the octahedral layerS resulting 0026 (Al,Si-O ("")) for aluminosilicates. therefrom is equalized by means of cations, in particular Na' (sodium montmorillonite) and Ca" (calcium montmorillo 0027) m is a number greater than Zero and less than nite is only very poorly Swellable) in intermediate layer 2. positions. 0028. If not pure silicates but aluminosilicates are 0036 Within the meaning of the present invention, present, the factor is to be taken into account that each Si" advantageous Synthetic magnesium Silicates or bentonites group replaced by Al" requires a further singly charged are marketed, for example, by Sid-Chemie under the trade cation for charge neutralization. name Optigel E. 0029. The charge balance is preferably equalized by H', 0037. An aluminum silicate which is advantageous alkali metal or alkaline earth metal ions. Aluminum as a within the meaning of the present invention is marketed, for counterion is also known and advantageous. In contrast to example, by the R. T. Vanderbilt Comp., Inc., under the trade the aluminosilicates, these compounds are called aluminum name Veegum(R). The various Veegum(R) types, which are all Silicates.
Recommended publications
  • The Use of a Polyphenol for the Treatment of a Cancerous Or Pre-Cancerous Lesion of the Skin
    (19) & (11) EP 2 292 226 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.03.2011 Bulletin 2011/10 A61K 31/353 (2006.01) A61P 17/00 (2006.01) A61P 17/02 (2006.01) A61P 35/00 (2006.01) (21) Application number: 10012395.9 (22) Date of filing: 08.10.2004 (84) Designated Contracting States: (72) Inventor: Stockfleth, Eggert AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 25767 Albersdorf (DE) HU IE IT LI LU MC NL PL PT RO SE SI SK TR (74) Representative: Bösl, Raphael Konrad (30) Priority: 09.10.2003 US 510101 P Isenbruck Bösl Hörschler LLP Patentanwälte (62) Document number(s) of the earlier application(s) in Prinzregentenstrasse 68 accordance with Art. 76 EPC: 81675 München (DE) 04790231.7 / 1 684 780 Remarks: (71) Applicant: MediGene AG This application was filed on 30-09-2010 as a 82152 Martinsried (DE) divisional application to the application mentioned under INID code 62. (54) The use of a polyphenol for the treatment of a cancerous or pre-cancerous lesion of the skin (57) The present invention refers to a method for cancerous or pre-cancerous lesions of the skin by ad- treating cancerous or pre-cancerous lesions of the skin ministering a pharmaceutically effective amount of a by administering a pharmaceutically effective amount of polyphenol to a patient as well as to the production of a a polyphenol to a patient as well as to the production of medicament thereto. a medicament thereto. The present invention refers to a method for treating EP 2 292 226 A2 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 292 226 A2 2 Description that comprise most of the upper layers of skin.
    [Show full text]
  • United States Patent (10) Patent No.: US 9.233,998 B2 Anderson Et Al
    US009233998B2 (12) United States Patent (10) Patent No.: US 9.233,998 B2 Anderson et al. (45) Date of Patent: Jan. 12, 2016 (54) NATURAL PRODUCT ANALOGS INCLUDING 5,002,939 A 3, 1991 Streber AN ANTI-NFLAMMLATORY CYANOENONE 5,013,649 A 5/1991 Wang et al. .................. 435/69.1 PHARMACORE AND METHODS OF USE 5,064,823. A 1 1/1991 Lee et al. ...................... 514,198 5,401,838 A 3/1995 Chou ............................ 536,281 (75) Inventors: Eric Anderson, Houston, TX (US); 5,426,183 A 6, 1995 Kjell . 536,285.5 Gary L. Bolton, Ann Arbor, MI (US); 5,464,826 A 11, 1995 Grindey et al. ................. 514,50 Deborah A. Ferguson.g s Branchburg,2. NJ 5,521,294 A 5/1996 Wildfeur ....................... 536,187 (US); Xin Jiang, Dallas, TX (US); 5,597,124. A 1/1997 Kessel et al. .................... 241.30 5,603,958 A 2f1997 Morein et al. ... 424/489 Robert M. Kral, Jr., Grapevine, TX 5,606,048. A 2/1997 Chou et al. ......... 536,271.1 (US); Patrick M. O’Brien, Stockbridge, 5,629,295 A 5/1997 Denimno et al. ................ 514, 26 MI (US); Melean Visnick, Irving, TX 5,972,703 A 10/1999 Long et al. ..... 435/372 (US) 6,025,395 A 2/2000 Breitner et al. ............... 514/570 6,303,569 B1 10/2001 Greenwald et al. ............... 514/2 (73) Assignee: REATA PHARMACEUTICALS, 6,326,507 B1 12/2001 Gribble et al. ..... 558,415 INC. Irving, TX (US) 6,369,101 B1 4/2002 Carlson ....... ... 514,169 6,485,756 B1 1 1/2002 Aust et al.
    [Show full text]
  • Exploring Antioxidant Activity, Organic Acid, and Phenolic Composition in Strawberry Tree Fruits (Arbutus Unedo L.) Growing in Morocco
    plants Article Exploring Antioxidant Activity, Organic Acid, and Phenolic Composition in Strawberry Tree Fruits (Arbutus unedo L.) Growing in Morocco Hafida Zitouni 1, Lahcen Hssaini 2 , Rachida Ouaabou 3, Manuel Viuda-Martos 4 , Francisca Hernández 5 , Sezai Ercisli 6 , Said Ennahli 7, Zerhoune Messaoudi 7 and Hafida Hanine 1,* 1 Laboratory of Bioprocess and Bio-interfaces, Faculty of Science and Technics, University Sultan Moulay Slimane, BO 523, Beni-Mellal 23000, Morocco; hafi[email protected] 2 Research Unit of Plant Breeding and Plant Genetic Resources Conservation, National Institute for Agricultural Research (INRA), BO 578, Meknes 50000, Morocco; [email protected] 3 LICVEDDE/ERIDDECV (Research Team of Innovation and Sustainable Development & Expertise in Green Chemistry), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; [email protected] 4 Departamento de Tecnología Agroalimentaria, Tecnología Agroalimentaria, IPOA, Escuela Politécnica Superior de Orihuela, (Universidad Miguel Hernández), Ctra Beniel, km 3.2, E 03312 Orihuela, Spain; − [email protected] 5 Grupo de Investigación de Producción Vegetal y Tecnología, Departamento de Producción Vegetal y Microbiología, Producción Vegetal y Microbiología, Cuela Politécnica Superior de Orihuela (Universidad Miguel Hernández de Elche), Ctra. de Beniel, km 30.2, E 03312 Orihuela, Spain; − [email protected] 6 Department of Horticulture, Agricultural Faculty, Ataturk University, 25240 Erzurum, Turkey; [email protected] 7 Department of Arboriculture,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0079235A1 Stockfleth (43) Pub
    US 20050079235A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0079235A1 Stockfleth (43) Pub. Date: Apr. 14, 2005 (54) USE OF A POLYPHENOL FOR THE Publication Classification TREATMENT OF ACTINIC KERATOSIS (51) Int. Cl.' ..................... A61K 35/78; A61K 31/7048; (76) Inventor: Eggert Stockfleth, Berlin (DE) A61K 31/353 (52) U.S. Cl. ............................. 424/729; 514/456; 514/27 Correspondence Address: CLARK & ELBING LLP 101 FEDERAL STREET (57) ABSTRACT BOSTON, MA 02110 (US 9 (US) The present invention refers to a method for treating actinic (21) Appl. No.: 10/682,612 keratosis by administering a pharmaceutically effective amount of a polyphenol to a patient as well as to the (22) Filed: Oct. 9, 2003 production of a medicament thereto. US 2005/0079235 A1 Apr. 14, 2005 USE OF A POLYPHENOL FOR THE TREATMENT the later development of Squamous cell carcinoma. They OF ACTINIC KERATOSIS include actinic keratoses, actinic cheilitis, leukoplakia and Bowen's disease. BACKGROUND OF THE INVENTION 0006 Actinic keratosis (AK), also known as a solar keratosis, arises on the skin Surface. AK appears as rough, 0001. The present invention refers to a method for treat Scaly crusty and/or slightly raised growths that range in ing actinic keratosis by administering a pharmaceutically color from brown to red and may be up to one inch in effective amount of a polyphenol to a patient as well as to the diameter. It appears most often in older people. The base production of a medicament thereto. may be light or dark, tan, pink, red or a combination of these 0002 Skin cancer is a disease in which malignant (can or has the same color as the skin itself.
    [Show full text]
  • Molecular Evaluation of Herbal Compounds As Potent Inhibitors of Acetylcholinesterase for the Treatment of Alzheimer's Disease
    446 MOLECULAR MEDICINE REPORTS 14: 446-452, 2016 Molecular evaluation of herbal compounds as potent inhibitors of acetylcholinesterase for the treatment of Alzheimer's disease YAN-XIU CHEN1, GUAN-ZENG LI1, BIN ZHANG2, ZHANG-YONG XIA1 and MEI ZHANG3 1Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University; 2Department of Neurology, The 3rd People's Hospital of Liaocheng, Liaocheng, Shandong 252000; 3Department of Neurology, The 5th People's Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China Received June 15, 2015; Accepted April 15, 2016 DOI: 10.3892/mmr.2016.5244 Abstract. Alzheimer's disease (AD) is a progressive disease The cause of AD is not fully understood (1), and researchers and the predominant cause of dementia. Common symptoms have hypothesized that ~70% of the risk is due to genetic include short-term memory loss, and confusion with time and factors (4), followed by other factors, including head inju- place. Individuals with AD depend on their caregivers for ries, depression or hypertension (4-7). Patients with AD assistance, and may pose a burden to them. The acetylcholin- rely on caregivers for assistance, and in certain cases they esterase (AChE) enzyme is a key target in AD and inhibition of may pose a burden to them (6). In developed countries, AD this enzyme may be a promising strategy in the drug discovery is considered to be one of the most financially challenging process. In the present study, an inhibitory assay was carried out diseases (8-11). The underlying mechanisms of AD are not against AChE using total alkaloidal plants and herbal extracts fully known and the majority of available drug therapies commonly available in vegetable markets.
    [Show full text]
  • WO 2017/079248 Al 11 May 2017 (11.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/079248 Al 11 May 2017 (11.05.2017) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08G 18/48 (2006.01) A61L 15/22 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 47/32 (2006.01) C08L 33/02 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 47/34 (2017.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US20 16/060054 KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 2 November 2016 (02.1 1.2016) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/25 1,345 5 November 2015 (05. 11.2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: LUBRIZOL ADVANCED MATERIALS, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, INC.
    [Show full text]
  • FSNR-101011.Pdf
    NorCal Open Access Publications Recent Advancement in Food Science NORCAL and Nutrition Research OPEN ACCESS PUBLICATION Volume 1; Issue 1 Ricci A et al. Review Article The Nutraceutical Impact of Polyphenolic Compo- sition in Commonly Consumed Green Tea, Green Coffee and Red Wine Beverages: A Review Arianna Ricci, Giuseppina P Parpinello* and Andrea Versari Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza Goidanich 60, 47521 Cesena FC, Italy *Corresponding author: Giuseppina P Parpinello, Department of Agricultur- al and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza Goidan- ich 60, 47521 Cesena FC, Italy, Tel: +39 0547338118; Fax: +39 0547382348; E-mail: [email protected] Received Date: 27 July, 2017; Accepted Date: 17 January, 2018; Published Date: 28 March, 2018 Abstract from their botanical sources has a long tradition in the food indus- try, and it is reaching an increasing interest due to their unique bio- Commonly consumed beverages, e.g., green tea, green coffee, and active properties and beneficial health effects [2-5]. Polyphenolic red wine, have gained a prominent role in food science due to their compounds range structurally from low-weight monomeric and nutraceutical value. The high content in bioactive compounds, dimeric compounds (as in the case of castalagin, vescalagin, and particularly polyphenols, able to scavenge free radicals and other roburin ellagitannins) up to high molecular weight polyphenols, reactive species, has led to considerable interest in assessing the obtained via addition or condensation reactions between mono- impact of their consumption in human diet. In vitro and in vivo mers (tannic acid, proanthocyanidins); every subclass is character- tests have highlighted the multiple reaction mechanisms involved ised by specific mechanisms of action (radical scavenging, reduc- in the protective role of polyphenols; nevertheless, the variability tion and/or complexation of catalytic metal ions) [6].
    [Show full text]
  • Ocular Delivery of Polyphenols: Meeting the Unmet Needs
    molecules Review Ocular Delivery of Polyphenols: Meeting the Unmet Needs Luna Krsti´c 1 , María J. González-García 1,2 and Yolanda Diebold 1,2,* 1 Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; [email protected] (L.K.); [email protected] (M.J.G.-G.) 2 Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-883423274 Abstract: Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use.
    [Show full text]
  • Transcriptome and Metabolome Integrated Analysis of Two Ecotypes of Tetrastigma Hemsleyanum Reveals Candidate Genes Involved in Chlorogenic Acid Accumulation
    plants Article Transcriptome and Metabolome Integrated Analysis of Two Ecotypes of Tetrastigma hemsleyanum Reveals Candidate Genes Involved in Chlorogenic Acid Accumulation Shuya Yin 1,2 , Hairui Cui 1, Le Zhang 2, Jianli Yan 2,*, Lihua Qian 2,* and Songlin Ruan 3,* 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; [email protected] (S.Y.); [email protected] (H.C.) 2 Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310058, China; [email protected] 3 Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310058, China * Correspondence: [email protected] (J.Y.); [email protected] (L.Q.); [email protected] (S.R.) Abstract: T. hemsleyanum plants with different geographical origins contain enormous genetic vari- ability, which causes different composition and content of flavonoids. In this research, integrated analysis of transcriptome and metabolome were performed in two ecotypes of T. hemsleyanum. There were 5428 different expressed transcripts and 236 differentially accumulated metabolites, phenyl- propane and flavonoid biosynthesis were most predominantly enriched. A regulatory network of 9 transcripts and 11 compounds up-regulated in RG was formed, and chlorogenic acid was a core component. Citation: Yin, S.; Cui, H.; Zhang, L.; Keywords: Tetrastigma hemsleyanum; transcriptome; metabolome; chlorogenic acid Yan, J.; Qian, L.; Ruan, S. Transcriptome and Metabolome Integrated Analysis of Two Ecotypes of Tetrastigma hemsleyanum Reveals 1. Introduction Candidate Genes Involved in Tetrastigma hemsleyanum Diels et Gilg is a herbaceous climber that is widely distributed Chlorogenic Acid Accumulation. in tropical to subtropical regions, mainly in provinces in south and southwest China, in- Plants 2021, 10, 1288. https:// cluding Zhejiang, Jiangsu, Jiangxi and Tibet [1].
    [Show full text]
  • Gallocatechol 1 Gallocatechol
    Gallocatechol 1 Gallocatechol Gallocatechol Identifiers [1] CAS number 1617-55-6 [2] PubChem 65084 [3] MeSH Gallocatechol Properties Molecular formula C H O 15 14 7 Molar mass 306.267 g/mol Exact mass 306.073953 Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) Infobox references Gallocatechol or epigallocatechin (EGC) is a flavan-3-ol, a type of chemical compound including catechin. It is one of the antioxidant chemicals found in food. This compound possesses an epimer, found notably in green tea, called "gallocatechin" (GC), with the gallate residue being in an isomeric trans position. Other sources of gallocatechin are bananas[4] , persimmon and pomegranate.. This compound had been shown to have moderate affinity to the human cannabinoid receptor,[5] which may contribute to the health benefits found by consuming green tea. References [1] http:/ / www. commonchemistry. org/ ChemicalDetail. aspx?ref=1617-55-6 [2] http:/ / pubchem. ncbi. nlm. nih. gov/ summary/ summary. cgi?cid=65084 [3] http:/ / www. nlm. nih. gov/ cgi/ mesh/ 2007/ MB_cgi?mode=& term=Gallocatechol [4] S. Someya, Y. Yoshiki, K. Okubo. Antioxidant compounds from bananas (Musa cavendish). Food Chemistry, 2002. [5] Korte, G.; Dreiseitel, A.; Schreier, P.; Oehme, A.; Locher, S.; Geiger, S.; Heilmann, J.; Sand, P. (2010). "Tea catechins' affinity for human cannabinoid receptors". Phytomedicine : international journal of phytotherapy and phytopharmacology 17 (1): 19–22. doi:10.1016/j.phymed.2009.10.001. PMID 19897346. Gallocatechol 2 See also • Prodelphinidin • Epigallocatechin gallate • Proanthocyanidin A1 (epigallocatechin-(2β→7,4β→8)-epicatechin), a A type proanthocyanidin dimer.
    [Show full text]
  • Protective Effects of Rheum Turkestanicum Janischagainst Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rats
    Protective Effects of Rheum Turkestanicum Janischagainst Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rats Ahmad Ghorbani Mashhad University of Medical Sciences Faculty of Medicine Azar Hosseini Mashhad University of Medical Sciences Faculty of Medicine Farshad Mirzavi Mashhad University of Medical Sciences Faculty of Medicine Sara Hooshmand Mashhad University of Medical Sciences Faculty of Medicine Mohammad Sadegh Amiri Payame Noor University Amir Hosein Jafarian Mashhad University of Medical Sciences Maedeh Hasanpour Mashhad University of Medical Sciences Mehrdad Iranshahi Mashhad University of Medical Sciences Faculty of Pharmacy Mohammad Soukhtanloo Mashhad University of Medical Sciences Ahmad Khalife Mashhad University of Medical Sciences Ghaem Hospital Arezoo Rajabian ( [email protected] ) Mashhad University of Medical Sciences Emam Reza Hospital https://orcid.org/0000-0003-3765-7463 Research Article Keywords: Diethylnitrosamine, Hepatocellular carcinoma, Liver, Oxidative stress, Rheum turkestanicum Posted Date: June 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-528331/v1 Page 1/24 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/24 Abstract Aim of the study Hepatocellular carcinoma (HCC) is common cancer that causes many deaths worldwide. Recent studies have reported anti-cancer effects of R. turkestanicum against various cell lines including leukemia cervical tumor, and breast cancer. In this study, we aimed to identify the effect of R. turkestanicum against diethylnitrosamine (DEN)-induced HCC. Methods Wistar rats were divided into four groups of control, DEN, DEN + 100 mg/kg or 400 mg/kg of hydroethanolic extract of the plant roots. Results After four months, the animals in the DEN group showed HCC foci in the liver, an increase of hepatic lipid peroxidation, attenuation of hepatic antioxidant capacity, an increase of blood liver enzymes (ALT, AST, and ALP), bilirubin, albumin, creatinine, glucose, and reduction of the body weight.
    [Show full text]
  • Impact of Zinc, Glutathione, and Polyphenols As Antioxidants in the Immune Response Against SARS-Cov-2
    processes Review Impact of Zinc, Glutathione, and Polyphenols as Antioxidants in the Immune Response against SARS-CoV-2 José Manuel Pérez de la Lastra 1,* , Celia Andrés-Juan 2, Francisco J. Plou 3 and Eduardo Pérez-Lebeña 4 1 Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, 38206 San Cristóbal de la Laguna, Spain 2 Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain; [email protected] 3 Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain; [email protected] 4 Sistemas de Biotecnología y Recursos Naturales, 47625 Valladolid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-9222-60112 Abstract: SARS-CoV-2, the coronavirus triggering the disease COVID-19, has a catastrophic health and socioeconomic impact at a global scale. Three key factors contribute to the pathogenesis of COVID-19: excessive inflammation, immune system depression/inhibition, and a set of proinflamma- tory cytokines. Common to these factors, a central function of oxidative stress has been highlighted. A diversity of clinical trials focused predominantly on antioxidants are being implemented as potential therapies for COVID-19. In this study, we look at the role of zinc, glutathione, and polyphenols, as key antioxidants of possible medicinal or nutritional significance, and examine their role in the antiviral immune response induced by SARS-Cov-2. An unresolved question is why some people experience chronic COVID and others do not. Understanding the relationship between SARS-CoV-2 Citation: Pérez de la Lastra, J.M.; and the immune system, as well as the role of defective immune responses to disease development, Andrés-Juan, C.; Plou, F.J.; would be essential to recognize the pathogenesis of COVID-19, the risk factors that affect the harmful Pérez-Lebeña, E.
    [Show full text]