The Evolution of Gene Function in Caenorhabditis Spp. by Adrian

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Gene Function in Caenorhabditis Spp. by Adrian The Evolution of Gene Function in Caenorhabditis spp. by Adrian Verster A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto c Copyright 2014 by Adrian Verster Abstract The Evolution of Gene Function in Caenorhabditis spp. Adrian Verster Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto 2014 The sequence of the genome gradually evolves, and such changes can affect the function of the genes encoded within. Here I try to understand the causes and consequences of changes in gene function between related species, particularly in Caenorhabditis nema- todes. The goal of the first section of my thesis is to compare biological gene function of 1-1 orthologs by using loss of function phenotypes in C. elegans and C. briggsae. I did this by constructing and screening an RNA interference (RNAi) library in C. briggsae and comparing these RNAi phenotypes to those in C. elegans. This approach found 91 examples of orthologs with different in vivo functions, around 7% of the genes screened. For one of these examples, sac-1, I was able to explain the different biological function by a difference in molecular function, in this case by a difference in gene expression. Given the extremely high phenotypic similarity of these two species I hypothesize that many of these examples of different RNAi phenotypes likely represent cases of changes in gene function which have preserved the developmental phenotypes of the animal due to high levels of stabilizing selection, a model known as Developmental System Drift. In support of this, I found several cases where a phenotype is not present in the C. briggsae copy of an ortholog, but it is present in another related family member, suggesting that this related gene has taken over the function of the original gene in C. briggsae. I also found that recently evolved genes are enriched for having different RNAi phe- notypes, which led me to consider what could explain their rapid rate of evolution of in ii vivo function. By measuring the co-expression of novel genes to genes in different molec- ular pathways, I was able to construct a series of features which could accurately predict which novel genes become essential. An analysis of this model showed that co-expressions to ancient, essential pathways is highly predictive of a novel gene acquiring an essential function. These results supported a picture of how novel genes become integrated into cellular networks, and subsequently are preserved by evolutionary forces. iii Acknowledgements First and foremost I would like to thank my thesis advisor, Andy Fraser who guided me through these intellectually challenging years. You were always available to set me on track when I was lost. I am also grateful to my thesis committee (Gary Bader, Asher Cutter and Sabine Cordes) who were always willing to give me advice on a multitude of issues. You each provided an important perspective on the work, and I could not have completed this without your help. Members of the Fraser lab have provided tremendous help over the years, Arun Ra- mani, Nadege Pelte, Mark Spensley, Nattha Wannissorn, Victoria Vu, June Tan, Steve Van Doormaal, Tunga Chuluunbaatar and Mike Schertzberg. Many people helped me with difficult scientific issues, but I would particularly like to thank those who taught me computational biology, namely Leopold Parts, Azin Sayad, Traver Hart, Lee Zamparo and Carl de Boer. I could not have made it through without my friends and others who are close to me. Kathleen Cook, my lovely fianc´e, was always there to help me through difficult times. I will not exhaustively name you, but anyone else who was close to me, you know who you are. I would also like to acknowledge Marie-Anne Flix for the gift of the SID-2 expressing JU1018 transgenic C. briggsae line, and the pJH1774 plasmid containing mWormCherry was a gift from Arshad Desai’s lab. Finally, I would like to thank Google and Wikipedia for providing me with a deep well of knowledge that I repeatedly drew from when I was missing pieces of the puzzle. iv Contents 1 Introduction 1 1.1 Mechanismsforgenomechange . 2 1.1.1 Mutation ............................... 3 1.1.2 Selection................................ 4 1.2 ExperimentalEvolution . 7 1.2.1 Howreproducibleisevolution? . 8 1.3 Change in gene function of orthologous genes. 8 1.3.1 Case studies from quantitative genetics . 9 1.3.2 Case studies from the evolution of development . 10 1.4 Evolutionofnovelgenes . 14 1.4.1 Evolution of gene function for taxonomically restrictedgenes . 14 1.4.2 The evolution of novel genes by gene duplication . 16 1.4.3 The evolution of novel genes from non-coding DNA . 19 1.5 Pathwayevolution .............................. 20 1.5.1 Convergent evolution in the C. elegans and C. briggsae sex devel- opmentpathways ........................... 20 1.5.2 RNAinterferenceandArgonauteproteins . 21 1.6 High-throughput approaches to genome evolution . 23 1.6.1 How much of evolution can single genes explain? . 23 1.6.2 Geneexpressiondivergence . 24 v 1.6.3 Transcription factor binding divergence . 26 1.7 DevelopmentalSystemDrift . 28 1.8 Howmuchofmolecularfunctionisnoise?. 31 1.9 Openquestionsandthesisgoals . 34 2 Evolution of ortholog gene function in Caenorhabditis spp. 37 2.1 Abstract.................................... 38 2.2 Introduction.................................. 38 2.3 Results..................................... 42 2.3.1 Construction and screening of the C. briggsae RNAi library . 42 2.3.2 Genes with different phenotypes are enriched for transcription fac- torsandrecentlyevolvednovelgenes . 48 2.3.3 Changes in gene function during DSD are often the result of pro- moterevolution............................ 50 2.3.4 Ortholog pairs encoding more divergent protein sequences are more likelytohavedifferentRNAiphenotypes . 52 2.3.5 Orthologs may have different organismal roles due to changes in othergenes .............................. 54 2.3.6 Conservation of function can be maintained at the level of gene familyandnotgenefamilymembers . 55 2.4 Discussion................................... 57 2.5 Methods.................................... 63 2.5.1 Construction of the C. briggsae RNAi Library . 63 2.5.2 Manual screening of the C. briggsae RNAi Library . 63 2.5.3 FitnessAssay ............................. 64 2.5.4 qPCR ................................. 65 2.5.5 Examination of C. elegans and C. briggsae gene phylogenetic age 66 2.5.6 GFPStitchingandMicroscopy . 66 vi 2.5.7 Transgenicrescueexperiments . 66 2.5.8 Examination of C. elegans and C. briggsae protein similarity . 67 2.5.9 Predictability of phenotype differences . 67 2.5.10 Identifying functionally related genes . 68 3 Evolution of essential functions in novel genes 83 3.1 Abstract.................................... 84 3.2 Introduction.................................. 84 3.3 Results..................................... 86 3.3.1 ThenumberofTRGsinthewormgenome . 87 3.3.2 Novel genes preferentially form functional links with other novel genes.................................. 87 3.3.3 Essential TRGs are enriched for functional links . 88 3.3.4 Prediction of novel gene function based on co-expressionprofiles . 89 3.3.5 Novel genes contribute to drug resistance predictions . 91 3.4 Discussion................................... 92 3.5 Methods.................................... 96 3.5.1 Finding Taxonomically restricted genes . 96 3.5.2 TRGfunctionaldata ......................... 96 3.5.3 EssentialTRGclassification . 97 3.5.4 Featureimportanceanalysis . 98 3.5.5 Drugresistancepredictions. 98 4 Discussion and concluding remarks 109 4.1 Summary ................................... 109 4.2 Turnoverofgeneswithinpathways . 110 4.3 Transversalofadaptivepeaks . 113 4.4 Novelgenefunctionathighresolution . 115 vii 4.5 How do novel genes change functional networks? . 116 4.6 OverallSignificance.............................. 118 Bibliography 122 viii Chapter 1 Introduction Evolution has generated the incredibly diverse array of life forms which inhabit the planet. Small changes in the genetic material, DNA, are passed down to offspring and these changes can eventually become fixed in the population. Improvements in genomic technologies have completely revolutionized our understanding of evolution. Changes in the heritable material are now measurable, and thus, we can measure the changes that occur during evolution. For example, the old view of the tree of life was that of 5 kingdoms of life, Monera (bacteria), Protists, Plants, Animals and Fungi (Whittaker, 1969), which is based on our (naive) understanding of the biology of different organisms. However, the first attempts to measure the heritable material (rDNA sequences) seriously challenged this: they found that different types of bacteria were as divergent as bacteria are from eukaryotes, and this led to a classification system of eukaryotes, bacteria, as well as a third group, archeabacteria (Woese and Fox, 1977). Since then, similar molecular taxonomics has changed our view of the eukaryotic tree of life as well. The emerging view is of 5 major groupings: Unikonts which include fungi and animals, Plantae which include land plants and algae, Excavates, Cercozoa and Chromalveolates (Keeling et al., 2005); the exact relationships between these groups remain unclear. In parallel to our ability to measure heritable changes in DNA, we have also acquired 1 Chapter 1. Introduction 2 the technology to characterize the function of the genes
Recommended publications
  • Species Richness, Distribution and Genetic Diversity of Caenorhabditis Nematodes in a Remote Tropical Rainforest
    Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. Marie-Anne Félix, Richard Jovelin, Céline Ferrari, Shery Han, Young Ran Cho, Erik Andersen, Asher Cutter, Christian Braendle To cite this version: Marie-Anne Félix, Richard Jovelin, Céline Ferrari, Shery Han, Young Ran Cho, et al.. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest.. BMC Evolutionary Biology, BioMed Central, 2013, 13 (1), pp.10. 10.1186/1471-2148-13-10. inserm- 00781427 HAL Id: inserm-00781427 https://www.hal.inserm.fr/inserm-00781427 Submitted on 26 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Félix et al. BMC Evolutionary Biology 2013, 13:10 http://www.biomedcentral.com/1471-2148/13/10 RESEARCHARTICLE Open Access Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest Marie-Anne Félix1†, Richard Jovelin2†, Céline Ferrari3,4,5, Shery Han2, Young Ran Cho2, Erik C Andersen6, Asher D Cutter2 and Christian Braendle3,4,5* Abstract Background: In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence.
    [Show full text]
  • Revisiting Suppression of Interspecies Hybrid Male Lethality In
    bioRxiv preprint doi: https://doi.org/10.1101/102053; this version posted January 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Revisiting suppression of interspecies hybrid male lethality in Caenorhabditis nematodes Lauren E. Ryan and Eric S. Haag* Department of Biology and Biological Sciences Program University of Maryland, College Park MD USA * Correspondence: E.S. Haag, Dept. of Biology, Univ. of Maryland, 4094 Campus Dr., College Park, MD 20740 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/102053; this version posted January 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Within the nematode genus Caenorhabditis, C. briggsae and C. nigoni are among the most closely related species known. They differ in sexual mode, with C. nigoni retaining the ancestral XO male-XX female outcrossing system, while C. briggsae females recently evolved self- fertility and an XX-biased sex ratio. Wild-type C. briggsae and C. nigoni can produce fertile hybrid XX female progeny, but XO progeny are either 100% inviable (when C. briggsae is the mother) or viable but sterile (when C. nigoni is the mother). A recent study provided evidence suggesting that loss of the Cbr-him-8 meiotic regulator in C.
    [Show full text]
  • "Structure, Function and Evolution of the Nematode Genome"
    Structure, Function and Advanced article Evolution of The Article Contents . Introduction Nematode Genome . Main Text Online posting date: 15th February 2013 Christian Ro¨delsperger, Max Planck Institute for Developmental Biology, Tuebingen, Germany Adrian Streit, Max Planck Institute for Developmental Biology, Tuebingen, Germany Ralf J Sommer, Max Planck Institute for Developmental Biology, Tuebingen, Germany In the past few years, an increasing number of draft gen- numerous variations. In some instances, multiple alter- ome sequences of multiple free-living and parasitic native forms for particular developmental stages exist, nematodes have been published. Although nematode most notably dauer juveniles, an alternative third juvenile genomes vary in size within an order of magnitude, com- stage capable of surviving long periods of starvation and other adverse conditions. Some or all stages can be para- pared with mammalian genomes, they are all very small. sitic (Anderson, 2000; Community; Eckert et al., 2005; Nevertheless, nematodes possess only marginally fewer Riddle et al., 1997). The minimal generation times and the genes than mammals do. Nematode genomes are very life expectancies vary greatly among nematodes and range compact and therefore form a highly attractive system for from a few days to several years. comparative studies of genome structure and evolution. Among the nematodes, numerous parasites of plants and Strikingly, approximately one-third of the genes in every animals, including man are of great medical and economic sequenced nematode genome has no recognisable importance (Lee, 2002). From phylogenetic analyses, it can homologues outside their genus. One observes high rates be concluded that parasitic life styles evolved at least seven of gene losses and gains, among them numerous examples times independently within the nematodes (four times with of gene acquisition by horizontal gene transfer.
    [Show full text]
  • Caenorhabditis Elegans and Caenorhabditis Briggsae
    Mol Gen Genomics (2005) 273: 299–310 DOI 10.1007/s00438-004-1105-6 ORIGINAL PAPER Richard Jovelin Æ Patrick C. Phillips Functional constraint and divergence in the G protein family in Caenorhabditis elegans and Caenorhabditis briggsae Received: 2 July 2004 / Accepted: 9 December 2004 / Published online: 27 April 2005 Ó Springer-Verlag 2005 Abstract Part of the challenge of the post-genomic Keywords Caenorhabditis elegans Æ Caenorhabditis world is to identify functional elements within the wide briggsae Æ G protein Æ Divergence Æ Gene regulation array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and func- Introduction tional conservation is not clear. Here, we use a com- parative approach to examine questions of evolutionary Recent whole genome sequencing projects have revealed rates and conserved function within the guanine nucle- that a substantial portion of genome evolution consists otide-binding protein (G protein) gene family in nema- of divergence and diversification of gene families (e.g., todes of the genus Caenorhabditis. In particular, we Chervitz et al. 1998; Lander et al. 2001; Venter et al. show that, in cases where the Caenorhabditis elegans 2001; Zdobnov et al. 2002). One of the primary chal- ortholog shows a loss-of-function phenotype, G protein lenges in this emerging field is to use information on genes of C. elegans and Caenorhabditis briggsae diverge sequence similarity and divergence among genomes to on average three times more slowly than G protein genes infer gene function. Very low rates of change might that do not exhibit any phenotype when mutated in C.
    [Show full text]
  • Baer Lab Publications
    Publications: NOTE: Superscript U indicates undergraduate advisee, G indicates graduate advisee, P indicates postdoctoral advisee; corresponding author on multiple-author papers is underlined. 2019 Baer, C. F. 2019. Evolution: Environmental dependence of the mutational process. Current Biology 29, R415–R417. PMID: 31163145. Invited commentary. 2018 Saxena, A. S.G, M. P. SalomonG, C. MatsubaP, S-D. YehP, and C. F. Baer. 2018. Evolution of the mutational process under relaxed selection in Caenorhabditis elegans. Molecular Biology and Evolution 36:239–251. https://doi.org/10.1093/molbev/msy213. PMID: 30445510. Crombie, T. A.P, S. Saber, A. SG. SaxenaG, R. EganU, and C. F. Baer. 2018. Head-to-head comparison of three experimental methods of quantifying competitive fitness in C. elegans. PLoS ONE 13(10): e0201507. https://doi.org/10.1371/journal.pone.0201507. PMID: 30339672. Johnson, L. M.G, L. M. ChandlerG, S. K. Davies, and C. F. Baer. 2018. Network architecture and mutational sensitivity of the C. elegans metabolome. Frontiers in Molecular Biosciences – Metabolomics, 5: 69. doi: 10.3389/fmolb.2018.00069. Invited contribution. PMID: 30109234. 2017 Yeh, S-D.P, A. S. SaxenaG, T. Crombie P, D. Feistel, L. M. JohnsonG, I. LamU, J. LamU, S. SaberG, and C. F. Baer. 2017. The mutational decay of male and hermaphrodite competitive fitness in the androdioecious nematode C. elegans, in which males are naturally rare. Heredity, 120:1-12. PMID: 29234171. H. Teotónio, S. Estes, P. Phillips and C. F. Baer. 2017. Experimental evolution with Caenorhabditis nematodes. Genetics, 206: 691–716. Invited contribution to Wormbook. PMID: 28592504. Reed, L. R., C.
    [Show full text]
  • The Natural Biotic Environment of Caenorhabditis Elegans
    | WORMBOOK EVOLUTION AND ECOLOGY The Natural Biotic Environment of Caenorhabditis elegans Hinrich Schulenburg*,1 and Marie-Anne Félix†,1 *Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany, †Institut de Biologie de l’Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L’université de Recherche Paris Sciences et Lettres, 75005, France ORCID ID: 0000-0002-1413-913X (H.S.) ABSTRACT Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism’s biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed 10 yr ago. Since then, an increasing number of studies have focused on the nematode’s natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans. We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors.
    [Show full text]
  • A Model for Evolutionary Ecology of Disease: the Case for Caenorhabditis Nematodes and Their Natural Parasites
    Journal of Nematology 49(4):357–372. 2017. Ó The Society of Nematologists 2017. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites AMANDA K. GIBSON AND LEVI T. M ORRAN Abstract: Many of the outstanding questions in disease ecology and evolution call for combining observation of natural host– parasite populations with experimental dissection of interactions in the field and the laboratory. The ‘‘rewilding’’ of model systems holds great promise for this endeavor. Here, we highlight the potential for development of the nematode Caenorhabditis elegans and its close relatives as a model for the study of disease ecology and evolution. This powerful laboratory model was disassociated from its natural habitat in the 1960s. Today, studies are uncovering that lost natural history, with several natural parasites described since 2008. Studies of these natural Caenorhabditis–parasite interactions can reap the benefits of the vast array of experimental and genetic tools developed for this laboratory model. In this review, we introduce the natural parasites of C. elegans characterized thus far and discuss resources available to study them, including experimental (co)evolution, cryopreservation, behavioral assays, and genomic tools. Throughout, we present avenues of research that are interesting and feasible to address with caenorhabditid nematodes and their natural parasites, ranging from the maintenance of outcrossing to the community dynamics of host-associated microbes. In combining natural relevance with the experimental power of a laboratory supermodel, these fledgling host–parasite systems can take on fundamental questions in evolutionary ecology of disease. Key words: bacteria, Caenorhabditis, coevolution, evolution and ecology of infectious disease, experimental evolution, fungi, host–parasite interactions, immunology, microbiome, microsporidia, virus.
    [Show full text]
  • S41467-018-05712-5.Pdf
    ARTICLE DOI: 10.1038/s41467-018-05712-5 OPEN Biology and genome of a newly discovered sibling species of Caenorhabditis elegans Natsumi Kanzaki 1,8, Isheng J. Tsai 2, Ryusei Tanaka3, Vicky L. Hunt3, Dang Liu 2, Kenji Tsuyama 4, Yasunobu Maeda3, Satoshi Namai4, Ryohei Kumagai4, Alan Tracey5, Nancy Holroyd5, Stephen R. Doyle 5, Gavin C. Woodruff1,9, Kazunori Murase3, Hiromi Kitazume3, Cynthia Chai6, Allison Akagi6, Oishika Panda 7, Huei-Mien Ke2, Frank C. Schroeder7, John Wang2, Matthew Berriman 5, Paul W. Sternberg 6, Asako Sugimoto 4 & Taisei Kikuchi 3 1234567890():,; A ‘sibling’ species of the model organism Caenorhabditis elegans has long been sought for use in comparative analyses that would enable deep evolutionary interpretations of biological phenomena. Here, we describe the first sibling species of C. elegans, C. inopinata n. sp., isolated from fig syconia in Okinawa, Japan. We investigate the morphology, developmental processes and behaviour of C. inopinata, which differ significantly from those of C. elegans. The 123-Mb C. inopinata genome was sequenced and assembled into six nuclear chromo- somes, allowing delineation of Caenorhabditis genome evolution and revealing unique char- acteristics, such as highly expanded transposable elements that might have contributed to the genome evolution of C. inopinata. In addition, C. inopinata exhibits massive gene losses in chemoreceptor gene families, which could be correlated with its limited habitat area. We have developed genetic and molecular techniques for C. inopinata; thus C. inopinata provides an exciting new platform for comparative evolutionary studies. 1 Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan. 2 Biodiversity Research Center, Academia Sinica, Taipei city 11529, Taiwan.
    [Show full text]
  • Nematoda: Rhabditidae) with Name Designations for 15 Distinct Biological Species
    A Streamlined System for Species Diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with Name Designations for 15 Distinct Biological Species Marie-Anne Fe´lix1,2,3*, Christian Braendle4,5,6, Asher D. Cutter7 1 Ecole Normale Supe´rieure, Institut de Biologie de l’ENS (IBENS), Paris, France, 2 CNRS UMR 8197, Paris, France, 3 Inserm U1024, Paris, France, 4 Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, Nice, France, 5 INSERM U1091, Nice, France, 6 Universite´ Nice Sophia Antipolis, UFR Sciences, Nice, France, 7 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada Abstract The rapid pace of species discovery outstrips the rate of species description in many taxa. This problem is especially acute for Caenorhabditis nematodes, where the naming of distinct species would greatly improve their visibility and usage for biological research, given the thousands of scientists studying Caenorhabditis. Species description and naming has been hampered in Caenorhabditis, in part due to the presence of morphologically cryptic species despite complete biological reproductive isolation and often enormous molecular divergence. With the aim of expediting species designations, here we propose and apply a revised framework for species diagnosis and description in this group. Our solution prioritizes reproductive isolation over traditional morphological characters as the key feature in delineating and diagnosing new species, reflecting both practical considerations and conceptual justifications. DNA sequence divergence criteria help prioritize crosses for establishing patterns of reproductive isolation among the many species of Caenorhabditis known to science, such as with the ribosomal internal transcribed spacer-2 (ITS2) DNA barcode. By adopting this approach, we provide new species name designations for 15 distinct biological species, thus increasing the number of named Caenorhabditis species in laboratory culture by nearly 3-fold.
    [Show full text]
  • Discovery and Initial Analysis of Novel Viral Genomes in the Soybean Cyst Nematode
    Journal of General Virology (2011), 92, 1870–1879 DOI 10.1099/vir.0.030585-0 Discovery and initial analysis of novel viral genomes in the soybean cyst nematode Sadia Bekal,1 Leslie L. Domier,2 Terry L. Niblack1 and Kris N. Lambert1 Correspondence 1Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA Kris N. Lambert 2United States Department of Agriculture, Agricultural Research Service, Department of Crop [email protected] Sciences, University of Illinois, Urbana, IL 61810, USA Nematodes are the most abundant multicellular animals on earth, yet little is known about their natural viral pathogens. To date, only two nematode virus genomes have been reported. Consequently, nematode viruses have been overlooked as important biotic factors in the study of nematode ecology. Here, we show that one plant parasitic nematode species, Heterodera glycines, the soybean cyst nematode (SCN), harbours four different RNA viruses. The nematode virus genomes were discovered in the SCN transcriptome after high-throughput sequencing and assembly. All four viruses have negative-sense RNA genomes, and are distantly related to nyaviruses and bornaviruses, rhabdoviruses, bunyaviruses and tenuiviruses. Some members of these families replicate in and are vectored by insects, and can cause significant diseases in animals and plants. The novel viral sequences were detected in both eggs and the second juvenile stage of SCN, suggesting that these viruses are transmitted vertically. While there was no evidence of integration of viral sequences into the nematode genome, we indeed detected transcripts from these viruses by using quantitative PCR. These data are the first finding of virus genomes in parasitic nematodes.
    [Show full text]
  • Independent Recruitments of a Translational Regulator in the Evolution of Self-Fertile Nematodes
    Independent recruitments of a translational regulator in the evolution of self-fertile nematodes Alana V. Beadella,b,1, Qinwen Liua, Dorothy M. Johnsona,2, and Eric S. Haaga,b,3 aDepartment of Biology, and bProgram in Behavior, Evolution, Ecology, and Systematics, University of Maryland, College Park, MD 20742 Edited by Iva Greenwald, Columbia University, New York, NY, and approved October 28, 2011 (received for review May 20, 2011) Pleiotropic developmental regulators have been repeatedly linked repressor (22, 28, 29) required for the mitosis/meiosis decision of to the evolution of anatomical novelties. Known mechanisms germ-line stem cells, meiotic progression of oocyte-fated cells, include cis-regulatory DNA changes that alter regulator transcrip- and specification of C. elegans hermaphrodite sperm in an other- tion patterns or modify target-gene linkages. Here, we examine wise female body (30, 31). the role of another form of regulation, translational control, in the In this study we show that gld-1 has been recruited to regulate repeated evolution of self-fertile hermaphroditism in Caenorhab- hermaphrodite development in C. briggsae. However, it acts to ditis nematodes. Caenorhabditis elegans hermaphrodites initiate promote oogenesis, rather than spermatogenesis as in C. elegans. spermatogenesis in an otherwise female body through transla- These alternative roles are the result of differences in the cis-regu- tional repression of the gene tra-2. This repression is mediated latory RNA of a conserved sex-determination gene, tra-2, and in the by GLD-1, an RNA-binding protein also required for oocyte meiosis downstream function of a conserved target, puf-8. Our results pro- and differentiation.
    [Show full text]
  • Caenorhabditis Elegans
    Caenorhabditis elegans From Wikipedia, the free encyclopedia Caenorhabditis elegans (pronounced Caenorhabditis elegans /ˌsiːnoʊræbˈdaɪtɪs ˈɛlɪgænz/) is a free-living, transparent nematode (roundworm), about 1 mm in length, which lives in temperate soil environments. Research into the molecular and developmental biology of C. elegans was begun in 1974 by Sydney Brenner and it has since been An adult hermaphrodite C. elegans worm used extensively as a model organism.[1] Scientific classification Kingdom: Animalia Phylum: Nematoda Contents Class: Secernentea Order: Rhabditida 1 Biology 2 Ecology Family: Rhabditidae 3 Laboratory uses Genus: Caenorhabditis 4 Genome Species: C. elegans 5 Evolution 6 Scientific community Binomial name 7 In the media Caenorhabditis elegans 8 See also Maupas, 1900 9 References 10 Publications 11 Online resources 12 Nobel lectures 13 External links Biology C. elegans is unsegmented, vermiform, bilaterally symmetrical, with a cuticle integument, four main epidermal cords and a fluid- filled pseudocoelomate cavity. Members of the species have many of the same organ systems as other animals. In the wild, they feed on bacteria that develop on decaying vegetable matter. C. elegans has two sexes: hermaphrodites and males.[2] Individuals are almost Movement of Wild-type C. elegans all hermaphrodite, with males comprising just 0.05% of the total population on average. The basic anatomy of C. elegans includes a mouth, pharynx, intestine, gonad, and collagenous cuticle. Males have a single-lobed gonad, vas deferens, and a tail specialized for mating. Hermaphrodites have two ovaries, oviducts, spermatheca, and a single uterus. C. elegans eggs are laid by the hermaphrodite. After hatching, they pass through four larval stages (L1-L4).
    [Show full text]