An Entomopathogenic Caenorhabditis Briggsae

Total Page:16

File Type:pdf, Size:1020Kb

An Entomopathogenic Caenorhabditis Briggsae 3223 The Journal of Experimental Biology 213, 3223-3229 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jeb.043109 An entomopathogenic Caenorhabditis briggsae Eyualem Abebe1,*, Miriam Jumba2, Kaitlin Bonner3, Vince Gray2, Krystalynne Morris3 and W. Kelley Thomas3 1Department of Biology, Elizabeth City State University, 1704 Weeksville Road, Jenkins Science Center 421, Elizabeth City, NC 27909, USA, 2School of Molecular and Cell Biology, University of the Witwatersrand, Republic of South Africa and 3Hubbard Center for Genome Studies, University of New Hampshire, 35 Colovos Road, Durham, NH 03824, USA *Author for correspondence ([email protected]) Accepted 27 May 2010 SUMMARY Caenorhabditis elegans is a premier model organism upon which considerable knowledge of basic cell and developmental biology has been built. Yet, as is true for many traditional model systems, we have limited knowledge of the ecological context in which these systems evolved, severely limiting our understanding of gene function. A better grasp of the ecology of model systems would help us immensely in understanding the functionality of genes and evolution of genomes in an environmental context. Consequently, there are ongoing efforts to uncover natural populations of this model system globally. Here, we describe the discovery of a Caenorhabditis briggsae strain and its bacterial associate (Serratia sp.) that form an entomopathogenic complex in the wild. Laboratory experiments confirm that this nematode and its natural bacterial associate can penetrate, kill and reproduce in an insect host and that the bacterial associate can induce this insect pathogenic life cycle in other Caenorhabditis species, including C. elegans. Our findings suggest that this life history may be widespread in nature and critical to the understanding of the biology of this important model organism. Caenorhabditis–insect interaction could be a key factor in our quest for a better grasp of gene functionality in this important model species. The discovered association, consequently, would provide an ecological framework for functional genomics of Caenorhabditis. Supplementary material available online at http://jeb.biologists.org/cgi/content/full/213/18/3223/DC1 Key words: insect parasite, nematode, symbiosis, nematode–bacterial association, African Caenorhabditis briggsae. INTRODUCTION animals, most often invertebrates (Caswell-Chen et al., 2005), in Linking the complete genome sequences of an organism to its either a phoretic relationship travelling on the host between food development and behaviour remains a major goal in biology sources, or a necromenic relationship where the nematode waits for (Kamath et al., 2003). Progress towards that goal has traditionally the demise of its ‘host’ and feeds on the resulting decay (Kiontke relied on model organisms such as the nematode Caenorhabditis and Sudhaus, 2006). In both cases, it is the dauer or resistant larval elegans upon which considerable knowledge of cell and stage that is associated with the host. Phoretic and necromenic developmental biology has been built (Wood, 1988) (Wormbook, associations are two of many known associations between http://www.wormbook.org). Interest in the development of nematodes and other animals. Hitherto, none of the known alternative models for understanding host–pathogen interactions has Caenorhabditis are reported to be entomopathogenic. resulted in the use of Caenorhabditis and a variety of Among the most interesting associations within the phylum microorganisms (Couillault and Ewbank, 2002; Schulenburg and Nematoda are those of the entomopathogenic nematodes (EPNs). Ewbank, 2004; Pradel et al., 2007; Kim, 2008). Unfortunately, C. EPNs represent the collaboration between a nematode and bacterium elegans, like most model organisms, was chosen for its laboratory where, as in necromenia, the nematode feeds on bacteria using the prowess (e.g. short generation time, tractable development), and not insect as a carbon source (Burnell and Stock, 2000; Rae et al., 2008); because we had a detailed understanding of its ecology (Wood, 1988; however, in a bacterial/EPN complex, the bacteria actively kills the Feder and Mitchell-Olds, 2003; Kinotke and Sudhaus, 2006). insect after gaining access with the aid of the nematode partner. Consequently, as our catalogue of genes and the tools to explore Among species of the genus Caenorhabditis, reports show that C. function for organisms like C. elegans has become extraordinarily briggsae is necromenic, C. japonica is a facultative necromenic, rich, the absence of an ecological context has become a major and C. elegans and C. remanei are primarily phoretic with some limitation to understanding biological function (Caswell-Chen et al., questionable necromenic associations (Kiontke and Sudhaus, 2006). 2005). Sudhaus (Sudhaus, 1993) suggested the two well-known EPN A concerted effort is now underway to obtain a greater genera, i.e. Heterorhabditis and Steinernema, most probably evolved understanding of C. elegans outside of the laboratory including the from necromenic nematodes through the association with an first studies focusing on genetic diversity in natural populations of entomopathogenic bacterium. C. elegans and related species (Barrière and Félix, 2005; Fitch, 2005; Entomopathogenesis appears to have evolved at least twice in Sivasundar and Hey, 2005; Cutter et al., 2006; Haag et al., 2007). nematodes (Poinar, 1993; Blaxter et al., 1998): once in the lineage Rather than being a truly free-living soil nematode as it is often giving rise to the Heterorhabditis and its bacterial associate portrayed, Caenorhabditis is thought to be associated with other Photorhabdus and once in the lineage leading to the Steinernematidae THE JOURNAL OF EXPERIMENTAL BIOLOGY 3224 E. Abebe and others (Steinernema) and its bacterial associate Xenorhabdus. These EPNs mellonella to reflect possible natural conditions. The two other have broad insect host ranges, and are used as agents of biological cultures were reared under normal C. elegans laboratory conditions control and to study the evolution of the mutualistic relationships using nematode growth media (NGM) agar with one set seeded between nematodes and bacteria (Adams et al., 2006). The collection with E. coli OP50 and the other set seeded with the isolated of EPNs from nature is traditionally by the use of Galleria traps, associated bacterium, Serratia sp. SCBI (South African which are wax moth larvae (caterpillars) buried in the soil (Bedding Caenorhabditis briggsae isolate). The culture maintained on E. and Akhurst, 1975). The Galleria cadavers are collected and coli OP50 was initially bleached twice following a C. elegans nematodes (virtually always either Steinernematidae or culture contaminant cleaning protocol (Stiernagle, 2006) to Heterorhabditis) are collected. The EPN families have global eliminate its bacterial associate – Serratia sp. SCBI. Frozen stock distributions with apparent co-evolution of nematode and bacterium cultures of nematode and associated bacterium in glycerol stored (Adams et al., 2007). These nematodes can routinely be cultured on at –80°C were established and are maintained at the Hubbard agar plates with bacteria as a food source but in nature are considered Center for Genome Studies at the University of New Hampshire. to always be involved in entomopathogenic life cycles. In Galleria trap experiments conducted globally, only rarely are other nematodes Establishing nematode identity reported (Rueda et al., 1993; Ye et al., 2010). Recently, Galleria We studied nematodes morphologically at 1000ϫ magnification trap experiments and direct isolation methods have, however, using an Olympus IX81 inverted compound microscope with a revealed nematodes other than members of the Steinernematidae and differential interference contrast option. We also studied nematodes Heterorhabditis (Young-Keun et al., 2007; Zhang et al., 2008). using an Amray 3300FE field emission scanning electron Moreover, Zhang and colleagues (Zhang et al., 2009) reported a new microscope (SEM) with PGT Imix-PC microanalysis system to species of Serratia that they found symbiotically associated with a evaluate whether bacteria were attached to the nematode cuticle new entomopathogenic nematode genus discovered earlier (Zhang surface externally. et al., 2008). Partial DNA sequences of the small and large subunit ribosomal Here we report our findings, an entomopathogenic genes, internal transcribed spacer and mitochondrial genes Caenorhabditis and its bacterial associate, from a recent Galleria cytochrome oxidase II (COII) and NADH dehydrogenase subunit trapping experiment that included several independent Galleria traps 5 (ND5) were amplified and sequenced from the nematode strain in soils from three provinces (North West, Mpumalanga and Kwa using the primers in supplementary material TableS1. Once the Zulu-Natal) in South Africa. species level identity of the strain was established as C. briggsae (Dougherty and Nigon 1949), we conducted further comparisons MATERIALS AND METHODS between our strain, i.e. C. briggsae KT0001, and 10 other wild- Isolation of nematodes and their bacterial associate type isolates of C. briggsae obtained from the Caenorhabditis Soil samples for the study were collected from three sites at farms Genetics Center (Table1) using six microsatellite loci amplified with in three provinces of South Africa; North West, Mpumalanga and primers listed in supplementary material TableS1. Kwa Zulu-Natal.
Recommended publications
  • Species Richness, Distribution and Genetic Diversity of Caenorhabditis Nematodes in a Remote Tropical Rainforest
    Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. Marie-Anne Félix, Richard Jovelin, Céline Ferrari, Shery Han, Young Ran Cho, Erik Andersen, Asher Cutter, Christian Braendle To cite this version: Marie-Anne Félix, Richard Jovelin, Céline Ferrari, Shery Han, Young Ran Cho, et al.. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest.. BMC Evolutionary Biology, BioMed Central, 2013, 13 (1), pp.10. 10.1186/1471-2148-13-10. inserm- 00781427 HAL Id: inserm-00781427 https://www.hal.inserm.fr/inserm-00781427 Submitted on 26 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Félix et al. BMC Evolutionary Biology 2013, 13:10 http://www.biomedcentral.com/1471-2148/13/10 RESEARCHARTICLE Open Access Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest Marie-Anne Félix1†, Richard Jovelin2†, Céline Ferrari3,4,5, Shery Han2, Young Ran Cho2, Erik C Andersen6, Asher D Cutter2 and Christian Braendle3,4,5* Abstract Background: In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence.
    [Show full text]
  • Revisiting Suppression of Interspecies Hybrid Male Lethality In
    bioRxiv preprint doi: https://doi.org/10.1101/102053; this version posted January 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Revisiting suppression of interspecies hybrid male lethality in Caenorhabditis nematodes Lauren E. Ryan and Eric S. Haag* Department of Biology and Biological Sciences Program University of Maryland, College Park MD USA * Correspondence: E.S. Haag, Dept. of Biology, Univ. of Maryland, 4094 Campus Dr., College Park, MD 20740 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/102053; this version posted January 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Within the nematode genus Caenorhabditis, C. briggsae and C. nigoni are among the most closely related species known. They differ in sexual mode, with C. nigoni retaining the ancestral XO male-XX female outcrossing system, while C. briggsae females recently evolved self- fertility and an XX-biased sex ratio. Wild-type C. briggsae and C. nigoni can produce fertile hybrid XX female progeny, but XO progeny are either 100% inviable (when C. briggsae is the mother) or viable but sterile (when C. nigoni is the mother). A recent study provided evidence suggesting that loss of the Cbr-him-8 meiotic regulator in C.
    [Show full text]
  • "Structure, Function and Evolution of the Nematode Genome"
    Structure, Function and Advanced article Evolution of The Article Contents . Introduction Nematode Genome . Main Text Online posting date: 15th February 2013 Christian Ro¨delsperger, Max Planck Institute for Developmental Biology, Tuebingen, Germany Adrian Streit, Max Planck Institute for Developmental Biology, Tuebingen, Germany Ralf J Sommer, Max Planck Institute for Developmental Biology, Tuebingen, Germany In the past few years, an increasing number of draft gen- numerous variations. In some instances, multiple alter- ome sequences of multiple free-living and parasitic native forms for particular developmental stages exist, nematodes have been published. Although nematode most notably dauer juveniles, an alternative third juvenile genomes vary in size within an order of magnitude, com- stage capable of surviving long periods of starvation and other adverse conditions. Some or all stages can be para- pared with mammalian genomes, they are all very small. sitic (Anderson, 2000; Community; Eckert et al., 2005; Nevertheless, nematodes possess only marginally fewer Riddle et al., 1997). The minimal generation times and the genes than mammals do. Nematode genomes are very life expectancies vary greatly among nematodes and range compact and therefore form a highly attractive system for from a few days to several years. comparative studies of genome structure and evolution. Among the nematodes, numerous parasites of plants and Strikingly, approximately one-third of the genes in every animals, including man are of great medical and economic sequenced nematode genome has no recognisable importance (Lee, 2002). From phylogenetic analyses, it can homologues outside their genus. One observes high rates be concluded that parasitic life styles evolved at least seven of gene losses and gains, among them numerous examples times independently within the nematodes (four times with of gene acquisition by horizontal gene transfer.
    [Show full text]
  • The Gastropod Shell Has Been Co-Opted to Kill Parasitic Nematodes
    www.nature.com/scientificreports OPEN The gastropod shell has been co- opted to kill parasitic nematodes R. Rae Exoskeletons have evolved 18 times independently over 550 MYA and are essential for the success of Received: 23 March 2017 the Gastropoda. The gastropod shell shows a vast array of different sizes, shapes and structures, and Accepted: 18 May 2017 is made of conchiolin and calcium carbonate, which provides protection from predators and extreme Published: xx xx xxxx environmental conditions. Here, I report that the gastropod shell has another function and has been co-opted as a defense system to encase and kill parasitic nematodes. Upon infection, cells on the inner layer of the shell adhere to the nematode cuticle, swarm over its body and fuse it to the inside of the shell. Shells of wild Cepaea nemoralis, C. hortensis and Cornu aspersum from around the U.K. are heavily infected with several nematode species including Caenorhabditis elegans. By examining conchology collections I show that nematodes are permanently fixed in shells for hundreds of years and that nematode encapsulation is a pleisomorphic trait, prevalent in both the achatinoid and non-achatinoid clades of the Stylommatophora (and slugs and shelled slugs), which diverged 90–130 MYA. Taken together, these results show that the shell also evolved to kill parasitic nematodes and this is the only example of an exoskeleton that has been co-opted as an immune system. The evolution of the shell has aided in the success of the Gastropoda, which are composed of 65–80,000 spe- cies that have colonised terrestrial and marine environments over 400MY1, 2.
    [Show full text]
  • Caenorhabditis Elegans and Caenorhabditis Briggsae
    Mol Gen Genomics (2005) 273: 299–310 DOI 10.1007/s00438-004-1105-6 ORIGINAL PAPER Richard Jovelin Æ Patrick C. Phillips Functional constraint and divergence in the G protein family in Caenorhabditis elegans and Caenorhabditis briggsae Received: 2 July 2004 / Accepted: 9 December 2004 / Published online: 27 April 2005 Ó Springer-Verlag 2005 Abstract Part of the challenge of the post-genomic Keywords Caenorhabditis elegans Æ Caenorhabditis world is to identify functional elements within the wide briggsae Æ G protein Æ Divergence Æ Gene regulation array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and func- Introduction tional conservation is not clear. Here, we use a com- parative approach to examine questions of evolutionary Recent whole genome sequencing projects have revealed rates and conserved function within the guanine nucle- that a substantial portion of genome evolution consists otide-binding protein (G protein) gene family in nema- of divergence and diversification of gene families (e.g., todes of the genus Caenorhabditis. In particular, we Chervitz et al. 1998; Lander et al. 2001; Venter et al. show that, in cases where the Caenorhabditis elegans 2001; Zdobnov et al. 2002). One of the primary chal- ortholog shows a loss-of-function phenotype, G protein lenges in this emerging field is to use information on genes of C. elegans and Caenorhabditis briggsae diverge sequence similarity and divergence among genomes to on average three times more slowly than G protein genes infer gene function. Very low rates of change might that do not exhibit any phenotype when mutated in C.
    [Show full text]
  • Zootaxa,Comparison of the Cryptic Nematode Species Caenorhabditis
    Zootaxa 1456: 45–62 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group WALTER SUDHAUS1 & KARIN KIONTKE2 1Institut für Biologie/Zoologie, AG Evolutionsbiologie, Freie Universität Berlin, Königin-Luise Straße 1-3, 14195 Berlin, Germany. [email protected] 2Department of Biology, New York University, 100 Washington Square E., New York, NY10003, USA. [email protected] Abstract The new gonochoristic member of the Caenorhabditis Elegans group, C. brenneri sp. n., is described. This species is reproductively isolated at the postmating level from its sibling species, C. remanei. Between these species, only minute morphological differences are found, but there are substantial genetic differences. The stem species pattern of the Ele- gans group is reconstructed. C. brenneri sp. n. deviates from this character pattern only in small diagnostic characters. In mating tests of C. brenneri sp. n. females with C. remanei males, fertilization takes place and juveniles occasionally hatch. In the reverse combination, no offspring were observed. Individuals from widely separated populations of each species can be crossed successfully (e.g. C. brenneri sp. n. populations from Guadeloupe and Sumatra, or C. remanei populations from Japan and Germany). Both species have been isolated only from anthropogenic habitats, rich in decom- posing organic material. C. brenneri sp. n. is distributed circumtropically, C. remanei is only found in northern temperate regions. To date, no overlap of the ranges was found.
    [Show full text]
  • The Distribution of Lectins Across the Phylum Nematoda: a Genome-Wide Search
    Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S1 of S12 Supplementary Materials: The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search Lander Bauters, Diana Naalden and Godelieve Gheysen Figure S1. Alignment of partial calreticulin/calnexin sequences. Amino acids are represented by one letter codes in different colors. Residues needed for carbohydrate binding are indicated in red boxes. Sequences containing all six necessary residues are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S2 of S12 Figure S2. Alignment of partial legume lectin-like sequences. Amino acids are represented by one letter codes in different colors. EcorL is a legume lectin originating from Erythrina corallodenron, used in this alignment to compare carbohydrate binding sites. The residues necessary for carbohydrate interaction are shown in red boxes. Nematode lectin-like sequences containing at least four out of five key residues are indicated with an asterisk. Figure S3. Alignment of possible Ricin-B lectin-like domains. Amino acids are represented by one letter codes in different colors. The key amino acid residues (D-Q-W) involved in carbohydrate binding, which are repeated three times, are boxed in red. Sequences that have at least one complete D-Q-W triad are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S3 of S12 Figure S4. Alignment of possible LysM lectins. Amino acids are represented by one letter codes in different colors. Conserved cysteine residues are marked with an asterisk under the alignment. The key residue involved in carbohydrate binding in an eukaryote is boxed in red [1].
    [Show full text]
  • Baer Lab Publications
    Publications: NOTE: Superscript U indicates undergraduate advisee, G indicates graduate advisee, P indicates postdoctoral advisee; corresponding author on multiple-author papers is underlined. 2019 Baer, C. F. 2019. Evolution: Environmental dependence of the mutational process. Current Biology 29, R415–R417. PMID: 31163145. Invited commentary. 2018 Saxena, A. S.G, M. P. SalomonG, C. MatsubaP, S-D. YehP, and C. F. Baer. 2018. Evolution of the mutational process under relaxed selection in Caenorhabditis elegans. Molecular Biology and Evolution 36:239–251. https://doi.org/10.1093/molbev/msy213. PMID: 30445510. Crombie, T. A.P, S. Saber, A. SG. SaxenaG, R. EganU, and C. F. Baer. 2018. Head-to-head comparison of three experimental methods of quantifying competitive fitness in C. elegans. PLoS ONE 13(10): e0201507. https://doi.org/10.1371/journal.pone.0201507. PMID: 30339672. Johnson, L. M.G, L. M. ChandlerG, S. K. Davies, and C. F. Baer. 2018. Network architecture and mutational sensitivity of the C. elegans metabolome. Frontiers in Molecular Biosciences – Metabolomics, 5: 69. doi: 10.3389/fmolb.2018.00069. Invited contribution. PMID: 30109234. 2017 Yeh, S-D.P, A. S. SaxenaG, T. Crombie P, D. Feistel, L. M. JohnsonG, I. LamU, J. LamU, S. SaberG, and C. F. Baer. 2017. The mutational decay of male and hermaphrodite competitive fitness in the androdioecious nematode C. elegans, in which males are naturally rare. Heredity, 120:1-12. PMID: 29234171. H. Teotónio, S. Estes, P. Phillips and C. F. Baer. 2017. Experimental evolution with Caenorhabditis nematodes. Genetics, 206: 691–716. Invited contribution to Wormbook. PMID: 28592504. Reed, L. R., C.
    [Show full text]
  • Evolution of Male Tail Development in Rhabditid Nematodes Related to Caenorhabditis Elegans
    Syst. Biol. 46(1):145-179, 1997 EVOLUTION OF MALE TAIL DEVELOPMENT IN RHABDITID NEMATODES RELATED TO CAENORHABDITIS ELEGANS DAVID H. A. FITCH Department of Biology, New York University, Room 1009 Main Building, 100 Washington Square East, New York, New York 10003, USA; E-mail: [email protected] Downloaded from https://academic.oup.com/sysbio/article/46/1/145/1685502 by guest on 30 September 2021 Abstract.—The evolutionary pathway that has led to male tails of diverse morphology among species of the nematode family Rhabditidae was reconstructed. This family includes the well- studied model species Caenorhabditis elegans. By relating the steps of male tail morphological evo- lution to the phenotypic changes brought about by developmental mutations induced experimen- tally in C. elegans, the goal is to identify genes responsible for morphological evolution. The varying morphological characters of the male tails of several rhabditid species have been described previously (Fitch and Emmons, 1995, Dev. Biol. 170:564-582). The developmental events preceding differentiation of the adult structures have also been analyzed; in many cases the origins of vary- ing adult morphological characters were traced to differences during ontogeny. In the present work, the evolutionary changes producing these differences were reconstructed in the context of the four possible phylogenies supported independently by sequences of 18S ribosomal RNA genes (rDNA). Two or more alternative states were defined for 36 developmental and adult morpholog- ical characters. These characters alone do not provide sufficient data to resolve most species re- lationships; however, when combined with the rDNA characters, they provide stronger support for one of the four rDNA phylogenies.
    [Show full text]
  • The Natural Biotic Environment of Caenorhabditis Elegans
    | WORMBOOK EVOLUTION AND ECOLOGY The Natural Biotic Environment of Caenorhabditis elegans Hinrich Schulenburg*,1 and Marie-Anne Félix†,1 *Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany, †Institut de Biologie de l’Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L’université de Recherche Paris Sciences et Lettres, 75005, France ORCID ID: 0000-0002-1413-913X (H.S.) ABSTRACT Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism’s biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed 10 yr ago. Since then, an increasing number of studies have focused on the nematode’s natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans. We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors.
    [Show full text]
  • A Model for Evolutionary Ecology of Disease: the Case for Caenorhabditis Nematodes and Their Natural Parasites
    Journal of Nematology 49(4):357–372. 2017. Ó The Society of Nematologists 2017. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites AMANDA K. GIBSON AND LEVI T. M ORRAN Abstract: Many of the outstanding questions in disease ecology and evolution call for combining observation of natural host– parasite populations with experimental dissection of interactions in the field and the laboratory. The ‘‘rewilding’’ of model systems holds great promise for this endeavor. Here, we highlight the potential for development of the nematode Caenorhabditis elegans and its close relatives as a model for the study of disease ecology and evolution. This powerful laboratory model was disassociated from its natural habitat in the 1960s. Today, studies are uncovering that lost natural history, with several natural parasites described since 2008. Studies of these natural Caenorhabditis–parasite interactions can reap the benefits of the vast array of experimental and genetic tools developed for this laboratory model. In this review, we introduce the natural parasites of C. elegans characterized thus far and discuss resources available to study them, including experimental (co)evolution, cryopreservation, behavioral assays, and genomic tools. Throughout, we present avenues of research that are interesting and feasible to address with caenorhabditid nematodes and their natural parasites, ranging from the maintenance of outcrossing to the community dynamics of host-associated microbes. In combining natural relevance with the experimental power of a laboratory supermodel, these fledgling host–parasite systems can take on fundamental questions in evolutionary ecology of disease. Key words: bacteria, Caenorhabditis, coevolution, evolution and ecology of infectious disease, experimental evolution, fungi, host–parasite interactions, immunology, microbiome, microsporidia, virus.
    [Show full text]
  • S41467-018-05712-5.Pdf
    ARTICLE DOI: 10.1038/s41467-018-05712-5 OPEN Biology and genome of a newly discovered sibling species of Caenorhabditis elegans Natsumi Kanzaki 1,8, Isheng J. Tsai 2, Ryusei Tanaka3, Vicky L. Hunt3, Dang Liu 2, Kenji Tsuyama 4, Yasunobu Maeda3, Satoshi Namai4, Ryohei Kumagai4, Alan Tracey5, Nancy Holroyd5, Stephen R. Doyle 5, Gavin C. Woodruff1,9, Kazunori Murase3, Hiromi Kitazume3, Cynthia Chai6, Allison Akagi6, Oishika Panda 7, Huei-Mien Ke2, Frank C. Schroeder7, John Wang2, Matthew Berriman 5, Paul W. Sternberg 6, Asako Sugimoto 4 & Taisei Kikuchi 3 1234567890():,; A ‘sibling’ species of the model organism Caenorhabditis elegans has long been sought for use in comparative analyses that would enable deep evolutionary interpretations of biological phenomena. Here, we describe the first sibling species of C. elegans, C. inopinata n. sp., isolated from fig syconia in Okinawa, Japan. We investigate the morphology, developmental processes and behaviour of C. inopinata, which differ significantly from those of C. elegans. The 123-Mb C. inopinata genome was sequenced and assembled into six nuclear chromo- somes, allowing delineation of Caenorhabditis genome evolution and revealing unique char- acteristics, such as highly expanded transposable elements that might have contributed to the genome evolution of C. inopinata. In addition, C. inopinata exhibits massive gene losses in chemoreceptor gene families, which could be correlated with its limited habitat area. We have developed genetic and molecular techniques for C. inopinata; thus C. inopinata provides an exciting new platform for comparative evolutionary studies. 1 Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan. 2 Biodiversity Research Center, Academia Sinica, Taipei city 11529, Taiwan.
    [Show full text]