Corymorpha Nutans INPN

Total Page:16

File Type:pdf, Size:1020Kb

Corymorpha Nutans INPN 1 La corymorphe des sables Corymorpha nutans M. Sars, 1835 Citation de cette fiche : Noël P., Chevallier F., 2016. La corymorphe des sables Corymorpha nutans M. Sars, 1835. in Muséum national d'Histoire naturelle [Ed.], 5 août 2016. Inventaire national du Patrimoine naturel, pp. 1-6, site web http://inpn.mnhn.fr Contact : Pierre Noël, SPN et DMPA, Muséum national d'Histoire naturelle, 43 rue Buffon (CP 48), 75005 Paris ; e-mail [email protected] Résumé La corymorphe des sables se présente sous une forme fixée (polype) qui génère une forme libre (méduse). La couleur est blanc ou rose pâle, avec des lignes fines longitudinales sur le pédoncule. Le polype mesure jusqu'à 12 cm. Il est fixé dans le sédiment par des filaments racinaires. Le corps est allongé et forme souvent un angle aigu basal de 60°. Il y a une couronne d'environ 80 petits tentacules autour de la bouche et un panache d'une quarantaine de tentacules longs et fins dirigés vers le bas. Une structure reproductrice particulière, les gonophores, génèrent des méduses libres à un seul tentacule. La méduse est petite (6 mm) et de couleur variable ; elle est en forme de cloche deux fois plus haute que large surmontée d'un cône pointu. Les cellules urticantes sont groupées en anneaux sur le tentacule. Au centre de la cloche, le manubrium mesure environ les 2/3 de la longueur de la cavité en forme. La longévité du polype est de l'ordre de un an et celle de la méduse moins de deux mois. L'espèce est planctonophage. Elle se rencontre sur des fonds sédimentaires entre 0 m et -100 m. On la trouve dans l'Atlantique Nord américain et européen, toute la Méditerranée comprise. Figure 1. Aspect général du stade polype, vue latérale. Île Tatihou, Manche (5-06-2016). Figure 2. Carte de distribution en France Photo © Frédérik Chevallier métropolitaine. © P. Noël INPN-MNHN 2016. Classification : Phylum Cnidaria Hatscheck, 1888 > Classe Hydrozoa Owen, 1843 > Sous- classe Hydroidolina Collins, 2000 > Ordre Anthoathecata Cornelius, 1992 > Sous-ordre Capitata Kühn, 1913 > Famille Corymorphidae Allman, 1872 > Genre Corymorpha M. Sars, 1835. Synonymes (Vervoort 2009 ; GBIF 2016 ; INPN 2016 ; ITIS Noms vernaculaires: 2016 ; WoRMS 2016): La corymorphe des sables, corymorphe oscillant (Noël Corymorpha (Steenstrupia) nutans M. Sars, 1835 & al. 2016). Steenstrupia nutans M. Sars, 1835 Steenstrupia rubra Forbes, 1848 Principaux noms étrangers. Steenstrupia flaveola Forbes, 1848 Anglais : nodding hydroid (EOL 2016). Steenstrupia lineata Leuckart, 1856 Allemand : Steenstrupia-Meduse (EOL 2016). Corymorpha appelloefi Bonnevie, 1901 Steenstrupia galanthus Haeckel, 1879 Corymorpha appellofi Bonnevie, 1901 N° des bases de données: GBIF ID : 2265764 ; INPN Cd_Nom : 7021 ; ITIS : 49453 ; WoRMS AphiaID : 117452. Description. L'hydrante ("polype") est de grande taille. Son pédoncule (hydrocaule) est long de 5 à 12 cm, enfoncé dans le sable par son extrémité inférieure qui est amincie, puis renflé courbé à angle aigu de 60° avant la base du polype, présentant sur toute sa longueur des bandes longitudinales d'où se détachent des papilles, et vers la base de fins filaments "racinaires" qui se régénèrent rapidement quand ils sont détruits. Le périsarc est remplacé par une 2 mince pellicule transparente. L'hypostome est cônique et porte la bouche. Les tentacules aboraux au nombre d'une quarantaine (32 à 50) et de 30 mm de long sont fins et typiquement dirigés vers le bas ; il y a également environ 80 tentacules oraux courts. Les gonozoïdes reproducteurs sont insérés entre ces deux couronnes de tentacules et évoluent en méduses libres à un seul tentacule et 3 courts tentacules rudimentaires (Vervoort 2009 ; Perrier 1936 ; EOL 2016 ; Noël & al. 2016 ; Picton & Morrow 2016). La couleur est blanc ou rose pâle, avec des lignes fines longitudinales sur le pédoncule et une région buccale rouge vif ; les gonophores sont rouge-orangés (Vervoort 2009 ; Noël & al. 2016 ; Picton & Morrow 2016). L'animal vit sur des fonds sableux, en général groupés en nombre. La multiplication asexuée se fait par des fragments tubulaires qui après s'être détachés, se fixent et deviennent un polype (Perrier 1936). Les polypes sont isolés, sans stolons basillaires, l'extrémité inférieure seulement enfoncée dans le sable (Perrier 1936 ; Hayward & al. 1998). Figure 3. Aspect général du stade méduse en vue latérale. Photo © Peter Schuchert in WoRMS 2016. La méduse (autrefois nommée Steenstrupia nutans M. Sars, 1835) a une ombrelle en forme de cloche deux fois plus haute que large coiffée d'un processus apical pointu avec un canal apical. La marge de l'ombrelle est horizontale et son velum est large. La mésoglée est plutôt épaisse. Il y a 4 canaux radiaires et un canal circulaire plutôt large. Il y a un tentacule perradial bien développé et un bulbe tentaculaire sans ocelle. Les nématocystes sont groupés en anneaux. Trois bulbes non tentaculaires forment des éperons umbrellaires. Il y a un pédoncule gastrique court. Le manubrium est bien développé, cylindrique mesurant environ les 2/3 de la longueur de la cavité en forme de cloche. La bouche est circulaire, simple, armée de nématocystes. Les gonades entourent complètement le manubrium, mais laissent libres la bouche et le pédoncule. La hauteur maximale de la méduse est de 6 mm (Marine species identification portal 2016 ; Noël & al. 2016). La couleur est très variable ; le tentacule marginal, les bulbes marginaux et l'estomac sont rose pâle moucheté de carmin, jaune brillant, ou brun-rouge. Il y a parfois des granules bruns à l'apex de l'estomac ; le processus apical est souvent rose ; le dessous de l'ombrelle est parfois couvert de rose. Les canaux radiaux et circulaires sont pigmentés en jaune vif. (Marine species identification portal 2016). Risques de confusion, espèces voisines, variations infra-spécifiques. Dans le genre Corymorpha, il existe 45 espèces au niveau mondial et Corymorpha nutans est la seule espèce présente en Europe (GBIF 2016 ; WoRMS 2016). L'espèce peut être confondue avec une anémone de mer grèle (Hayward & al. 1998). En Europe, dans la famille Corymorphidae, Euphysa aurata Forbes, 1848 est une espèce proche ; une ressemblane existe également avec la petite tubulaire Ectopleura larynx (Ellis & Solander, 1786) et la grande tubulaire Tubularia indivisa Linnaeus, 1758. Voir Noël & al. (2016) pour illustrations et critères de distinction avec ces espèces proches. 3 Biologie. La reproduction a été notée en août à Roscoff (Teissier 1965). La longévité de la phase hydrante est de l'ordre de un an (EOL 2016). La phase méduse se rencontre au printemps et vit peu de temps, probablement moins de deux mois (Marine species identification portal 2016). L'espèce est planctonophage et se nourrit principalement la nuit de copépodes pélagiques et d'Harpacticoïdes (Eleftheriou & Basford 1983; Holohan et al. 1998 ; Wieking & Kröncke 2005), de chétognathes, de larves de poissons etc. (Noël & al. 2016). Le nudibranche Cumanotus beaumonti (Eliot, 1906) est un prédateur de cette espèce (Picton & Morrow 2016). Il y a peu d'informations sur d'éventuels parasites ou maladies. Ecologie. Corymorpha nutans est une espèce avec une forme fixée (polype) benthique qui se rencontre sur des fonds sédimentaires (vase, sable ou gravier (Hayward & al. 1998 ; Vervoort 2009 ; Picton & Morrow 2016) le sable coquillier grossier (Teissier 1965), et une forme libre (méduse) planctonique. Elle se rencontre habituellement du bas de l'étage médiolittoral à l'étage circalittoral entre 0 m et -25 m (Picton & Morrow 2016) de profondeur et jusqu'à -100 m (Vervoort 2009 ; EOL 2016). La méduse est planctonique / néritique (Marine species identification portal 2016). Figure 4. Distribution mondiale de Corymorpha nutans. Carte © GBIF 2016. Distribution. Corymorpha nutans est une espèce boréale présente en Atlantique Nord du Golfe du Mexique au cercle polaire et au Maroc, toute la Méditerranée comprise (Hayward & al. 1998 ; Vervoort 2009 ; Picton & Morrow 2016). En France, l'espèce a été signalée de toutes les côtes : Mer du Nord (Davoult & al. 1993 ; Müller 2004), environs du Havre (Breton 2014), Manche (Arnal & al. 1986), Calvados (Noël & al. 2016), Cotentin (Noël & al. 2016), Golfe normano-breton (Franc 1951 ; Le Mao 2009), Côtes d'Armor (Noël & al. 2016), Bretagne à Roscoff (de Beauchamp 1914 ; Teissier 1965 ; Schuchert 2012), et Provence (Galea 2007 ; Noël & al. 2016), Villefranche- sur-mer (Schuchert 2012). En ce qui concerne l'Europe, l'espèce est connue de la Norvège (Sars M., 1835 [locus typicus] ; Kramp & Damas 1925 ; Schuchert 2012 ; Noël & al. 2016), de l'Islande et Faeroe (Marine species identification portal 2016), du Danemark (Schuchert 2012), des Pays-Bas (Leloup 1933 ; Vervoort 1946), des îles britanniques (Forbes 1848 ; Hincks 1868 ; Russell 1938, 1953 ; PMF 1957 ; Robins 1969 ; Schuchert 2012 ; MarLIN 2016), Irlande (Boyd & al. 1973 ; Schuchert 2012). En Méditerranée elle a été signalée de Rhodes (Holohan & al. 1998) et du Maroc (Furnestin 1959). Elle est également connue en Mer Noire (Marine species identification portal 2016). La limite sud de distribution sur les côtes américaines est aux USA (Burke 1975) et dans le Golfe du Mexique (Phillips 1972 ; Segura-Puertas & al. 2009). 4 Figure 5. Distribution mondiale de Corymorpha nutans. Carte © OBIS 2016. Interactions avec les activités humaines - Menaces et mesures de conservation. L'espèce est parfois observée en plongée. Elle ne semble pas particulièrement menacée. Elle n'est ni protégée, ni réglementée. Listes rouges [Mondiale = M / France métropolitaine = FM] Législation - réglementation - directives M = non évalué / FM = non évalué Aucune disposition réglementaire spécifique Sources documentaires. Allman G. J., 1871. A monograph of the Gymnoblastic or Tubularian Hydroids. I et II. London : 1-450. Arnal O., Le Fevre-Lehoerff G., Toularastel F., 1986. Le zooplancton in étude écologique de projet, site de Flamanville, 2e cycle (juin 1977- juin 1978). Volume 1: le domaine pélagique. Fascicule 1. Rapport IFREMER/DERO-86.22/EL : 117-171. Beauchamp (de) P., 1914. Les grèves de Roscoff. Etude sur la répartition des êtres dans la zone des marées.
Recommended publications
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • A Redescription of Paragotoea Bathybia Kramp 1942 (Hydroidomedusae: Corymorphidae) with a New Diagnosis for the Genus Paragotoea
    SCI. MAR., 61(4): 487-493 SCIENTIA MARINA 1997 A redescription of Paragotoea bathybia Kramp 1942 (Hydroidomedusae: Corymorphidae) with a new diagnosis for the genus Paragotoea FRANCESC PAGÈS1,2 and JEAN BOUILLON3 1Institut de Ciències del Mar, (CSIC), Plaça del Mar s/n, 08039, Barcelona, Spain. 2Present address: Seto Marine Biological Laboratory, Shirahama, Wakayama 649-22, Japan. 3Laboratoire de Biologie Marine, Université Libre de Bruxelles, 50, Av. Franklin D. Roosevelt, 1050 Bruxelles, Belgique. SUMMARY: A redescription is given for the 1-tentacled Anthomedusa Paragotoea bathybia from new specimens collect- ed in the Weddell Sea. The comparative study of the previous descriptions of this species permitted to define a new diag- nosis for the genus which has been ascribed to the family Corymorphidae. The family Paragotoeidae Ralph, where P. bathy- bia was formerly included, is supressed. The 4-tentacled reconstructed stage considered by Ralph (1959) as the adult stage of P. bathybia is a new species placed in a new genus: Tetraralphia hypothetica, (Capitata incertae sedis). Key words: Paragotoea bathybia, systematic position, Tetraralphia hypothetica n. gen. n. sp., Anthomedusae. RESUMEN: REDESCRIPCIÓN DE PARAGOTEA BATHYBIA KRAMP 1942 (HYDROIDOMEDUSAE CORYMORPHIDAE) Y UNA NUEVA DIAGNOSIS DEL GÉNERO PARAGOTEA. – Se redescribe la antomedusa unitentaculada Paragotoea bathybia a partir de nuevos ejemplares recolectados en el mar de Weddell. El estudio comparativo de las descripciones previas de esta especie nos ha permitido establecer una nueva diagnosis del género que es emplazado dentro de la familia Corymorphidae. Se suprime la familia Paragotoeidae Ralph, donde P. bathybia estaba situada anteriormente. El estadio de 4 tentaculos reconstruido por Ralph (1959) y considerado como el estadio adulto de P.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Biogeography of Jellyfish in the North Atlantic, by Traditional and Genomic Methods
    Earth Syst. Sci. Data, 7, 173–191, 2015 www.earth-syst-sci-data.net/7/173/2015/ doi:10.5194/essd-7-173-2015 © Author(s) 2015. CC Attribution 3.0 License. Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods P. Licandro1, M. Blackett1,2, A. Fischer1, A. Hosia3,4, J. Kennedy5, R. R. Kirby6, K. Raab7,8, R. Stern1, and P. Tranter1 1Sir Alister Hardy Foundation for Ocean Science (SAHFOS), The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3University Museum of Bergen, Department of Natural History, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway 4Institute of Marine Research, P.O. Box 1870, 5817 Nordnes, Bergen, Norway 5Department of Environment, Fisheries and Sealing Division, Box 1000 Station 1390, Iqaluit, Nunavut, XOA OHO, Canada 6Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK 7Institute for Marine Resources and Ecosystem Studies (IMARES), P.O. Box 68, 1970 AB Ijmuiden, the Netherlands 8Wageningen University and Research Centre, P.O. Box 9101, 6700 HB Wageningen, the Netherlands Correspondence to: P. Licandro ([email protected]) Received: 26 February 2014 – Published in Earth Syst. Sci. Data Discuss.: 5 November 2014 Revised: 30 April 2015 – Accepted: 14 May 2015 – Published: 15 July 2015 Abstract. Scientific debate on whether or not the recent increase in reports of jellyfish outbreaks represents a true rise in their abundance has outlined a lack of reliable records of Cnidaria and Ctenophora. Here we describe different jellyfish data sets produced within the EU programme EURO-BASIN.
    [Show full text]
  • <I>Corymorpha Januarii</I> (Cnidaria
    BULLETIN OF MARINE SCIENCE, 84(2): 229–235, 2009 THE HYDROID anD meDUSA of CORYMORPHA JANUARII (CNIDARIA: HYDROZOA) in temPERATE WATERS OF THE SOUTHWESTERN ATLANTIC OCEAN Gabriel Genzano, Carolina Rodriguez, Guido Pastorino, and Hermes Mianzan A BSTRACT D uring several surveys conducted in shallow, temperate waters of northern Pa- tagonia, we found hydroids belonging to the family Corymorphidae. Additionally, sorting more than 2700 plankton samples yielded five specimens of a corymorphid medusa. Both stages belong to Corymorpha januarii Steenstrup, 1854, a hydrozoan rarely reported in the literature. This finding extends southwards its geographic distribution and represents the first Subantarctic record, as well as the first finding of the medusa stage in nature, confirming its endemism in the tropical and temper- ate waters of the Southwestern Atlantic. H ydrozoans of the Argentinean continental shelf (~35–55 °S) have been intermit- tently studied since the end of the 19th century (see Genzano and Zamponi, 1997). Methodical studies with wide geographical and temporal coverage have been under- taken only very recently, with the newly obtained data enabling the complete update of species inventories concerning both the hydroids and their medusae (Genzano et al., 2008, 2009). However, as in any studied group, an inventory list can be enlarged by the finding of additional species which usually are difficult to collect. Cryptic habitats, fragility of the specimens, short life of the free swimming stage, sharp sea- sonality, and rarity are some of the factors that reduce the likelihood of finding either the sessile or the planktonic stages of some hydrozoan species. The Corymorphidae H( ydrozoa, Anthomedusae) is an eloquent example of a rare species, since both the polyp and the medusa stage possess many of the above men- tioned characteristics.
    [Show full text]
  • Fisheries Centre Research Reports 2011 Volume 19 Number 6
    ISSN 1198-6727 Fisheries Centre Research Reports 2011 Volume 19 Number 6 TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE Fisheries Centre, University of British Columbia, Canada TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE edited by Maria Lourdes D. Palomares and Daniel Pauly Fisheries Centre Research Reports 19(6) 175 pages © published 2011 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 Fisheries Centre Research Reports 19(6) 2011 TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE edited by Maria Lourdes D. Palomares and Daniel Pauly CONTENTS PAGE DIRECTOR‘S FOREWORD 1 EDITOR‘S PREFACE 2 INTRODUCTION 3 Offshore oil vs 3E‘s (Environment, Economy and Employment) 3 Frank Gordon Kirkwood and Audrey Matura-Shepherd The Belize Barrier Reef: a World Heritage Site 8 Janet Gibson BIODIVERSITY 14 Threats to coastal dolphins from oil exploration, drilling and spills off the coast of Belize 14 Ellen Hines The fate of manatees in Belize 19 Nicole Auil Gomez Status and distribution of seabirds in Belize: threats and conservation opportunities 25 H. Lee Jones and Philip Balderamos Potential threats of marine oil drilling for the seabirds of Belize 34 Michelle Paleczny The elasmobranchs of Glover‘s Reef Marine Reserve and other sites in northern and central Belize 38 Demian Chapman, Elizabeth Babcock, Debra Abercrombie, Mark Bond and Ellen Pikitch Snapper and grouper assemblages of Belize: potential impacts from oil drilling 43 William Heyman Endemic marine fishes of Belize: evidence of isolation in a unique ecological region 48 Phillip Lobel and Lisa K.
    [Show full text]
  • JNCC/Cefas Partnership Report No. 29
    JNCC/Cefas Partnership Report Series Report No. 29 East of Haig Fras Marine Conservation Zone (MCZ) Monitoring Report 2015 Clare, D., Downie, A., Hawes, J. & Langton, B. May 2020 © Crown Copyright 2020 ISSN 2051-6711 East of Haig Fras Marine Conservation Zone (MCZ) Monitoring Report 2015 Clare, D., Downie, A., Hawes, J. & Langton, B. May 2020 © Crown Copyright 2020 ISSN 2051-6711 For further information please contact: Joint Nature Conservation Committee Monkstone House City Road Peterborough PE1 1JY www.jncc.gov.uk Marine Monitoring Team ([email protected]) This report should be cited as: Clare, D., Downie, A., Hawes, J. & Langton, B. (2020). East of Haig Fras Marine Conservation Zone (MCZ) Monitoring Report. JNCC/Cefas Partnership Report No. 29. JNCC, Peterborough, ISSN 2051-6711, Crown Copyright. EQA: This report is compliant with the JNCC Evidence Quality Assurance Policy https://jncc.gov.uk/about-jncc/corporate-information/evidence-quality-assurance/. Acknowledgements: We thank the Marine Protected Areas Survey Coordination and Evidence Group (MPAG) representatives for reviewing earlier drafts of this report. Funded by: Department for Environment, Food & Rural Affairs (Defra) Marine and Fisheries Directorate Nobel House 17 Smith Square London SW1P 3JR Please Note: This work was delivered by Cefas and JNCC on behalf of the Marine Protected Areas Survey Coordination & Evidence Delivery Group (MPAG) and sponsored by Defra. MPAG was established in November 2012 and continued until March 2020. MPAG, was originally established to deliver evidence for Marine Conservation Zones (MCZs) recommended for designation. In 2016, the programme of work was refocused towards delivering the evolving requirements for Marine Protected Area (MPA) data and evidence gathering to inform the assessment of the condition of designated sites and features by SNCBs, in order to inform Secretary of State reporting to Parliament.
    [Show full text]
  • State of Kent's Wildlife
    TheKent’s State of Wildlife in 2011 Kent Biodiversity Partnership Action for Kent’s wildlife Contents Introduction 1 Kent’s Butterflies Mike Easterbrook Butterfly Conservation -Kent 2 Kent’s Moths Ian Ferguson & David Gardner Butterfly Conservation -Kent 5 Kent’s Amphibians and Reptiles Dr Lee Brady Kent Reptile and Amphibian Group 10 Kent’s Birds Andrew Henderson Kent Ornithological Society 18 Kent’s Bats Shirley Thompson Kent Bat Group 26 Kent’s Wild Plants Richard Moyse Kent Wildlife Trust 33 Kent’s Marine Wildlife Bryony Chapman, Kent Wildlife Trust 39 The State of Kent’s Wildlife in 2011 Kent is one the UK’s most wildlife-rich bird species, and two species of bat all counties, a result of its varied geology, became extinct in the county. This long coastline, landscape history, excludes consideration of groups not southerly location and proximity to covered in the following chapters; for mainland Europe. Its important wildlife example, the Red Squirrel and 3 species habitats include estuaries, chalk cliffs, of bumblebee were also lost during the woodlands, and chalk downland, and 20th century. In addition to this, many of encompass some of the South East’s the species that remain have seen big most iconic landscapes, such as the population declines, including many shingle headland of Dungeness and species of butterflies and moths, birds the White Cliffs of Dover. and wildflowers of farmland, wetland plants, Adders and Common Toads. This publication has been prepared by Kent natural historians to give an As seen in the following chapters, the outline of the changing fortunes of causes of these losses and declines are Kent’s wild plants and animals over the various.
    [Show full text]
  • Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) Paulyn Cartwright1, Nathaniel M
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 10. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408002257 Printed in the United Kingdom Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) paulyn cartwright1, nathaniel m. evans1, casey w. dunn2, antonio c. marques3, maria pia miglietta4, peter schuchert5 and allen g. collins6 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA, 2Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA, 3Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brazil, 4Department of Biology, Pennsylvania State University, University Park, PA 16802, USA, 5Muse´um d’Histoire Naturelle, CH-1211, Gene`ve, Switzerland, 6National Systematics Laboratory of NOAA Fisheries Service, NMNH, Smithsonian Institution, Washington, DC 20013, USA Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades.
    [Show full text]
  • (Gulf Watch Alaska) Final Report the Seward Line: Marine Ecosystem
    Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth Danielson Institute of Marine Science University of Alaska Fairbanks 905 N. Koyukuk Dr. Fairbanks, AK 99775-7220 Suzanne Strom Shannon Point Marine Center Western Washington University 1900 Shannon Point Road, Anacortes, WA 98221 Kathy Kuletz U.S. Fish and Wildlife Service 1011 East Tudor Road Anchorage, AK 99503 July 2018 The Exxon Valdez Oil Spill Trustee Council administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The Council administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Action of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information, please write to: EVOS Trustee Council, 4230 University Dr., Ste. 220, Anchorage, Alaska 99508-4650, or [email protected], or O.E.O., U.S. Department of the Interior, Washington, D.C. 20240. Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth L.
    [Show full text]
  • Proceedings of National Seminar on Biodiversity And
    BIODIVERSITY AND CONSERVATION OF COASTAL AND MARINE ECOSYSTEMS OF INDIA (2012) --------------------------------------------------------------------------------------------------------------------------------------------------------- Patrons: 1. Hindi VidyaPracharSamiti, Ghatkopar, Mumbai 2. Bombay Natural History Society (BNHS) 3. Association of Teachers in Biological Sciences (ATBS) 4. International Union for Conservation of Nature and Natural Resources (IUCN) 5. Mangroves for the Future (MFF) Advisory Committee for the Conference 1. Dr. S. M. Karmarkar, President, ATBS and Hon. Dir., C B Patel Research Institute, Mumbai 2. Dr. Sharad Chaphekar, Prof. Emeritus, Univ. of Mumbai 3. Dr. Asad Rehmani, Director, BNHS, Mumbi 4. Dr. A. M. Bhagwat, Director, C B Patel Research Centre, Mumbai 5. Dr. Naresh Chandra, Pro-V. C., University of Mumbai 6. Dr. R. S. Hande. Director, BCUD, University of Mumbai 7. Dr. Madhuri Pejaver, Dean, Faculty of Science, University of Mumbai 8. Dr. Vinay Deshmukh, Sr. Scientist, CMFRI, Mumbai 9. Dr. Vinayak Dalvie, Chairman, BoS in Zoology, University of Mumbai 10. Dr. Sasikumar Menon, Dy. Dir., Therapeutic Drug Monitoring Centre, Mumbai 11. Dr, Sanjay Deshmukh, Head, Dept. of Life Sciences, University of Mumbai 12. Dr. S. T. Ingale, Vice-Principal, R. J. College, Ghatkopar 13. Dr. Rekha Vartak, Head, Biology Cell, HBCSE, Mumbai 14. Dr. S. S. Barve, Head, Dept. of Botany, Vaze College, Mumbai 15. Dr. Satish Bhalerao, Head, Dept. of Botany, Wilson College Organizing Committee 1. Convenor- Dr. Usha Mukundan, Principal, R. J. College 2. Co-convenor- Deepak Apte, Dy. Director, BNHS 3. Organizing Secretary- Dr. Purushottam Kale, Head, Dept. of Zoology, R. J. College 4. Treasurer- Prof. Pravin Nayak 5. Members- Dr. S. T. Ingale Dr. Himanshu Dawda Dr. Mrinalini Date Dr.
    [Show full text]