Biofuels from Trees: Renewable Energy Research Branches Out

Total Page:16

File Type:pdf, Size:1020Kb

Biofuels from Trees: Renewable Energy Research Branches Out Biofuels from Trees: Renewable Energy Research Branches Out On sites ranging from the Pacific Northwest to the Mississippi delta, Jud Isebrands envisions the architecture of a future solar-energy installation: Sprawling across a thousand acres, it bristles with a million solar collection towers, each stretching 50 feet sunward. Each tower bears thousands of thin, maintenance-free photochemical panels. ❧ By day, these panels look to the light of the sun, converting solar radiation into stored chemical energy that will fuel vehicles or illuminate homes; by night, the panels double as exhaust vents, releasing the installation’s airborne emissons: oxygen and water vapor. ❧ And every autumn, Isebrands knows, the panels will turn golden-brown and flutter to the ground. The architectural elements and expanding the potential of As one of the nation’s leading Isebrands envisions, in other trees to provide clean, sustainable centers of energy research, ORNL words, are stems, branches, and fuels. The program, sponsored by has decades of experience with leaves, and his solar towers are DOE’s Office of Energy Efficiency efficient, advanced energy systems. trees—hardy, fast-growing, air- and Renewable Energy, is called They’ve found one of the best cleansing hybrid poplars, the Bioenergy Feedstock systems to be the tree, says Gerald planted on surplus farmland Development Program. Managed Tuskan, an ORNL geneticist. and cultivated for the energy by Oak Ridge National Laboratory Transfered into ethanol (a form of they can yield. (ORNL), it’s tapping the expertise alcohol), biomass can fuel cars of Isebrands, a plant physiologist and trucks. After high-temperature Isebrand’s vision is closer to with the U.S. Forest Service—along gasification, biomass can yield an being realized than you might with dozens of other federal, array of products, including think. At research sites across university, and timber-industry methanol and diesel fuel and a the nation, a major research scientists—to increase the growth wide variety of chemical program of the U.S. Department rates and hardiness of trees grown feedstocks for industry. Mixed with of Energy (DOE) is exploring as energy crops, or biomass. coal and burned in a conventional power plant, biomass can extend conventional fuels for producing electricity and, at the same time, reduce pollution from carbon dioxide, sulfur, and nitrogen oxides. High-tech trees For biofuels to become mainstream fuels, they must become economically competitive with petroleum, the liquid that quenches most vehicles’ thirst fairly inexpensively. Farmers, therefore, must start with extremely hardy trees remarkably resistant to drought, insects, and diseases that can produce high yields on many kinds of cropland. Advanced techniques, including gene-mapping and cloning, allows researchers to That combination of attributes select and reproduce large numbers of hardy, fast-growing trees. isn’t normally found in nature, so researchers must find ways to nurture it in the laboratory. It’s a job for cutting-edge science. Using the same gene-mapping tools developed to unlock the secrets of human DNA, plant geneticists in Oak Ridge and at the University of Washington are probing the genes of fast-growing poplars. By finding the genes responsible for traits such as height, drought tolerance, and pest resistance, researchers can identify individual trees with particular promise, cross them with other trees that excel in other traits, and then produce Planted in rows and cultivated as energy crops, hybrid poplars show particu- genetically identical copies by the lar promise for high yields under a wide range of growing conditions. handful or by the hundred. After screening dozens of species In a research plot at Oregon State research program to of trees for growth rates, University (OSU), a cloned hybrid complement his company’s adaptability, drought tolerance, poplar—a product of genetic tree-breeding program. In the and disease resistance, researchers engineering—matures and begins company’s stands, hybrid have found particular promise in to flower. Then, on the verge of the members of the genus reproduction, something Populus—which includes poplars unusual happens: the tree’s and cottonwoods—and in the flowers begins to shrivel, then poplar’s cousin, the willow. die. A failed experiment? The work of insects or disease? No: A And Isebrands’ interest in the genetically engineered safety architecture of trees is more than measure. Geneticist Steve Strauss just aesthetic, too. The shape of a and a team of other OSU tree’s crown—the geometry of researchers are working to branches, the size and spacing of implant the tree’s reproductive leaves—determines its efficiency system with a self-destruct as a solar array. And one of the mechanism that lets them test best solar arrays in the plant sterilized genetically engineered kingdom, Isebrands has found, is trees in the field. the crown of the hybrid poplar. University and government Biofuels researchers have found that a In the Pacific Northwest, by research plots allow initial tree’s “crown geometry” plays a key role crossing the eastern cottonwood screening and development of in efficiently converting sunlight into with the region’s indigenous black promising hybrids, but it’s the cellulose. cottonwood, scientists have big leagues—giant attained yields as high as 10 tons plantings like James of dry biomass per acre, per year. River Corp.’s 10,000 That’s about 5 to 10 times more acres in Oregon and than trees produce in the wild. Washington—where Now, taking the best individual the lab work can be hybrids and crossing them with put to the ultimate other superior specimens, they’re test. Brian Stanton, a seeking trees with even faster James River growth rates, as well as greater geneticist, draws on drought tolerance and insect the research tools and resistance. insights of DOE’s Trees destined for conversion to biofuels can be harvested with In just six growing seasons, hybrid poplars can reach the same equipment as trees grown for timber, pulp, or fiber. sixty feet or more in height. poplars are reaching heights of 70 by spring rains. Four years from feet, with trunks nearly a foot in now, that twig could yield the diameter ... after just six short light by which a first-grader learns years. By working together, the to read, or the heat that browns a public and private sectors divide family’s Thanksgiving turkey. the cost of research—but double its value. That small twig is part of a big demonstration of the energy- producing potential of biomass. Think farming, Planted in a research plot at State University of New York (SUNY), the not logging twig—like thousands of others One surprising beneficiary of around it—is a live cutting from a biomass energy could be America’s willow that will root and grow, forests. Energy researchers hope to then help fire utility boilers. The protect natural forests by demonstration program, involving developing a new source of wood— researchers, farmers, and several tree crops. The crops could be power companies, aims to reduce grown on biomass farms, sited on the state’s fossil-fuel consumption, land that’s too erosion-prone for cut emissions of carbon dioxide Besides offering a promising and row crops, soil that’s been worked and other pollutants, and promote renewable energy source, trees also too hard for too long, acreage that renewable energy sources. lessen the greenhouse effect by crop surpluses have rendered removing carbon dioxide from the unprofitable for agriculture. According to Ed White, SUNY’s air. dean of research, the willow By displacing idle farmland, cuttings will grow for a single biomass crops could help revitalize season, then be lopped off near the NT O E F E America’s farm economy. By ground. The following spring, TM N R E A R Produced for stabilizing soil, reducing erosion three or four new stalks will P G E Y D DOE's Office of and runoff, and restoring organic emerge from each set of roots. In U A N Transportation C matter to depleted land, these just three more years, White says, I I T E R Technologies and D E crops could restore the land’s vigor. each of the thousands of stalks M ST A the Office of Utility ATES OF And by providing shelter for birds will measure up to three inches Technologies within and other wildlife, they could boost thick and 20 feet tall. the Office of Energy Efficiency and Renewable Energy. the environmental diversity of the farm belt. Then, come autumn, they’ll be harvested, chipped, and burned in And no matter where it’s grown or an electric utility boiler, mixed how it’s used, biomass offers with coal. The mixture—10% For more information, tremendous environmental biomass, 90% coal—will reduce contact: advantages compared with coal, emissions of nitrogen oxides and petroleum, and natural gas: It’s sulfur by about 10%, White renewable, and as it grows, figures. In addition, the willows Anne Ehrenshaft, biomass removes carbon dioxide will have begun to recycle carbon, Bioenergy Feedstock from the air, thus helping slow the removing several tons of carbon Development Program, buildup of “greenhouse gases” that dioxide from the air to feed their Oak Ridge National Laboratory, threaten to warm the globe and photosynthetic growth. P.O. Box 2008, alter Earth’s climate forever. Oak Ridge, TN 37831-6422, By the end of the decade, White 423-576-5132 (phone), hopes to see 2,000 acres planted in 423-576-8143 (fax), Stakeholders in boiler-bound willow. As it burns, email: [email protected] or visit the say White and other researchers Biofuels Information Network, the future who believe in the promise of http://www.esd.ornl.gov/bfdp/ In a former pasture in upstate New biomass, it will light the way to a on the Internet.
Recommended publications
  • A Single Tree Model to Consistently Simulate Cooling, Shading, and Pollution Uptake of Urban Trees
    International Journal of Biometeorology https://doi.org/10.1007/s00484-020-02030-8 ORIGINAL PAPER A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees Rocco Pace1,2 & Francesco De Fino3 & Mohammad A. Rahman4 & Stephan Pauleit4 & David J. Nowak5 & Rüdiger Grote1 Received: 3 April 2020 /Revised: 24 September 2020 /Accepted: 6 October 2020 # The Author(s) 2020 Abstract Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone).
    [Show full text]
  • The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States
    Global Change Biology (2016) 22, 2329–2352, doi: 10.1111/gcb.13160 SPECIAL FEATURE The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States JAMES S. CLARK1 , LOUIS IVERSON2 , CHRISTOPHER W. WOODALL3 ,CRAIGD.ALLEN4 , DAVID M. BELL5 , DON C. BRAGG6 , ANTHONY W. D’AMATO7 ,FRANKW.DAVIS8 , MICHELLE H. HERSH9 , INES IBANEZ10, STEPHEN T. JACKSON11, STEPHEN MATTHEWS12, NEIL PEDERSON13, MATTHEW PETERS14,MARKW.SCHWARTZ15, KRISTEN M. WARING16 andNIKLAUS E. ZIMMERMANN17 1Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, 2Forest Service, Northern Research Station 359 Main Road, Delaware, OH 43015, USA, 3Forest Service 1992 Folwell Avenue,Saint Paul, MN 55108, USA, 4U.S. Geological Survey, Fort Collins Science Center Jemez Mountains Field Station, Los Alamos, NM 87544, USA, 5Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA, 6Forest Service, Southern Research Station, Monticello, AR 71656, USA, 7Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT 05405, USA, 8Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA, 9Department of Biology, Sarah Lawrence College, New York, NY 10708, USA, 10School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI 48109, USA, 11U.S. Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell
    [Show full text]
  • Comparing Water-Related Plant Functional Traits Among Dominant Grasses of the Colorado Plateau: Implications for Drought Resistance
    Plant Soil https://doi.org/10.1007/s11104-019-04107-9 REGULAR ARTICLE Comparing water-related plant functional traits among dominant grasses of the Colorado Plateau: Implications for drought resistance David L. Hoover & Kelly Koriakin & Johanne Albrigtsen & Troy Ocheltree Received: 7 September 2018 /Accepted: 24 April 2019 # This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019 Abstract above- and belowground biomass, and morphology, Background and aims Water is the primary limiting then assessed how these traits varied by species, and factor for plants in drylands, which are projected to photosynthetic pathway. become even drier with climate change. Plant functional Results Individual water-related traits varied widely, but traits related to water influences individual performance, did not consistently vary by photosynthetic pathway. community composition, and can provide insight into We identified three unique functional trait syndromes which species will be most vulnerable to drought. that could be classified as either conservative or non- Methods Here, we used a trait-based approach to exam- conservative with regard to water use. ine key water-related traits of five perennial grasses of Conclusions Variation in water-related traits may be the Colorado Plateau, with the goals of identifying func- key to the coexistence of species in drylands, but there tional trait syndromes, and assessing vulnerability to is uncertainty as which traits or functional trait syn- drought. We examined 14 traits including hydraulic, dromes will be most vulnerable to changes in climate. Based on the traits examined here, and forecast changes Responsible Editor: Ian Dodd.
    [Show full text]
  • Tree-Ring Variation in Pinyon Predicts Likelihood of Death Following Severe Drought
    November 2000 NOTES 3237 Ecology, 81(11), 2000, pp. 3237±3243 q 2000 by the Ecological Society of America TREE-RING VARIATION IN PINYON PREDICTS LIKELIHOOD OF DEATH FOLLOWING SEVERE DROUGHT KIONA OGLE,1 THOMAS G. WHITHAM, AND NEIL S. COBB Northern Arizona University, Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Flagstaff, Arizona 86011 USA Abstract. A severe drought in northern Arizona caused widespread pinyon (Pinus edulis) mortality, exceeding 40% in some populations. We measured tree-ring widths of pinyons that survived and that died in three sites designated as ``high,'' ``medium,'' and ``low'' stress. Growth characteristics during the previous 10±15 years can be used to predict the likelihood of drought-induced death; dead trees exhibited 1.5 times greater variation in growth than live trees. A model of ring-width deviations vs. drought severity showed a loss of ``climatic sensitivity'' with age in dead trees. These differences were independent of site. We found two distinct tree types that are predisposed to die during drought; highly sensitive young trees, and insensitive older trees. As the Southwest has a dynamic climate typi®ed by severe droughts, it is important to understand how droughts act as bottleneck events to affect a dominant tree in a major vegetation type of the United States. Key words: climatic sensitivity; drought; environmental stress; mortality, likelihood following drought; Pinus edulis; pinyon pine; tree rings. INTRODUCTION (Betancourt 1987, Betancourt et al. 1990), allowing us General circulation models project that a doubling to place current changes into a paleoecological per- spective. From a community perspective, much is of atmospheric CO2 in the near future will result in shifts in the spatio-temporal distribution of precipita- known about how environmental stress affects pinyons, tion (e.g., Cubasch et al.
    [Show full text]
  • Responses and Differences in Tolerance to Water Shortage Under
    Article Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations Bonoso San-Eufrasio 1, Rosa Sánchez-Lucas 1,2, Cristina López-Hidalgo 1,3 , Victor M. Guerrero-Sánchez 1 , María Ángeles Castillejo 1 , Ana María Maldonado-Alconada 1, Jesús V. Jorrín-Novo 1 and María-Dolores Rey 1,* 1 Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain; [email protected] (B.S.-E.); [email protected] (R.S.-L.); [email protected] (C.L.-H.); [email protected] (V.M.G.-S.); [email protected] (M.Á.C.); [email protected] (A.M.M.-A.); [email protected] (J.V.J.-N.) 2 School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK 3 Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain * Correspondence: [email protected] Received: 27 May 2020; Accepted: 19 June 2020; Published: 24 June 2020 Abstract: Analyzing differences in tolerance to drought in Quercus spp., and the characterization of these responses at the species and individual population level, are imperative for the selection of resilient elite genotypes in reforestation programs. The main objective of this work was to evaluate differences in the response and tolerance to water shortage under in five Quercus spp. and five Andalusian Q. ilex populations at the inter- and intraspecies level. Six-month-old seedlings grown in perlite were subjected to drought treatments by withholding water for 28 days under mean 37 ◦C 2 temperature, 28 W m− solar irradiance, and 41% humidity.
    [Show full text]
  • Differential Drought Responses Between Saplings and Adult Trees in Four Co-Occurring Species of New England
    Trees (2005) 19: 442–450 DOI 10.1007/s00468-004-0403-2 ORIGINAL ARTICLE Jin-Sheng He · Qi-Bin Zhang · F. A. Bazzaz Differential drought responses between saplings and adult trees in four co-occurring species of New England Received: 25 March 2004 / Accepted: 18 November 2004 / Published online: 6 January 2005 C Springer-Verlag 2005 Abstract Tree-ring characteristics in four species were ex- mature trees of red maple and paper birch differed signifi- amined to address whether co-occurring mature trees of dif- cantly in drought responses, but this was not true in sugar ferent successional status respond differently to drought, maple and yellow birch. Our results do not support a gen- and whether saplings of these species have a greater re- erally greater response in saplings than in mature trees, sponse to drought than mature trees. We examined saplings nor an early- versus late successional difference in drought and mature trees of paper birch, yellow birch, red maple and responses. sugar maple, which varied in successional status (shade- tolerance) and co-occurred at Harvard Forest, Petersham, Keywords Drought . Dendrochronology . Ontogeny . Mass., USA. Three drought events in 1964–1966, 1981 and Temperate forest . Harvard Forest 1995 were identified using climate data. For mature trees, there was no significant interspecific difference in relative changes in ring-width index (RWI) during the 1964–1966 Introduction and 1995 drought events. However, the interspecific differ- ence was significant in the 1981 drought event. Response In ecology, experimental results from tree seedlings function analysis for mature trees showed that the radial and saplings are widely used to extrapolate to possible growth of sugar maple was mainly controlled by spring responses of mature individuals (Ehleringer and Field and summer precipitation, red maple by spring and sum- 1993).
    [Show full text]
  • Global Diversity of Drought Tolerance and Grassland Climate-Change Resilience
    LETTERS PUBLISHED ONLINE: 5 AUGUST 2012 | DOI: 10.1038/NCLIMATE1634 Global diversity of drought tolerance and grassland climate-change resilience Joseph M. Craine1*, Troy W. Ocheltree1, Jesse B. Nippert1, E. Gene Towne1, Adam M. Skibbe1, Steven W. Kembel2 and Joseph E. Fargione3 Drought reduces plant productivity, induces widespread plant However, present functional trait data are insufficient to predict mortality and limits the geographic distribution of plant how drought may alter the functional composition of grasslands. species1–7. As climates warm and precipitation patterns shift To better understand drought tolerance in grasslands, we in the future8,9, understanding the distribution of the diver- assessed physiological drought tolerance and a number of other sity of plant drought tolerance is central to predicting future leaf functional traits for 426 grass species. Plants can tolerate ecosystem function and resilience to climate change10–12. These environmental drought by accessing stable or stored water questions are especially pressing for the world’s 11,000 grass sources or even speeding reproduction to precede drought-induced species13, which dominate a large fraction of the terrestrial mortality. Because grasses store too little water or carbon to biosphere14, yet are poorly characterized with respect to re- maintain shoots during extended droughts, long-term resistance sponses to drought. Here, we show that physiological drought for grasses to low water potentials is probably first approximated tolerance, which varied tenfold among 426 grass species, is by their physiological tolerance of drought. Here, physiological well distributed both climatically and phylogenetically, sug- drought tolerance was assessed as the critical leaf water potential gesting most native grasslands are likely to contain a high (Ψcrit) at which stomatal conductance fell below an ecological diversity of drought tolerance.
    [Show full text]
  • Paleoclimate and Current Climate Collectively Shape the Phylogenetic And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.128975; this version posted June 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Paleoclimate and current climate collectively shape the phylogenetic and 2 functional diversity of trees worldwide 3 Wen-Yong Guo1,2 *, Josep M. Serra-Diaz3, Franziska Schrodt4, Wolf L. Eiserhardt2, Brian S. 4 Maitner5, Cory Merow6, Cyrille Violle7, Anne Blach-Overgaard1,2, Jian Zhang8, Madhur Anand9, 5 Michaël Belluau10, Hans Henrik Bruun11, Chaeho Byun12, Jane A. Catford13, Bruno E. L. 6 Cerabolini14, Eduardo Chacón-Madrigal15, Daniela Ciccarelli16, Johannes H. C. Cornelissen17, Anh 7 Tuan Dang-Le18, Angel de Frutos19, Arildo S. Dias20, Aelton B. Giroldo21, Alvaro G. Gutiérrez22, 8 Wesley Hattingh23, Tianhua He24,25, Peter Hietz26, Nate Hough-Snee27, Steven Jansen28, Jens 9 Kattge19,29, Tamir Klein30, Benjamin Komac31, Nathan Kraft32, Koen Kramer33, Sandra Lavorel34, 10 Christopher H. Lusk35, Adam R. Martin36, Maurizio Mencuccini37,38, Sean T. Michaletz39, Vanessa 11 Minden40,41, Akira S. Mori42, Ülo Niinemets43, Yusuke Onoda44, Renske E. Onstein19, Josep 12 Peñuelas38,45, Valério D. Pillar46, Jan Pisek47, Matthew J. Pound48, Bjorn J.M. Robroek49, Brandon 13 Schamp50, Martijn Slot51, Ênio Sosinski52, Nadejda A. Soudzilovskaia53, Nelson Thiffault54, Peter 14 van Bodegom53, Fons van der Plas55, Ian
    [Show full text]
  • Climate Change, Water and Food Security
    Cover picture: Irrawaddy Delta, Myanmar - September 2008 (© Swiatek Wojtkowiak) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org FAO WATER Climate change, water REPORTS and food security 36 by Hugh Turral FAO consultant Jacob Burke and Jean-Marc Faurès FAO Land and Water Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5- All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.
    [Show full text]
  • Tilia Cordata Mill.) and Black Locust (Robinia Pseudoacacia L.)
    Article The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.) Astrid Moser 1,*, Thomas Rötzer 1, Stephan Pauleit 2 and Hans Pretzsch 1 1 Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany; [email protected] (T.R.); [email protected] (H.P.) 2 Strategic Landscape Planning and Management, School of Life Sciences Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, Freising 85354, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-8161-71-4719 Academic Editors: Francisco Escobedo, Stephen John Livesley and Justin Morgenroth Received: 8 January 2016; Accepted: 11 March 2016; Published: 17 March 2016 Abstract: The urban environment characterized by various stresses poses challenges to trees. In particular, water deficits and high temperatures can cause immense drought stress to urban trees, resulting in reduced growth and die-off. Drought-tolerant species are expected to be resilient to these conditions and are therefore advantageous over other, more susceptible species. However, the drought tolerance of urban trees in relation to the specific growth conditions in urban areas remains poorly researched. This study aimed to analyze the annual growth and drought tolerance of two common urban tree species, namely small-leaved lime (Tilia cordata Mill. (T. cordata)) and black locust (Robinia pseudoacacia L. (R. pseudoacacia)), in two cities in southern Germany in relation to their urban growing conditions. Marked growth reductions during drought periods and subsequent fast recovery were found for R.
    [Show full text]
  • Drought Tolerant Corn Report
    High and Dry Why Genetic Engineering Is Not Solving Agriculture’s Drought Problem in a Thirsty World ii High and Dry Why Genetic Engineering Is Not Solving Agriculture’s Drought Problem in a Thirsty World Doug Gurian-Sherman June 2012 © 2012 Union of Concerned Scientists All rights reserved Doug Gurian-Sherman is a senior scientist in the Food and Environment Program of the Union of Concerned Scientists. The Union of Concerned Scientists (UCS) is the leading science-based nonprofit working for a healthy environment and a safer world. UCS combines independent scientific research and citizen action to develop innovative, practical solutions and secure responsible changes in government policy, corporate practices, and consumer choices. The goal of the UCS Food and Environment Program is a food system that encourages innovative and environmentally sustainable ways to produce high-quality, safe, and affordable food while ensuring that citizens have a voice in how their food is grown. More information is available on the UCS website at www.ucsusa.org/food_and_agriculture. This report is available on the UCS website (www.ucsusa.org/publications) or may be obtained from: UCS Publications 2 Brattle Square Cambridge, MA 02238-9105 Or, email [email protected] or call (617) 547-5552. Cover photo: © iStockphoto.com/Drbouz ii Contents Figures iii Acknowledgments iv Executive Summary 1 Chapter 1. Introduction 6 Roadmap to the Report 6 Chapter 2. The Complexity of Drought and Efforts to Address It 7 Major Approaches to Reducing the Impact of Drought 8 The Challenges of Measuring Drought and Comparing Drought Tolerance 11 Drought Tolerance and Water-Use Efficiency 12 Summary: The Complexity of Drought and Solutions to It 12 Chapter 3.
    [Show full text]
  • Water-Use Strategies of Trees in a Secondary Successional Tropical Dry Forest
    Tree Physiology 36, 208–217 doi:10.1093/treephys/tpv124 Research paper Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest Fernando Pineda-García1,5, Horacio Paz2, Frederick C. Meinzer3 and Guillermo Angeles4 Downloaded from 1Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México Unidad Morelia, Antigua Carretera a Patzcuaro 8701, CP 58190, Morelia, Mexico; 2Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México Campus Morelia, 58190 Morelia, Mexico; 3USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; 4Red de Ecología Funcional, Instituto de Ecología A.C., 91070 Xalapa, Mexico; 5Corresponding author ([email protected]) http://treephys.oxfordjournals.org/ Received July 15, 2015; accepted November 4, 2015; published online December 18, 2015; handling Editor Guillermo Goldstein In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different
    [Show full text]