Importance of Flight for Habitat Occupancy a Pilot Study on American Ground Beetles

Total Page:16

File Type:pdf, Size:1020Kb

Importance of Flight for Habitat Occupancy a Pilot Study on American Ground Beetles Importance of Flight for habitat occupancy A pilot study on American Ground Beetles Alexander Irwe Degree project for Bachelor of Science in Biology BIO602 Biology: Degree project 15 hec Spring 2015 Department of Biological and Environmental Sciences University of Gothenburg Examiner: Christer Erséus Department of Biological and Environmental Sciences University of Gothenburg Supervisor: Urban Olsson Department of Biological and Environmental Sciences University of Gothenburg Frontpage photo by: Jeffrey S. Pippen Macon Co. NC12 May 2006 Table of content Abstract…………………………………………………………………1 Introduction……………………………………………………………..2 Material and Methods…………………………………………………3 Results………………………………………………………………….5 Discussion………………………………………………………………5 Table 1 and 2…………………………………………………………..6 Acknowledgements……………………………………………………8 References……………………………………………………………..9 Abstract Insects are one of the oldest groups of terrestrial animals still living today and were the first to evolve wings. Since then insects have evolved into many different shapes and sizes and occupy a wide range of niches. One group of insects, the Carabidae or ground beetles are interesting as they contain both species with good flight capacity and species with reduced wings that have lost the capacity to fly. The genus Cicindela is a group of ground beetles that have a larger than average flight capacity of most beetles. Carabus on the other hand is a genus were most of the species have reduced wings and lack the ability to fly. There is both cost and benefit in having flight capabilities and one benefit would be quicker and better movement. The assumption that flying species would better disperse themselves could be tested by comparing fundamental niche usage between two groups that differ in flight capabilities. To test this occurrence data of species from the Carabus and Cicindela genera were retrieved to calculate their realized niche, and Ecological niche modelling (ENM) was done to project their fundamental niche. The difference in realized and fundamental niche area was calculated for both genera and statistical tests were performed. The results indicate that Cicindela occupies a larger proportion of their fundamental niche than Carabus but the results from the statistical tests were not conclusive. A significant difference between the two genera was only seen when looking at the proportional difference but not when looking at the difference in real values. More species and further refinement of the ENM could help to increase confidence of the test. Abstrakt Insekter är en av de äldsta landlevande djur som fortfarande lever idag och var de första som utvecklade vingar. Insekter har sedan dess utvecklats till många olika former och storlekar och ockuperar en mängd olika nischer. En grupp av insekter, Carabidae eller jordlöpare är en intressant grupp då de innehåller både arter med god flygförmåga och arter med reducerade vingar som har förlorat sin förmåga att flyga. Släktet Cicindela är en grupp jordlöpare som har en flygförmåga över det vanliga för de flesta skalbaggar. Carabus är istället ett släkte där de flesta arter har reducerade vingar och saknar flygförmåga. Det finns både för och nackdelar av att kunna flyga och en fördel är att kunna förflytta sig snabbare och lättare. Antagandet att flygande arter skulle ha lättare att sprida sig kan testas genom att jämföra fundamental nischanvändning mellan två grupper med olika flygförmåga. För att testa detta hämtades data på förekomst av arter från släkterna Carabus och Cicindela för att sedan räkna ut deras realiserade nisch. ”Ecological niche modelling” (ENM) användes för att projicera arternas fundamentala nisch. Skillnaden mellan realiserad och fundamental nisch area räknades ut och stat istiska tester utfördes. Resultaten visar på att Cicindela ockuperade en större andel av sin fundamentala nisch än Carabus men resultaten från de statistiska testen var inte fullt övertygande. En signifikant skillnad mellan de två släkterna sågs endast för den proportionella skillnaden men inte för den faktiska skillnaden. Fler arter och mer finputsning av ENM kunde hjälpa till att öka säkerheten av undersökningen. 1 Introduction in almost all types of environments and can be found all around the globe. Most of them are carnivores (Lövei et al, Insects were one of the first animals to 1996) but some species seem to be invade land some 400 million years ago omnivores or even frugivores (Hill et al, which created many new opportunities 1992). A lot of species have lost their for insects to adapt to new niches ability to fly or have reduced wings (Grimaldi et al, 2005). Since then insects (Lövei et al, 1996) but many species of have adapted to a number of different the genus Cicindela or common tiger environments and evolved many types beetle which is part of the Carabidae of features. The ability to fly was first family can still fly (Carter, 1989). Another evolved by insects sometime in the large group of ground beetles is the Carboniferous time period and has since genus Carabus in which most species then evolved in many different species lack functional wings (Lindroth, 1986). and groups of animals (Knecht et al, Most ground beetle species seem to 2011). Flight allowed for rapid movement have similar habitat and food preference to catch pray, avoid being caught or to (Lövei et al, 1996), so the major reach new otherwise inaccessible difference between the Carabus and habitats. Flying is costly since it requires Cicindela genera are the flight a lot of energy to remain airborne, so for capabilities. it to evolve the benefit has to outweigh the cost of maintaining the ability to fly One can then assume that species from (Roff, 1986). When studying newly the Cicindela group would be much formed habitats such as islands made more proficient in finding new areas with from volcanic activity, species with flying suitable habitats. Since most of the capabilities and plants with air-travelling Cicindela species still have functional seeds and pollen are usually the first wings it would be assumable that they ones to settle in the newly formed have an easier way to disperse habitat. Interestingly enough, islands themselves. One possible way of testing and other isolated habitats have a this would be to calculate the area of the proportionally larger number of species realized niche for the species in each without flight capabilities than inland group and then calculate the area of the habitats. This suggests that selection fundamental niche for each species. pressure for flight may decrease in Realized niche in this case refers to a isolated islands (Gillespie, 2007). The species current niche where it actually term brachypterous is used to describe resides and fundamental niche refers to the loss of or reduced wings in animals a species potential niche were it could and can be seen throughout the Insecta live (Sadava et al, 2011). A species lineage. Some species have both realized niche is usually smaller than its winged and brachypterous morphs in a fundamental niche as it might be population and are thought to be an restricted from a number of factors such adaptation depending on the stability of as competition from other species or the environment or a trade-off from other migration hinders. If Cicindela species features (Roff, 1986). One obvious are better at dispersing they would use drawback from wing reduction is the loss their potential habitats to a higher extent in mobility and perhaps the potential than species from the Carabus genus. In ability to disperse. this study I gathered information on the current distribution and compared it to One interesting group of insects are the the potential distribution estimated by ground beetles Carabidae which today Ecological niche modeling. The test is to have more than 40,000 species see if flight capability has a positive described (Erwin, 1985). They are found 2 effect on the ability to disperse. The null points together with environmental data hypothesis is that no difference in to model the species fundamental niche relative utilization of available habitat over a geographical area (Kearney, exists between two groups of different 2006). Before the initial ENM was done flight capabilities. A difference would a trial and error phase was conducted to violate the assumptions of the null see which environmental layers were to hypothesis and indicate that flight is be used in the final model. This was important for the ability to colonize all done using a custom made workflow areas of suitable habitat. based on jackknife resampling that test which of the chosen layers affected the Material and Methods model the most (Leidenberger et al). The layers that had the biggest effect were Occurrence data retrieval and considered most important for the Ecological niche modelling accuracy of the model. Correlation tests using ENMtools For this study 10 species of each ground (http://enmtools.blogspot.se/) were also beetle genus Carabus and Cicindela conducted to make sure none of the were used, giving a total of 20 species. layers correlated with each other. If any More species would have been selected layers correlated the one that had the but there was a limited number of lowest effect from the jackknife tests was Carabus species with occurrence data removed. The environmental layers available. North America was selected selected by the jackknife and correlation as an area of interest since it has a lot of tests were: annual mean temperature, well documented records of species and precipitation of driest month, is a relatively large area with no large temperature annual range, bulk density, expanses of water interfering with salinity, gravel content, ph and altitude in species migration. The selected species meters. Studies on ground beetles were chosen by looking at which of them suggested that humidity would be a had the most available data from the limiting factor for habitat preference Global Biodiversity Information Facility (Lövei et al 1996) which coincides with (GBIF) (http://www.gbif.org/). The the precipitation of driest month layer in occurrence data for each individual the model.
Recommended publications
  • Ants As Prey for the Endemic and Endangered Spanish Tiger Beetle Cephalota Dulcinea (Coleoptera: Carabidae) Carlo Polidori A*, Paula C
    Annales de la Société entomologique de France (N.S.), 2020 https://doi.org/10.1080/00379271.2020.1791252 Ants as prey for the endemic and endangered Spanish tiger beetle Cephalota dulcinea (Coleoptera: Carabidae) Carlo Polidori a*, Paula C. Rodríguez-Flores b,c & Mario García-París b aInstituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain; bDepartamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006, Spain; cCentre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, 14, 17300, Blanes, Spain (Accepté le 29 juin 2020) Summary. Among the insects inhabiting endorheic, temporary and highly saline small lakes of central Spain during dry periods, tiger beetles (Coleoptera: Carabidae: Cicindelinae) form particularly rich assemblages including unique endemic species. Cephalota dulcinea López, De la Rosa & Baena, 2006 is an endemic, regionally protected species that occurs only in saline marshes in Castilla-La Mancha (Central Spain). Here, we report that C. dulcinea suffers potential risks associated with counter-attacks by ants (Hymenoptera: Formicidae), while using them as prey at one of these marshes. Through mark–recapture methods, we estimated the population size of C. dulcinea at the study marsh as of 1352 individuals, with a sex ratio slightly biased towards males. Evident signs of ant defensive attack by the seed-harvesting ant Messor barbarus (Forel, 1905) were detected in 14% of marked individuals, sometimes with cut ant heads still grasped with their mandibles to the beetle body parts. Ant injuries have been more frequently recorded at the end of adult C.
    [Show full text]
  • Rare Native Animals of RI
    RARE NATIVE ANIMALS OF RHODE ISLAND Revised: March, 2006 ABOUT THIS LIST The list is divided by vertebrates and invertebrates and is arranged taxonomically according to the recognized authority cited before each group. Appropriate synonomy is included where names have changed since publication of the cited authority. The Natural Heritage Program's Rare Native Plants of Rhode Island includes an estimate of the number of "extant populations" for each listed plant species, a figure which has been helpful in assessing the health of each species. Because animals are mobile, some exhibiting annual long-distance migrations, it is not possible to derive a population index that can be applied to all animal groups. The status assigned to each species (see definitions below) provides some indication of its range, relative abundance, and vulnerability to decline. More specific and pertinent data is available from the Natural Heritage Program, the Rhode Island Endangered Species Program, and the Rhode Island Natural History Survey. STATUS. The status of each species is designated by letter codes as defined: (FE) Federally Endangered (7 species currently listed) (FT) Federally Threatened (2 species currently listed) (SE) State Endangered Native species in imminent danger of extirpation from Rhode Island. These taxa may meet one or more of the following criteria: 1. Formerly considered by the U.S. Fish and Wildlife Service for Federal listing as endangered or threatened. 2. Known from an estimated 1-2 total populations in the state. 3. Apparently globally rare or threatened; estimated at 100 or fewer populations range-wide. Animals listed as State Endangered are protected under the provisions of the Rhode Island State Endangered Species Act, Title 20 of the General Laws of the State of Rhode Island.
    [Show full text]
  • Recovery Plan for Northeastern Beach Tiger Beetle
    Northeastern Beach Tiger Beetle, (Cincindela dorsalisdorsal/s Say) t1rtmow RECOVERY PLAN 4.- U.S. Fish and Wildlife Service SFAVI ? Hadley, Massachusetts September 1994 C'AZ7 r4S \01\ Cover illustration by Katherine Brown-Wing copyright 1993 NORTHEASTERN BEACH TIGER BEETLE (Cicindela dorsalis dorsalis Say) RECOVERY PLAN Prepared by: James M. Hill and C. Barry Knisley Department of Biology Randolph-Macon College Ashland, Virginia in cooperation with the Chesapeake Bay Field Office U.S. Fish and Wildlife Service and members of the Tiger Beetle Recovery Planning-Group Approved: . ILL Regi Director, Region Five U.S. Fish and Wildlife Service Date: 9 29- ~' TIGER BEETLE RECOVERY PLANNING GROUP James Hill Philip Nothnagle Route 1 Box 2746A RFD 1, Box 459 Reedville, VA Windsor, VT 05089 Judy Jacobs Steve Roble U.S. Fish and Wildlife Service VA Natural Heritage Program Annapolis Field Office Main Street Station 177 Admiral Cochrane Drive 1500 East Main Street Annapolis, MD 21401 Richmond, VA 23219 C. Barry Knisley Tim Simmons Biology Department The Nature Conservancy Massachusetts Randolph-Macon College Field Office Ashland, VA 23005 79 Milk Street Suite 300 Boston, MA 02109 Laurie MacIvor The Nature Conservancy Washington Monument State Park 6620 Monument Road Middletown, MD 21769 EXECUTIVE SUMMARY NORTHEASTERN BEACH TIGER BEETLE RECOVERY PLAN Current Status: This tiger beetle occurred historically "in great swarms" on beaches along the Atlantic Coast, from Cape Cod to central New Jersey, and along Chesapeake Bay beaches in Maryland and Virginia. Currently, only two small populations remain on the Atlantic Coast. The subspecies occurs at over 50 sites within the Chesapeake Bay region.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Boreal Ground-Beetle (Coleoptera: Carabidae) Assemblages of the Mainland and Islands in Lac La Ronge, Saskatchewan, Canada
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316781970 Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada Article in The Canadian Entomologist · May 2017 DOI: 10.4039/tce.2017.12 CITATIONS READS 2 164 4 authors, including: Aaron J. Bell Iain David Phillips University of Saskatchewan Saskatchewan Water Security Agency 18 PUBLICATIONS 23 CITATIONS 57 PUBLICATIONS 333 CITATIONS SEE PROFILE SEE PROFILE Scott Nielsen University of Alberta 188 PUBLICATIONS 6,015 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Grizzly bear response to disturbance View project Grizzly bear population dynamics in a changing world View project All content following this page was uploaded by Aaron J. Bell on 07 November 2017. The user has requested enhancement of the downloaded file. 1 Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada Aaron J. Bell,1 Iain D. Phillips, Scott E. Nielsen, John R. Spence Abstract—We tested the applicability of the “passive sampling” hypothesis and theory of island biogeography (TIB) for explaining the diversity of forest-dwelling carabid assemblages (Carabidae: Coleoptera) on 30 forested islands (0.2–980.7 ha) in Lac la Ronge and the adjacent mainland in Saskatchewan, Canada. Species richness per unit area increased with distance to mainland with diversity being highest on the most isolated islands. We detected neither a positive species-area relationship, nor significant differences in species richness among island size classes, or between islands and the mainland.
    [Show full text]
  • Appendix B References
    Final Tier 1 Environmental Impact Statement and Preliminary Section 4(f) Evaluation Appendix B, References July 2021 Federal Aid No. 999-M(161)S ADOT Project No. 999 SW 0 M5180 01P I-11 Corridor Final Tier 1 EIS Appendix B, References 1 This page intentionally left blank. July 2021 Project No. M5180 01P / Federal Aid No. 999-M(161)S I-11 Corridor Final Tier 1 EIS Appendix B, References 1 ADEQ. 2002. Groundwater Protection in Arizona: An Assessment of Groundwater Quality and 2 the Effectiveness of Groundwater Programs A.R.S. §49-249. Arizona Department of 3 Environmental Quality. 4 ADEQ. 2008. Ambient Groundwater Quality of the Pinal Active Management Area: A 2005-2006 5 Baseline Study. Open File Report 08-01. Arizona Department of Environmental Quality Water 6 Quality Division, Phoenix, Arizona. June 2008. 7 https://legacy.azdeq.gov/environ/water/assessment/download/pinal_ofr.pdf. 8 ADEQ. 2011. Arizona State Implementation Plan: Regional Haze Under Section 308 of the 9 Federal Regional Haze Rule. Air Quality Division, Arizona Department of Environmental Quality, 10 Phoenix, Arizona. January 2011. https://www.resolutionmineeis.us/documents/adeq-sip- 11 regional-haze-2011. 12 ADEQ. 2013a. Ambient Groundwater Quality of the Upper Hassayampa Basin: A 2003-2009 13 Baseline Study. Open File Report 13-03, Phoenix: Water Quality Division. 14 https://legacy.azdeq.gov/environ/water/assessment/download/upper_hassayampa.pdf. 15 ADEQ. 2013b. Arizona Pollutant Discharge Elimination System Fact Sheet: Construction 16 General Permit for Stormwater Discharges Associated with Construction Activity. Arizona 17 Department of Environmental Quality. June 3, 2013. 18 https://static.azdeq.gov/permits/azpdes/cgp_fact_sheet_2013.pdf.
    [Show full text]
  • Tiger Beetle (Cicindela Spp.) Inventory in the South Okanagan, British Columbia, 2009
    TIGER BEETLE (CICINDELA SPP.) INVENTORY IN THE SOUTH OKANAGAN, BRITISH COLUMBIA, 2009 Cicindela pugetana photographed at East Skaha Lake TNT property; courtesy of Dawn Marks BCCC. By Dawn Marks and Vicky Young, BC Conservation Corps BC Ministry of Environment Internal Working Report October 10, 2009 2 EXECUTIVE SUMMARY The Okanagan valley is home to a diverse array of rare or endangered insects, including grassland associated tiger beetles. Three of these, Dark Saltflat Tiger Beetle (Cicindela parowana), Badlands Tiger Beetle (Cicindela decemnotata) and Sagebrush Tiger Beetle (Cicindela pugetana) have been found in the Okanagan area. These tiger beetles are Red- listed (S1), Red-listed (S1S3) and Blue-listed (S3) respectively by the BC Conservation Data Centre and thought to occupy similar habitats (open soils in low elevation grasslands and forest). Under the BC Conservation Framework additional inventory is listed as an action for these three species. In 2009, the BC Conservation Corps crew, with guidance and support from the BC Ministry of Environment, conducted multi-species surveys in the Okanagan grasslands. These three species of tiger beetles were included in the surveys. Surveyors conducted tiger beetle inventories in May and again in September during the adult tiger beetle activity periods. Tiger beetles were also searched for, casually, during the multi-species surveys throughout the field season. The September surveys proved most effective and over 50 tiger beetles were observed at nine sites in the south Okanagan. Surveyors covered 84.2km while targeting tiger beetles in September. No Dark Saltflat Tiger Beetles were encountered. One Badlands Tiger Beetle and twenty- one Sagebrush Tiger Beetles were recorded.
    [Show full text]
  • Program Book
    Entomology: A Key Science The Encapsulated Program – 2014 Saturday, March 15 Evening Event Time Location President’s Informal Reception 5:00-7:00 Grant’s/Jackson’s Ento -Movie Night: “Them!” (1954) 7:30-11:30 Jeff Davis and "Beginning of the End" (1957) Amphitheater Sunday, March 16 Morning Event Time Location Registration 8:00-12:00 Clara Barton Executive Committee Meeting 8:00-11:00 Abe Lincoln Board MS and Undergrad Oral Talks 8:30-12:00 RoomHill’s Multi-scale Approaches to the Ecology and 8:30-12:00 McClellan’s M anagement Behavioral and Biological Control of 8:30-12:00 Emory’s Invasive Pests Afternoon Event Time Location Registration 12:00-5:00 Clara Barton Student Poster Competition 12:00-2:00 Longstreet/Hooker/Early Contributed Posters 12:00-2:00 Longstreet/Hooker/Early Symposium Honoring Harvey Reissig 1:00-5:00 Hill’s Ph.D. Oral Talks 2:00-5:00 McClellan’s Evening Event Time Location President’s Reception + ESA Awards, L.O. 5:30-7:30 Longstreet/Hooker/Early Howard and Herb Streu 2 Entomology: A Key Science Monday, March 17 Morning Event Time Location Registration 8:00-12:00 Clara Barton IDEP What’s Creeping Up on Us 8:00-12:00 Hill’s Arthropod-microbe Interactions 8:00-12:00 McClellan’s Student Symposium : Relating Graduate 8:30-12:00 Emory’s Research to the Public Through Extension Afternoon Event Time Location Registration 12:00-5:00 Clara Barton Linnaean Games 12:00-1:30 Jeff Davis Amphitheater Contributed Talks 1:00-5:15 Hill’s Fascinating Insects, And the Lessons They 1:00- 5:00 McClellan’s Provide Symposium Vegetable and Field Crops Symposium 1:00-5:00 Emory’s Afternoon Evening Event Time Location Social/Cash Bar 6:00-7:00 Longstreet/Hooker/Early Banquet – President’s Address, Student 7:00-10:00 Hill’s/McClellan’s Awards, Keynote Speaker Carol M.
    [Show full text]
  • Laboratory Methods for Rearing Soil Beetles (Coleoptera)
    ZOOLOGICA Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleoptera) Polska Akademia Nauk Muzeum i Instytut Zoologii Warszawa 1993 http://rcin.org.pl POLSKA AKADEMIA NAUK MUZEUM I INSTYTUT ZOOLOGII MEMORABILIA ZOOLOGICA 46 Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleopter a) WARSZAWA 1993 http://rcin.org.pl MEMORABILIA ZOOLOGICA, 46, 1993 World-list abbreviation: Memorabilia Zool. EDITORIAL STAFF Editor — in — chief — Bohdan Pisarski Asistant editor — Wojciech Czechowski Secretary — Katarzyna Cholewicka-Wiśniewska Editor of the volume — Wojciech Czechowski Publisher Muzeum i Instytut Zoologii PAN ul. Wilcza 64, 00-679 Warszawa PL ISSN 0076-6372 ISBN 83-85192-12-3 © Copyright by Muzeum i Instytut Zoologii PAN Warszawa 1993 Nakład 1000 egz. Ark. wyd. 5,5. Ark. druk 4 Druk: Zakład Poligraficzno-Wydawniczy „StangraF’ http://rcin.org.pl Bolesław Bu r a k o w sk i Laboratory methods for rearing soil beetles ( Coleoptera) INTRODUCTION Beetles are the most numerous group of insects; nearly 300,000 species have been described up till now, and about 6,000 of these occur in Poland. The morphological variability and different modes of life result from beetle ability to adapt to all kinds of habitats. Terrestrial and soil living forms dominate. Beetles undergo a complete metamorphosis and most species live in soil during at least one of the stages. They include predators, herbivores, parasites and sapro- phagans, playing a fairly significant role in nature and in man’s economy. Our knowledge of beetles, even of the common species, is insufficient. In spite of the fact that the beetle fauna of Central Europe has been studied relatively well, the knowledge accumulated is generally limited to the adults, while the immature stages have not been adequately studied.
    [Show full text]
  • This Work Is Licensed Under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License
    This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. THE TIGER BEETLES OF ALBERTA (COLEOPTERA: CARABIDAE, CICINDELINI)' Gerald J. Hilchie Department of Entomology University of Alberta Edmonton, Alberta T6G 2E3. Quaestiones Entomologicae 21:319-347 1985 ABSTRACT In Alberta there are 19 species of tiger beetles {Cicindela). These are found in a wide variety of habitats from sand dunes and riverbanks to construction sites. Each species has a unique distribution resulting from complex interactions of adult site selection, life history, competition, predation and historical factors. Post-pleistocene dispersal of tiger beetles into Alberta came predominantly from the south with a few species entering Alberta from the north and west. INTRODUCTION Wallis (1961) recognized 26 species of Cicindela in Canada, of which 19 occur in Alberta. Most species of tiger beetle in North America are polytypic but, in Alberta most are represented by a single subspecies. Two species are represented each by two subspecies and two others hybridize and might better be described as a single species with distinct subspecies. When a single subspecies is present in the province morphs normally attributed to other subspecies may also be present, in which case the most common morph (over 80% of a population) is used for subspecies designation. Tiger beetles have always been popular with collectors. Bright colours and quick flight make these beetles a sporting and delightful challenge to collect.
    [Show full text]
  • Claybank Tiger Beetle, Cicindela Limbalis
    Natural Heritage Claybank Tiger Beetle & Endangered Species Cicindela limbalis Program State Status: Threatened www.mass.gov/nhesp Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: Tiger beetles are so named because of their “tiger-like” behavior of chasing down and capturing prey with their long mandibles. The Claybank Tiger Beetle (Cicindela limbalis) is 11-16 mm in length (Pearson et al. 2006). It is metallic, reddish or purplish brown in color, with a varying degree of metallic green highlights and distinct white maculations (spots and bands) on the elytra (wing covers). The Purple Tiger Beetle, or “Cow Path Tiger Beetle” (Cicindela purpurea) is similar. However, the Claybank Tiger Beetle has middle maculations (the elongate bars in the middle of the elytra) that are complete, extending to the outer edges of the elytra. On the Purple Tiger Beetle, these maculations do not reach the outer edges of the elytra. In addition, the Purple Tiger Beetle very rarely has front maculations at Cicindela limbalis ▪ MA: Dukes Co., Gosnold ▪ 4 Sep 2008 ▪ Photo by the humeral angle (the “shoulders”), while the Claybank M.W. Nelson Tiger Beetle almost always does. Adult Activity Period in Massachusetts HABITAT: The Claybank Tiger Beetle inhabits sparsely- Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec vegetated clay and till banks and cliffs. Larval burrows occur in sloping banks of clay soils (Pearson et al. 2006). In Massachusetts, the Claybank Tiger Beetle occurs on LIFE HISTORY: The Claybank Tiger Beetle has a two morainal deposits of the offshore islands, on eroding cliffs to three-year life cycle (Knisley & Schultz 1997).
    [Show full text]
  • Status and Conservation of an Imperiled Tiger Beetle Fauna in New York State, USA
    J Insect Conserv (2011) 15:839–852 DOI 10.1007/s10841-011-9382-y ORIGINAL PAPER Status and conservation of an imperiled tiger beetle fauna in New York State, USA Matthew D. Schlesinger • Paul G. Novak Received: 29 October 2010 / Accepted: 17 January 2011 / Published online: 15 February 2011 Ó Springer Science+Business Media B.V. 2011 Abstract New York has 22 documented species of tiger Introduction beetles (Coleoptera: Cicindelidae). Over half of these species are considered rare, at risk, or potentially extirpated Tiger beetles (Coleoptera: Cicindelidae) are strikingly from the state. These rare species specialize on three sandy patterned, predatory insects that have captured the attention habitat types under threat from human disturbance: bea- of entomologists and collectors for centuries. Beyond their ches, pine barrens, and riparian cobble bars. In 2005, we intrinsic interest, tiger beetles can serve as model organ- began a status assessment of eight of New York’s rarest isms or indicator species to enable broad conclusions about tiger beetles, examining museum records, searching the a region or ecosystem’s biodiversity (Pearson and Cassola literature, and conducting over 130 field surveys of his- 1992; Pearson and Vogler 2001). Tiger beetles are threa- torical and new locations. Significant findings included (1) tened by habitat destruction and modification, alteration of no detections of four of the eight taxa; (2) no vehicle-free natural processes like fire and flooding, and overcollection; beach habitat suitable for reintroducing Cicindela dorsalis across the United States, approximately 15% of taxa are dorsalis; (3) C. hirticollis at only 4 of 26 historical loca- threatened with extinction (Pearson et al.
    [Show full text]