Satellites and Streams in Santiago

Total Page:16

File Type:pdf, Size:1020Kb

Satellites and Streams in Santiago Astronomical News Report on the ESO Workshop Satellites and Streams in Santiago held at ESO Vitacura, Santiago, Chile, 13–17 April 2015 Andreas H. W. Küpper1 the Milky Way (MW) and M31 pose chal- Steffen Mieske2 lenges to our understanding of structure and star formation in the early Universe, and the feedback between baryons and 1 Department of Astronomy, Columbia dark matter. University, New York, USA 2 ESO But how well do we understand what it means to be a satellite of the MW or M31? Even in the era of high­precision Galactic satellites and tidal streams are cosmology, we are still uncertain about arguably the two most direct imprints the total masses of the two dominant of hierarchical structure formation in the galaxies in the Local Group, their assem- haloes of galaxies. At this ESO work- bly histories and the shape and extent of shop we sought to create the big picture their dark matter haloes — key aspects of the galactic accretion process, and for gaining a consistent picture of these shed light on the interplay between galaxies and their satellite systems in a satellites and streams in the Milky Way, ΛCDM context. On the contrary, the dis- Andromeda and beyond. The Scientific covery of transition objects at the star Organising Committee prepared a cluster–dwarf galaxy interface has made well-balanced programme with 60 talks things more complicated. It has blurred and 30 poster contributions, resulting the historical distinction between satellite in a meeting which was greatly enjoyed classes, putting in question our under- by the more than 110 participants standing of tidal transformation and the at the venue, and worldwide via Twitter census of small stellar systems. Figure 1. Conference poster showing the Milky Way (#SSS15). with its most prominent satellite, the Large Magellanic Cloud, over Santiago. The upper part of the poster Although these aspects of near­field shows a collection of tidal streams from the Vía Lactea cosmology have become more and more Cauda simulation. Introduction prominent in the age of surveys, there has not been a conference on both satel- by presentations on observations and Near­field cosmology has become lites and streams in over a decade. This modelling of tidal streams, and the final increasingly important over the past few five­day ESO workshop (see the work- part of the workshop was dedicated decades. While the current concordance shop poster, Figure 1) therefore met with to the star cluster–dwarf galaxy divide. cosmological model (Lambda Cold Dark a great demand for presentation slots, The grouping into these sessions was Matter [ΛCDM]) has been very successful and the registration had to close early of course not strict, and, as intended, in reproducing and predicting the proper- due to the overwhelming interest. many presenters pointed out important ties of the Universe on large scales, connections between satellites and several possible tensions have been iden- Based on the scope of the meeting, the streams. The workshop programme, with tified on small scales (≤ 1 Mpc). Issues week was divided into three parts. First, links to many of the presentations, can like the “missing satellite problem”, the satellites and the satellite systems of the “core/cusp problem”, “too big to fail”, Milky Way, M31 and other nearby galax- Figure 2. Conference photo taken in the garden of and detections of satellite discs around ies were discussed. This was followed the ESO Vitacura premises. Stephane Courteau Stephane 38 The Messenger 161 – September 2015 be accessed online1. The participants are topic at the end of the meeting. Collins hosts and making them interesting test- shown in the gardens of ESO Vitacura in furthermore pointed out that kinematic beds for ΛCDM. Else Starkenburg showed Figure 2. data may often be ambiguous as some results from her semi-analytical models of the satellites seem to have had recent of dwarf galaxies, which are particularly The meeting was opened by the ESO gravitational interactions and encounters, useful to test the physics inside the satel- Director General Tim de Zeeuw, giving an while others like Hercules and Willman 1 lites and gain intuition about their evolution. overview of the ESO facilities and an appear to be entirely out of equilibrium, exciting outlook for the field into the Euro- making mass determinations hard, if not pean Extremely Large Telescope era, impossible. Accretion of satellites when it will be possible to resolve stellar populations out to the Virgo Cluster. Finding new satellites and following up Accretion and disruption of satellites the discoveries with deeper photo metry can give us important insights into the and/or spectroscopy has become a build-up of bulges and haloes of galaxies. Satellite systems sport. Yet only through this important Benjamin Hendricks demonstrated this exercise will we eventually get a complete approach for globular clusters (GCs) in Galactic satellites give us an account of census of substructure in the local Uni- Fornax, and Ryan Leaman shed light on low-mass substructures at the present verse. After seeing the great successes the accretion history of the Milky Way day. However, in order to put these satel- of PAndAS, we heard further results and using its GCs as tracers of dwarf galaxy lites into the context of structure forma- outlooks from ongoing and upcoming infalls. Similarly, tidal streams provide tion within the ΛCDM framework, their surveys with the Large Sky Area Multi­ insights on the star formation histories of masses, and especially their dark matter Object Fibre Spectroscopic Telescope individual dwarf galaxies, as Thomas content, have to be understood. In the (LAMOST) by Jeff Carlin, on the Large de Boer demonstrated in the example of first talk of the satellite session, Jorge Binocular Telescope (by Giacomo Beccari) Sagittarius. Peñarrubia discussed the advances, prob- and the Magellan Telescope (Denija lems and challenges of mass modelling Crnojevic), all looking for more substruc- But larger infalling galaxies, or major of dwarf galaxies. Although modelling ture in the local Universe. mergers, could also trigger the formation might help to put constraints on the nature of new satellites — known as tidal dwarf of dark matter (density cores/cusps), he Eduardo Balbinot then presented the rich galaxies. Pavel Kroupa argued that these clearly called for more (kinematic) data to harvest from the Dark Energy Survey satellites could be long-lived, and pollute inform the models. In the spirit of the (DES) data release 1, giving us a detailed (or entirely make up) the satellite popula- meeting’s title, and like many other speak- look at the structure and formation his- tions of host galaxies. Kinematically cor- ers, he also presented an interesting new tory of the Large Magellanic Cloud (LMC), related satellite populations in the Milky idea, using the streams of satellites to as well as of the nine newly discovered Way and M31 halo could point towards break the core/cusp degeneracy. Calling satellites around the Magellanic Clouds. such a formation scenario. However, it a “diversity problem” rather than a Later in the meeting, Vasily Belokurov Pierre­Alain Duc argued that the forma- cusp/core problem, Chervin Laporte dem- talked more about the independent dis- tion of tidal dwarf galaxies through onstrated the large phenomenology of covery of these satellites in the DES data. mergers is less likely than expected, and dark matter in galactic satellites due to a Both groups have follow-ups on one that the objects thus formed do not possible re-growth of cusps in cored satellite, Reticulum II, confirming that it is resemble the satellites found in the local galaxies via accretion of dark matter sub- in fact a dwarf galaxy. Similarly, Erik Universe. From the numerical side, Sylvia haloes or other dwarf galaxies — further Tollerud presented his newest findings in Ploeckinger is developing the tools to complicated by baryonic effects on the the Galactic Arecibo L­band Feed Array perform full hydrodynamical simulations central density profiles of satellites. (GALFA) survey. The two newly discov- of tidal dwarf galaxies to study their long- ered, gas-rich, low-mass galaxies repre- term survivability. Michelle Collins then gave a recount of sent the progenitors of the dwarf galaxies the dozens of newly discovered satellites that we find around larger host galaxies. Marcel Pawlowski, Rodrigo Ibata and in the Milky Way and M31 haloes from Understanding this transformation from Noam Libeskind then gave detailed surveys like the Pan­Andromeda Archae- gas-rich to quenched galaxy is not descriptions of the co-rotating structures ological Survey (PAndAS; see Figure 3). straightforward, as Thorsten Lisker ex­­ around the Milky Way, Andromeda and In her presentation, a mass–size diagram plained and Rachael Beaton later on con- Centaurus A. The speakers pointed out (Figure 4) made its first appearance and firmed. that the chances of finding such planes in ended up being the plot shown most ΛCDM appears to be rather low, but may often during the meeting. In particular the Numerical simulations are getting up have to do with either larger mergers divide between dwarf galaxies and glob- to speed with the flood of observational bringing in lots of satellites or infall of satel- ular clusters in this diagram is currently data. Coral Wheeler presented high-­ lites along the cosmic web. Gurtina Besla being populated with newly discovered resolution hydrodynamical simulations added the Large and Small Magellanic objects, most of which cannot be clas­ of isolated dwarf galaxies to understand Clouds to this picture, discussing different sified by their photometry alone — which their satellites, finding a few ultra­faint infall scenarios for the two satellite galax- is why we had an entire session on this satellites around each of these low-mass ies. She argued that if the LMC originally The Messenger 161 – September 2015 39 Astronomical News Küpper A.
Recommended publications
  • Arxiv:1303.1406V1 [Astro-Ph.HE] 6 Mar 2013 the flux of Gamma-Rays from Dark Matter Annihilation Takes a Surprisingly Simple Form 2
    4th Fermi Symposium : Monterey, CA : 28 Oct-2 Nov 2012 1 The VERITAS Dark Matter Program Alex Geringer-Sameth∗ for the VERITAS Collaboration Department of Physics, Brown University, 182 Hope St., Providence, RI 02912 The VERITAS array of Cherenkov telescopes, designed for the detection of gamma-rays in the 100 GeV-10 TeV energy range, performs dark matter searches over a wide variety of targets. VERITAS continues to carry out focused observations of dwarf spheroidal galaxies in the Local Group, of the Milky Way galactic center, and of Fermi-LAT unidentified sources. This report presents our extensive observations of these targets, new statistical techniques, and current constraints on dark matter particle physics derived from these observations. 1. Introduction Earth's atmosphere as a target for high-energy cosmic particles. An incoming gamma-ray may interact in the The characterization of dark matter beyond its Earth's atmosphere, initiating a shower of secondary gravitational interactions is currently a central task particles that travel at speeds greater than the local of modern particle physics. A generic and well- (in air) speed of light. This entails the emission of motivated dark matter candidate is a weakly in- ultraviolet Cherenkov radiation. The four telescopes teracting massive particle (WIMP). Such particles of the VERITAS array capture images of the shower have masses in the GeV-TeV range and may inter- using this Cherenkov light. The images are analyzed act with the Standard Model through the weak force. to reconstruct the direction of the original particle as Searches for WIMPs are performed at particle accel- well as its energy.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Dark Matter Signals from Draco and Willman 1: Prospects for MAGIC II
    Preprint typeset in JHEP style - HYPER VERSION astro-ph/0809.2269 Dark Matter Signals from Draco and Willman 1: Prospects for MAGIC II and CTA Torsten Bringmann Department of Physics, Stockholm University, AlbaNova, University Centre, S-106 91 Stockholm, Sweden E-mail: [email protected] Michele Doro Department of Physics G. Galilei, University of Padova & INFN, via Marzolo 8, 35131 Padova, Italy E-mail: [email protected] Mattia Fornasa Department of Physics G. Galilei, University of Padova & INFN, via Marzolo 8, 35131 Padova, Italy Institut d’Astrophysique de Paris, boulevard Arago 98bis, 75014, Paris, France E-mail: [email protected] Abstract: The next generation of ground-based Imaging Air Cherenkov Telescopes will play an important role in indirect dark matter searches. In this article, we consider two particularly promis- ing candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such studies, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to arXiv:0809.2269v3 [astro-ph] 21 Jan 2009 considerably enhance, in some cases, the gamma-ray flux in the high energies domain where At- mospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect, unless one adopts somewhat favorable descriptions of the smooth dark matter distribution in the dwarfs.
    [Show full text]
  • Structure of the Outer Galactic Disc with Gaia DR2 Ž
    A&A 637, A96 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937289 & c ESO 2020 Astrophysics Structure of the outer Galactic disc with Gaia DR2 Ž. Chrobáková1,2, R. Nagy3, and M. López-Corredoira1,2 1 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain 3 Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia Received 9 December 2019 / Accepted 31 March 2020 ABSTRACT Context. The structure of outer disc of our Galaxy is still not well described, and many features need to be better understood. The second Gaia data release (DR2) provides data in unprecedented quality that can be analysed to shed some light on the outermost parts of the Milky Way. Aims. We calculate the stellar density using star counts obtained from Gaia DR2 up to a Galactocentric distance R = 20 kpc with a deconvolution technique for the parallax errors. Then we analyse the density in order to study the structure of the outer Galactic disc, mainly the warp. Methods. In order to carry out the deconvolution, we used the Lucy inversion technique for recovering the corrected star counts. We also used the Gaia luminosity function of stars with MG < 10 to extract the stellar density from the star counts. Results. The stellar density maps can be fitted by an exponential disc in the radial direction hr = 2:07 ± 0:07 kpc, with a weak dependence on the azimuth, extended up to 20 kpc without any cut-off.
    [Show full text]
  • A Beast with Four Tails 30 November 2011
    A beast with four tails 30 November 2011 An artist's impression of the four tails of the Sagittarius Dwarf Galaxy (the orange clump on the left of the image) orbiting the Milky Way. The bright yellow circle to the right of the galaxy's center is our Sun (not to scale). The Sagittarius dwarf galaxy is on the other side of the galaxy from us, but we can see its tidal tails of stars (white in this Barred Spiral Milky Way. Illustration Credit: R. Hurt image) stretching across the sky as they wrap around our (SSC), JPL-Caltech, NASA galaxy. Credit: Credit: Amanda Smith, Institute of Astronomy, University of Cambridge (PhysOrg.com) -- The Milky Way galaxy continues to devour its small neighbouring dwarf galaxies The Sagittarius dwarf galaxy used to be one of the and the evidence is spread out across the sky. brightest of the Milky Way satellites. Its disrupted remnant now lies on the other side of the Galaxy, A team of astronomers led by Sergey Koposov and breaking up as it is crushed and stretched by huge Vasily Belokurov of Cambridge University recently tidal forces. It is so small that it has lost half of its discovered two streams of stars in the Southern stars and all its gas over the last billion years. Galactic hemisphere that were torn off the Sagittarius dwarf galaxy. This discovery came from Before SDSS-III, Sagittarius was known to have analysing data from the latest Sloan Digital Sky two tails, one in front of and one behind the Survey (SDSS-III) and was announced in a paper remnant.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Download This Article in PDF Format
    A&A 583, A85 (2015) Astronomy DOI: 10.1051/0004-6361/201526795 & c ESO 2015 Astrophysics Reaching the boundary between stellar kinematic groups and very wide binaries III. Sixteen new stars and eight new wide systems in the β Pictoris moving group F. J. Alonso-Floriano1, J. A. Caballero2, M. Cortés-Contreras1,E.Solano2,3, and D. Montes1 1 Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain e-mail: [email protected] 2 Centro de Astrobiología (CSIC-INTA), ESAC PO box 78, 28691 Villanueva de la Cañada, Madrid, Spain 3 Spanish Virtual Observatory, ESAC PO box 78, 28691 Villanueva de la Cañada, Madrid, Spain Received 19 June 2015 / Accepted 8 August 2015 ABSTRACT Aims. We look for common proper motion companions to stars of the nearby young β Pictoris moving group. Methods. First, we compiled a list of 185 β Pictoris members and candidate members from 35 representative works. Next, we used the Aladin and STILTS virtual observatory tools and the PPMXL proper motion and Washington Double Star catalogues to look for companion candidates. The resulting potential companions were subjects of a dedicated astro-photometric follow-up using public data from all-sky surveys. After discarding 67 sources by proper motion and 31 by colour-magnitude diagrams, we obtained a final list of 36 common proper motion systems. The binding energy of two of them is perhaps too small to be considered physically bound. Results. Of the 36 pairs and multiple systems, eight are new, 16 have only one stellar component previously classified as a β Pictoris member, and three have secondaries at or below the hydrogen-burning limit.
    [Show full text]
  • Galactic Astronomy with AO: Nearby Star Clusters and Moving Groups
    Galactic astronomy with AO: Nearby star clusters and moving groups T. J. Davidgea aDominion Astrophysical Observatory, Victoria, BC Canada ABSTRACT Observations of Galactic star clusters and objects in nearby moving groups recorded with Adaptive Optics (AO) systems on Gemini South are discussed. These include observations of open and globular clusters with the GeMS system, and high Strehl L observations of the moving group member Sirius obtained with NICI. The latter data 2 fail to reveal a brown dwarf companion with a mass ≥ 0.02M in an 18 × 18 arcsec area around Sirius A. Potential future directions for AO studies of nearby star clusters and groups with systems on large telescopes are also presented. Keywords: Adaptive optics, Open clusters: individual (Haffner 16, NGC 3105), Globular Clusters: individual (NGC 1851), stars: individual (Sirius) 1. STAR CLUSTERS AND THE GALAXY Deep surveys of star-forming regions have revealed that stars do not form in isolation, but instead form in clusters or loose groups (e.g. Ref. 25). This is a somewhat surprising result given that most stars in the Galaxy and nearby galaxies are not seen to be in obvious clusters (e.g. Ref. 31). This apparent contradiction can be reconciled if clusters tend to be short-lived. In fact, the pace of cluster destruction has been measured to be roughly an order of magnitude per decade in age (Ref. 17), indicating that the vast majority of clusters have lifespans that are only a modest fraction of the dynamical crossing-time of the Galactic disk. Clusters likely disperse in response to sudden changes in mass driven by supernovae and stellar winds (e.g.
    [Show full text]
  • Arxiv:1802.01493V7 [Astro-Ph.GA] 10 Feb 2021 Ceeainbtti Oe Eoe Rbeai Tselrsae.I Scales
    Variable Modified Newtonian Mechanics II: Baryonic Tully Fisher Relation C. C. Wong Department of Electrical and Electronic Engineering, University of Hong Kong. H.K. (Dated: February 11, 2021) Recently we find a single-metric solution for a point mass residing in an expanding universe [1], which apart from the Newtonian acceleration, gives rise to an additional MOND-like acceleration in which the MOND acceleration a0 is replaced by the cosmological acceleration. We study a Milky Way size protogalactic cloud in this acceleration, in which the growth of angular momentum can lead to an end of the overdensity growth. Within realistic redshifts, the overdensity stops growing at a value where the MOND-like acceleration dominates over Newton and the outer mass shell rotational velocity obeys the Baryonic Tully Fisher Relation (BTFR) with a smaller MOND acceleration. As the outer mass shell shrinks to a few scale length distances, the rotational velocity BTFR persists due to the conservation of angular momentum and the MOND acceleration grows to the phenomenological MOND acceleration value a0 at late time. PACS numbers: ?? INTRODUCTION A common response to the non-Newtonian rotational curve of a galaxy is that its ”Newtonian” dynamics requires cold dark matter (DM) particles. However, the small observed scatter of empirical Baryonic Tully-Fisher Relation (BTFR) of gas rich galaxies, see McGaugh [2]-Lelli [3], Milgrom [4] and Sanders [5], continues to motivate the hunt for a non-Newtonian connection between the rotational speeds and the baryon mass. On the modified DM theory front, Khoury [6] proposes a DM Bose-Einstein Condensate (BEC) phase where DM can interact more strongly with baryons.
    [Show full text]
  • Two Stellar Components in the Halo of the Milky Way
    1 Two stellar components in the halo of the Milky Way Daniela Carollo1,2,3,5, Timothy C. Beers2,3, Young Sun Lee2,3, Masashi Chiba4, John E. Norris5 , Ronald Wilhelm6, Thirupathi Sivarani2,3, Brian Marsteller2,3, Jeffrey A. Munn7, Coryn A. L. Bailer-Jones8, Paola Re Fiorentin8,9, & Donald G. York10,11 1INAF - Osservatorio Astronomico di Torino, 10025 Pino Torinese, Italy, 2Department of Physics & Astronomy, Center for the Study of Cosmic Evolution, 3Joint Institute for Nuclear Astrophysics, Michigan State University, E. Lansing, MI 48824, USA, 4Astronomical Institute, Tohoku University, Sendai 980-8578, Japan, 5Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Australian Capital Territory 2611, Australia, 6Department of Physics, Texas Tech University, Lubbock, TX 79409, USA, 7US Naval Observatory, P.O. Box 1149, Flagstaff, AZ 86002, USA, 8Max-Planck-Institute für Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany, 9Department of Physics, University of Ljubljana, Jadronska 19, 1000, Ljubljana, Slovenia, 10Department of Astronomy and Astrophysics, Center, 11The Enrico Fermi Institute, University of Chicago, Chicago, IL, 60637, USA The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for is dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo – that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium).
    [Show full text]
  • An Extended Star Formation History in an Ultra-Compact Dwarf
    MNRAS 451, 3615–3626 (2015) doi:10.1093/mnras/stv1221 An extended star formation history in an ultra-compact dwarf Mark A. Norris,1‹ Carlos G. Escudero,2,3,4 Favio R. Faifer,2,3,4 Sheila J. Kannappan,5 Juan Carlos Forte4,6 and Remco C. E. van den Bosch1 1Max Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 2Facultad de Cs. Astronomicas´ y Geof´ısicas, UNLP, Paseo del Bosque S/N, 1900 La Plata, Argentina 3Instituto de Astrof´ısica de La Plata (CCT La Plata – CONICET – UNLP), Paseo del Bosque S/N, 1900 La Plata, Argentina 4Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, C1033AAJ Ciudad Autonoma´ de Buenos Aires, Argentina 5Department of Physics and Astronomy UNC-Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255, USA 6Planetario Galileo Galilei, Secretar´ıa de Cultura, Ciudad Autonoma´ de Buenos Aires, Argentina Accepted 2015 May 29. Received 2015 May 28; in original form 2015 April 2 ABSTRACT Downloaded from There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra-compact dwarfs (UCDs), with suggestions that UCDs are simply the high-mass extension of the globular cluster population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of http://mnras.oxfordjournals.org/ stripped-nucleus-type UCDs being known. In this paper, we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped-nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (<0.7 arcsec).
    [Show full text]
  • Galactic Archaeology. the Dwarfs That Survived and Perished
    Galactic Archaeology. The dwarfs that survived and perished Vasily Belokurova,∗ aInstitute of Astronomy, Cambridge Abstract From the archaeological point of view, the local dwarf galaxies are unique objects in which the imprint of the conditions that shaped the early structure formation can be studied today at high resolution. Over the last decade, this new window into the high redshift Universe has started to be exploited using deep wide-field imaging, high resolution spectroscopy and cutting edge N- body and hydro-dynamical simulations. We review the recent advances in the observational studies of the Milky Way dwarf galaxies, with the aim to understand the properties of the population as a whole and to assist an objective comparison between the models and the data. Keywords: Galaxies: kinematics and dynamics, Galaxies: dwarf, dark matter, Local Group, Galaxies: stellar content. 1. Introduction The prehistoric stars whose formation epochs lie beyond the redshift ac- cessible by the Hubble Ultra Deep Field, have been found en masse in little satellites around the Milky Way. Other less fortunate dwarf galaxies have been pulled apart by gravity to furnish the diffuse Galactic halo. These re- cently uncovered relics of the ancient dwarf galaxy population may play a arXiv:1307.0041v2 [astro-ph.GA] 15 Jul 2013 vital role in the pursuit of reconstructing the formation of the Galaxy. Its path from the distant pre-reionisation era, through the most active growth ∗Corresponding author Email address: [email protected] (Vasily Belokurov) Preprint submitted to New Astronomy Reviews July 16, 2013 periods to the present day, can be gleaned by studying the chemical compo- sition and the phase-space density distribution of these halo denizens.
    [Show full text]