Spatial and Temporal Responses of Animals to Landscape Heterogeneity, Predation Risk, and Human Activity

Total Page:16

File Type:pdf, Size:1020Kb

Spatial and Temporal Responses of Animals to Landscape Heterogeneity, Predation Risk, and Human Activity Spatial and Temporal Responses of Animals to Landscape Heterogeneity, Predation Risk, and Human Activity By Kaitlyn M. Gaynor A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Justin S. Brashares, Chair Professor Arthur D. Middleton Professor Eileen A. Lacey Professor Mary E. Power Spring 2019 Abstract Spatial and Temporal Responses of Animals to Landscape Heterogeneity, Predation Risk, and Human Activity by Kaitlyn M. Gaynor Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Justin S. Brashares, Chair The global expansion of human activity has had profound consequences for wildlife. Research has documented the effects of widespread habitat destruction and defaunation on species and ecosystems, but the more subtle pathways through which humans alter the natural world have largely escaped quantification. Much like apex predators, humans can instill strong fear in wild animals, which may adjust their activity to avoid contact with humans. In this dissertation, my collaborators and I examine pathways through which human disturbance, predation risk, and environmental heterogeneity influence animal behavior and distribution. We review the literature and synthesize theory to develop a novel framework for studying landscapes of fear, and we apply this framework in a global meta-analysis and field studies from California and Mozambique to understand how large mammals perceive and respond to spatial and temporal patterns of risk from humans and carnivores. We consider links between risk and response in complex systems with multiple predators or multiple prey species, and we explore ecology of fear dynamics in the context of seasonality, human disturbance, and restoration. Together, this work integrates disciplines of behavioral ecology, community ecology, and landscape ecology, applying predator-prey theory to understand the role of humans in ecological communities. By elucidating behavioral pathways linking human disturbance to wildlife community dynamics, this research contributes to our understanding of wildlife ecology in human-dominated landscapes and highlights mechanisms for human-wildlife coexistence. 1 Table of Contents ACKNOWLEDGEMENTS …………………………………………………………………………. ii CHAPTER 1 Introduction ……………………………………………………………………………... 1 CHAPTER 2 Landscapes of fear: spatial patterns of risk perception and response …………………… 5 CHAPTER 3 Black-tailed deer navigate contrasting patterns of risk from hunters and mountain lions in space and time .………………………………………………………………… 24 CHAPTER 4 The influence of human disturbance on wildlife nocturnality …………………………. 54 CHAPTER 5 Effects of human settlement and roads on diel activity patterns of elephants .………… 77 CHAPTER 6 Seasonal dynamics of an ungulate assemblage in a savanna floodplain landscape.......... 94 CHAPTER 7 Concluding remarks …………………………………………………………………... 146 REFERENCES ………………………………………………………………………………….. 148 i AcknowledGements I had always imagined the dissertation to be an isolating and solitary intellectual endeavor and I am so grateful to have been proven so wrong. My experience at UC Berkeley and in the field has been enriched by the support, ideas, and company of a truly long list of remarkable people. First, I am grateful for the support of my advisor Justin Brashares, who has challenged me to apply my interests in behavioral ecology to interdisciplinary questions and taught me by example how to be not only a better scientist and scholar but a better leader, communicator, mentor, and human being. A huge thanks to the other members of my committee: to Arthur Middleton, for the great questions and collegial conversation, to Mary Power, for reminding me to find the joy in fieldwork and scientific inquiry, and to Eileen Lacey, for her thoughtful edits and insightful feedback. And to my qualifying exam committee, who brought me back to the basics and inspired my first dissertation chapter: Eileen, Mary, Claire Kremen, and Ian Wang. I am fortunate to have been surrounded by the most supportive lab group imaginable, and am grateful for the generous feedback on everything from study design to grant proposals to navigating Berkeley bureaucracy: Katie Fiorella, Tristan Nuñez, Katy Seto, Cheryl Hojnowski, Lauren Withey, Ryan Marsh, Mario Klip, Eric Dougherty, Dave Kurz, Christine Wilkinson, Phoebe Parker-Shames, Kendall Calhoun, Amy Van Scoyoc, Millie Chapman, Lindsey Rich, and Jennie Miller. A special shout-out to Briana Abrahms, my weekly goal buddy of five years and counting, and to Alex McInturff, my cohort-mate and international travel companion. GORONGOSA NATIONAL PARK, MOZAMBIQUE My research in Gorongosa National Park, Mozambique would not have been possible without the support and encouragement of a fantastic group of people. Many thanks to the assistants and interns who joined me in the field and helped me with my Portuguese: Castiano Lencastro, Diolinda Mundoza Semente, and Gabriela Curtiz. A special thanks to my first assistant, Mateus Dapitaia, for his endless patience and for welcoming me into his family. I am indebted to the fiscais of Gorongosa National Park, who kept me safe from all dangers big and small, especially Beca (who can navigate to every camera in the park better than my GPS) and Sergio (who stuck with me even after an elephant crushed our truck). A huge thanks to Marc Stalmans for welcoming me into the park, advising me on my research, facilitating logistics, and connecting me with colleagues. And to Jason Denlinger, who solved every single one of my annoying problems with a smile. Thanks to the entire E.O. Wilson Lab team, including Piotr Naskrecki, Tongai Castigo, and Tara Massad. Thanks to Mike Marchington, for making sure thousands of batteries found their way to the park from South Africa, and Anne Marchington, for making life in Chitengo not only livable but enjoyable. I’m grateful for the support of Mateus Mutemba and Pedro Muagura, who have prioritized research in the park. Finally, thanks to Greg Carr—your passion, curiosity, and dedication are an inspiration. To the entire Gorongosa Restoration Project team: keep up the great work. It was intimidating to show up at a remote field site on my own, and I am grateful to Rob Pringle and his group for welcoming me with open arms and advocating for me and supporting me throughout my years in the park. I am fortunate to be an honorary member of the Princeton crew—all the benefits of the collegiality and friendship without having to collect antelope poop all of the time. Many thanks to Jen Guyton, Josh Daskin, Arjun Potter, Justine Atkins, Matt Hutchinson, Paola Branco, Ryan Long, Elyce Gosselin, and Katie Grabowski for sharing your ii science, your space, and your stories. I am also grateful for the company and collaboration of Tara Easter, my camera trapping comrade and workshop co-instructor. And cheers to everybody with whom I’ve enjoyed a beer at Chikalango: Matt Jordan, Jacques Nels, Zak Pohlen, Callie Gesmundo, Teague Scott, Cat Chamberlain, Megan Flaherty, Max Prager, Dominique DeMille, Casey Ortbahn, and countless others who have passed through over the years. Thanks also to the team at WildCam Gorongosa and HHMI BioInteractive, including Bridget Conneely, who have brought the wildlife of Gorongosa into living rooms and classrooms all over the world while facilitating the processing of camera trap data through citizen science. I’m looking forward to continued collaboration. Finally, my Gorongosa camera trap data only exist thanks to the help of an amazing group of undergraduate women, who sorted through thousands of photos of baboons, waterbuck, and warthogs (and thousands more of grass): Alison Ke, Tammy Gu, Ava Wu, Mia Silverberg, Hadley Rosen, Madeleine Levy, Claire Jurgensen, Edith Lai. Thank you for your patience, your thought-provoking questions, and your dedication. Finally, thanks to all of the funders who supported my fieldwork in Mozambique: National Science Foundation, Rufford Foundation, Explorers Club Mamont Scholars Program, Animal Behavior Society, IdeaWild, UC Center for African Studies Rocca Fellowship, UC Institute for International Studies, Sigma Xi Berkeley Chapter, and Badreyyah Alireza. HOPLAND RESEARCH AND EXTENSION CENTER, CALIFORNIA I was spoiled to have two amazing field sites for my dissertation research, and am grateful to Alex and Justin for welcoming me as a collaborator at the UC Hopland Research and Extension Center in Mendocino. It has been a joy to get acquainted with the wildlife in my new backyard, and to realize that I don’t have to fly to Africa to find a stunningly beautiful and complex savanna system. Thanks to the entire staff of HREC for consistently going above and beyond to make us feel at home and to help our fieldwork go smoothly, especially former Director Kim Rodrigues and Interim Director John Bailey. A huge shout-out to the field team: Alison Smith for her superhuman ability to juggle so many things at once, and Troy McWilliams for making captures look easy and always having the inside scoop on the lives of the HREC deer. Thanks also to Hannah Bird, Amber Shrum, Tom Seward, Zane Kagley, and Shane Feirer. It has been my pleasure and privilege to work with our amazing field managers Jessie Roughgarden, Lara Brenner, and especially Janelle Dorcy, and with our lab technicians Bryan Bach, Ashling
Recommended publications
  • Fish-Passage Facilities As Ecological Traps in Large Neotropical Rivers
    Contributed Paper Fish-Passage Facilities as Ecological Traps in Large Neotropical Rivers FERNANDO MAYER PELICICE∗‡ AND ANGELO ANTONIO AGOSTINHO† ∗Graduate Course in Ecology of Inland Aquatic Ecosystems, Maring´a State University, Maring´a, Paran´a, Brazil †Department of Biology/NUPELIA, Maring´a State University, Maring´a, Paran´a, Brazil Abstract: At present most of the large rivers of South America are impounded. Management plans historically have relied on the construction of fish passages, specifically ladders, to mitigate the impact of these waterway blockages on fisheries and biodiversity. Nevertheless, the design of these facilities is not ecologically sound and they are not monitored continually. Consequently, the real role of South American fish passages in fisheries and biodiversity management is unclear and the results of some studies suggest that ladders are problematic in fish conservation. We examined the characteristics and negative aspects of fish passages within a larger context and considered the notion that these facilities are ecological traps in some Brazilian impoundments. Four conditions are required to characterize a fish passage as an ecological trap: (1) attractive forces leading fish to ascend the passage; (2) unidirectional migratory movements (upstream); (3) the environment above the passage has poor conditions for fish recruitment (e.g., the absence of spawning grounds and nursery areas); and (4) the environment below the passage has a proper structure for recruitment. When these conditions exist individuals move to poor-quality habitats, fitness is reduced, and populations are threatened. To exemplify this situation we analyzed two case studies in the upper Parana´ River basin, Brazil, in which the four conditions were met and migratory fish populations were declining.
    [Show full text]
  • Determination of Tucson, Arizona As an Ecological Trap for Cooper's Hawks
    Determination of Tucson, Arizona as an Ecological Trap for Cooper's Hawks (Accipiter cooperii) Jouie Ames1, Andrea Feiler2, Giancarlo Mendoza3, Adam Rumpf2, Stephen Wirkus2 1University of California, Santa Cruz, 2Arizona State University, 3Universidad Metropolitana P.R. August 2011 Abstract The term \ecological trap" has been used to describe a habitat in which its attrac- tiveness has been disassociated with its level of suitability. To date, fewer than ten clearly delineated examples of them have been found; they are either rare in nature, hard to detect, or a combination of both. It has been hypothesized that the city of Tucson, Arizona is an ecological trap for Cooper's Hawks (Accipiter cooperii) due to the abundance of prey species, namely columbids, which make up over 80% of the hawk's diet. Overall, more than 40% of these columbid populations are carriers of the protozoan Trichomonas gallinae, which directly contributes to a nestling mortal- ity rate of more than 50% in the hawks. Using an epidemiological framework, we create two SIR-type models, one stochastic and one deterministic, utilizing parame- ter estimates from more than ten years of data from the dove (columbid) and hawk populations in the city. Through mathematical modeling and bifurcation theory, we found that the proportion of infected columbids, does not have an effect on classifying Tucson as an ecological trap for Cooper's Hawks, but by increasing the disease death rate, it can be considered an ecological trap. 1 1 Introduction When the term \ecological trap" was first coined in 1972 by Dwernychuk and Boag [1], it was originally used to describe a natural trap in ones habitat but now is used almost exclusively to refer to anthropogenically induced traps [1,2].
    [Show full text]
  • Divaricating Plants in New Zealand in Relation to Moa Browsing
    GREENWOOD AND ATKINSON: DIYARICATING PLANTS AND MOA BROWSING 21 EVOLUTION OF DIVARICATING PLANTS IN NEW ZEALAND IN RELATION TO MOA BROWSING R. M. GREENWOOD' and I. A. E. ATKINSON' SUMMAR Y: New Zealand appears to be the only country where spineless, small-leaved divaricating plants make up nearly 10% of the woody flora. Climatic explanations have been advanced to &ccount for the origin of these divaricating plants. We suggest that the divergent and interl~ced branching, the woody exterior and the tough stems of these plants are adaptations evolved in response to browsing by moas. Together with a few species of much smaHer birds, moas were the only browsing vertebrates in New Zealand prior to the arrival of man. Thq divaricate habit is probably only one of several strategies evolved by plants in response to moa browsing. However, because fioas fed in a different way from mammals there is little to support the idea that introduced browsing mammals have merely replaced moas as aQ ecological factor in New Zealand. MORPHOLOGICAL FEATURES OF NEW ZEALAND difficult. The most helpful keys are those of Bulmer DIY ARICATING fLANTS (1958) and Taylor (1961), which deal specifioolly The term Hdivaricating", indicating branching at with these plants. New Zealand species found in this a wide angle, is used in New Zealand to describe the investigation to be capable of divaricating are listed many species of small-leaved woody shrubs that in Table 1. In cases where there was difficulty in have closely interlaced bra,nches. Some are the deciding whether a species should be included in juvenile stages of trees that lose the divaricate habit the table the criteria used for inclusion were (i) as they grow taUer.
    [Show full text]
  • Revitalization and Social Change: Contributions from Psychiatric Epidemiology
    DOCUMENT RESUME ED 115 574 SO 008 808 AUTHOR Foulks, Edward F. TITLE Revitalization and Social Change: Contributions from Psychiatric Epidemiology. PUB DATE 75. NOTE 14p.; Paper presented at the, Annual Meeting of the American Anthropological Association (San Francisco, California, December 1975) EDRS PRICE MF-$0.76 HC-$1.58 Plus Postage DESCRIPTORS Behavior Patterns; *Change Agents; Culture Conflict; Literature Reviews; *Mental Illness; Psychology; *Schizophrenia; *Social Change; Social Influences; *Social Psychology; Social Science Research; Sociocultural Patterns ABSTRACT The relationship between schizophrenia and social change is examined through a review of recent medical research' in genetics, biology, and epidemiology. Those mental traits that today in our society characterize the schizoprenic, in a previous era or in another society may have provided a mechanism for cultural change during the periods of stress when traditional methods of coping with the environment proved unadaptive. In many cases, prophets, shamens, and seers experience the same estrangement and disorganization of the self =as does the schizophrenic" in our society. This perspective views schizOphrenia in our society as an evolutionary anachronism which in a previous society may have been organized early in youth and shaped into a socially useful form. Cultural change has in recent human history become a dominating ethos and is accordingly valued for its- own sake. The particular psychological functions of these sensitive individuals are therefore no longer used to transcend traditional points of view. (Author/DE) ************************************************#********************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources. EPIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * .reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS).
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Wild About Learning
    WILD ABOUT LEARNING An Interdisciplinary Unit Fostering Discovery Learning Written on a 4th grade reading level, Wild Discoveries: Wacky New Animals, is perfect for every kid who loves wacky animals! With engaging full-color photos throughout, the book draws readers right into the animal action! Wild Discoveries features newly discovered species from around the world--such as the Shocking Pink Dragon and the Green Bomber. These wacky species are organized by region with fun facts about each one's amazing abilities and traits. The book concludes with a special section featuring new species discovered by kids! Heather L. Montgomery writes about science and nature for kids. Her subject matter ranges from snake tongues to snail poop. Heather is an award-winning teacher who uses yuck appeal to engage young minds. During a typical school visit, petrified parts and tree guts inspire reluctant writers and encourage scientific thinking. Heather has a B.S. in Biology and a M.S. in Environmental Education. When she is not writing, you can find her painting her face with mud at the McDowell Environmental Center where she is the Education Coordinator. Heather resides on the Tennessee/Alabama border. Learn more about her ten books at www.HeatherLMontgomery.com. Dear Teachers, Photo by Sonya Sones As I wrote Wild Discoveries: Wacky New Animals, I was astounded by how much I learned. As expected, I learned amazing facts about animals and the process of scientifically describing new species, but my knowledge also grew in subjects such as geography, math and language arts. I have developed this unit to share that learning growth with children.
    [Show full text]
  • Toward Understanding the Ecological Impact of Transportation Corridors
    United States Department of Agriculture Toward Understanding Forest Service the Ecological Impact of Pacific Northwest Research Station Transportation Corridors General Technical Report PNW-GTR-846 Victoria J. Bennett, Winston P. Smith, and July 2011 Matthew G. Betts D E E P R A U R T LT MENT OF AGRICU The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Victoria J.
    [Show full text]
  • Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
    Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A.
    [Show full text]
  • Response of Endangered Mt. Graham Red Squirrels to Severe Insect Infestation
    Trailblazers in the Forest: Response of Endangered Mt. Graham Red Squirrels to Severe Insect Infestation Item Type text; Electronic Thesis Authors Zugmeyer, Claire Ann Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 14:33:31 Link to Item http://hdl.handle.net/10150/193336 TRAILBLAZERS IN THE FOREST: RESPONSE OF ENDANGERED MT. GRAHAM RED SQUIRRELS TO SEVERE INSECT INFESTATION by Claire Ann Zugmeyer ________________________ A Thesis Submitted to the faculty of the SCHOOL OF NATURAL RESOURCES In Partial fulfillment of the Requirements For the Degree of MASTERS OF SCIENCE WITH A MAJOR IN WILDLIFE AND FISHERIES SCIENCES In the Graduate College THE UNIVERSITY OF ARIZONA 2007 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Red List of Bangladesh Volume 2: Mammals
    Red List of Bangladesh Volume 2: Mammals Lead Assessor Mohammed Mostafa Feeroz Technical Reviewer Md. Kamrul Hasan Chief Technical Reviewer Mohammad Ali Reza Khan Technical Assistants Selina Sultana Md. Ahsanul Islam Farzana Islam Tanvir Ahmed Shovon GIS Analyst Sanjoy Roy Technical Coordinator Mohammad Shahad Mahabub Chowdhury IUCN, International Union for Conservation of Nature Bangladesh Country Office 2015 i The designation of geographical entitles in this book and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, International Union for Conservation of Nature concerning the legal status of any country, territory, administration, or concerning the delimitation of its frontiers or boundaries. The biodiversity database and views expressed in this publication are not necessarily reflect those of IUCN, Bangladesh Forest Department and The World Bank. This publication has been made possible because of the funding received from The World Bank through Bangladesh Forest Department to implement the subproject entitled ‘Updating Species Red List of Bangladesh’ under the ‘Strengthening Regional Cooperation for Wildlife Protection (SRCWP)’ Project. Published by: IUCN Bangladesh Country Office Copyright: © 2015 Bangladesh Forest Department and IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Citation: Of this volume IUCN Bangladesh. 2015. Red List of Bangladesh Volume 2: Mammals. IUCN, International Union for Conservation of Nature, Bangladesh Country Office, Dhaka, Bangladesh, pp.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • GREVY's ZEBRA Equus Grevyi Swahili Name
    Porini Camps Mammal Guide By Rustom Framjee Preface This mammal guide provides some interesting facts about the mammals that are seen by guests staying at Porini Camps. In addition, there are many species of birds and reptiles which are listed separately from this guide. Many visitors are surprised at the wealth of wildlife and how close you can get to the animals without disturbing them. Because the camps operate on a low tourist density basis (one tent per 700 acres) the wildlife is not ‘crowded’ by many vehicles and you can see them in a natural state - hunting, socialising, playing, giving birth and fighting to defend their territories. Some are more difficult to see than others, and some can only be seen when you go on a night drive. All Porini camps are unfenced and located in game rich areas and you will see much wildlife even in and around the camps. The Maasai guides who accompany you on all game drives and walks are very well trained and qualified professional guides. They are passionate and enthusiastic about their land and its wildlife and really want to show you as much as they can. They have a wealth of knowledge and you are encouraged to ask them more about what you see. They know many of the animals individually and can tell you stories about them. If you are particularly interested in something, let them know and they will try to help you see it. While some facts and figures are from some of the references listed, the bulk of information in this guide has come from the knowledge of guides and camp staff.
    [Show full text]