St. Lawrence Lowlands Ecoregion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trees and Plants for Bees and Beekeepers in the Upper Mara Basin
Trees and plants for bees and beekeepers in the Upper Mara Basin Guide to useful melliferous trees and crops for beekeepers December 2017 Contents Who is this guide for? .......................................................................................................................................................................................................................................................................... 1 Introduction to the MaMaSe Project .................................................................................................................................................................................................................................................. 1 Market driven forest conservation initiatives in the Upper Mara basin ............................................................................................................................................................................................. 2 Water, apiculture, forests, trees and livelihoods ................................................................................................................................................................................................................................ 3 Types of bees ....................................................................................................................................................................................................................................................................................... 4 How this -
Netted Mountain Moth in Scotland
Managing land for the Netted Mountain Moth Ensuring the long-term survival of the Netted Mountain Moth, as with many other species, is probably more likely if sites are linked, enabling an exchange of adults between neighbouring colonies. The loss of suitable habitat can be damaging by making the surviving populations more fragmented and thus isolated. The precise habitat requirements are not fully understood, however, the following general principles should benefit the Netted Mountain Moth. learn about the The fortunes of the Netted Mountain Moth are directly linked to the presence of extensive areas of bearberry (Arctostaphylos uva-ursi). Bearberry favours dry or gravelly soil and can be locally abundant on the drier moorland characteristic of the eastern and central Highlands. Netted Mountain Moth This habitat is often referred to as “Arctostaphylos heath”. If Arctostaphylos heath is not burnt, then bearberry can become scarce as heather slowly dominates. In the absence of controlled burning, bearberry can maintain its presence on disturbed ground, especially steep slopes, track and verge sides or in more exposed conditions usually at higher altitudes under natural erosion. However, it is thought that the Netted Mountain Moth does not favour these more exposed sites. Some Netted Mountain Moth sites have been lost due to afforestation, whilst over-grazing by sheep and/or deer, and both uncontrolled and a cessation of burning can also be detrimental. Good muirburn practice that creates a patchwork of small burns on a 7-10 year cycle is beneficial, and on some sites essential. Light grazing may also be desirable giving bearberry May 2004 an advantage over heather. -
Species List For: Valley View Glades NA 418 Species
Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var. -
Auglaize County Weekly Horticulture Newsletter – 1-10-20 the Spider
Ohio State University Extension Auglaize County Top of Ohio EERA 208 South Blackhoof Street Wapakoneta, OH 45895-1902 419-739-6580 Phone 419-739-6581 Fax www.auglaize.osu.edu OSU Extension - Auglaize County Weekly Horticulture Newsletter – 1-10-20 The Spider Plant The spider plant name comes from the “spidery” look of the baby plants that grow rapidly. Another common name for the plant is airplane plant. The scientific name is Chlorophytum comosum. The spider plant is native to coastal areas of South Africa. The spider plant is a monocot meaning it has parallel leaf venation and is in the lily family. The spider plant is a clump-forming perennial. The leaves are long and narrow with a fairly prominent mid- rib. The leaves are somewhat folded or in a v-shaped pattern, especially at the base of the plant. Flower stems are stiff, wiry, and long. At the end of the flower stem plantlets begin to form. Flowers are white having three petals and three sepals. The flower is 0.25 to 0.75 inch in diameter. Spider plants have thick fleshy roots that store food reserves, making the plant perennial. There are four common varieties or cultivars of the spider plant. The native plant has a solid green leaf color with a lighter green color in the center of the leaf. The ‘Mandaianum’ variety is a dwarf spider plant with 4-6 inch dark green leaves with a bright yellow stripe. The ‘Vittatum’ variety is the most common cultivated Ohio State University Extension Auglaize County Top of Ohio EERA 208 South Blackhoof Street Wapakoneta, OH 45895-1902 419-739-6580 Phone 419-739-6581 Fax www.auglaize.osu.edu variety through the late 1990’s. -
Uva Ursi Max-V Bearberry for Urinary Health
PRODUCT DATA DOUGLAS LABORATORIES® 08/2013 1 Uva Ursi Max-V Bearberry for urinary health DESCRIPTION Uva-Ursi Max-V, provided by Douglas Laboratories, supplies 200 mg of standardized Uva Ursi and 100 mg of non-standardized leaf in a vegetarian capsule. FUNCTIONS Uva Ursi (Arctostaphylos uva-ursi), also known as bearberry, is a low-lying evergreen shrub found in Canada, Europe, and Asia. It has been used traditionally as a diuretic, astringent and urinary antiseptic for several hundred years. One of the active components in it, arbutin, releases hydroquinone, which can provide support for a healthy urinary tract.† FORMULA (#77379) Each capsule contains: Uva ursi Herbal extract ...................................................200 mg (Arctostaphylos uva-ursi L.Spreng) (Standardized to provide 40 mg (20%) arbutin) Uva Ursi (leaf) non-standardized…………………………100 mg SUGGESTED USE Adults take 1 capsule daily between meals or as directed by a healthcare professional. Not intended for long- term use. Do not take if pregnant or lactating. SIDE EFFECTS Uva ursi may cause nausea, vomiting, gastrointestinal discomfort, and a greenish-brown discoloration of the urine. Uva ursi contains hydroquinone which inhibits melanin synthesis and might lead to retinal thinning if used long-term. Chronic use, especially in children, can cause liver impairment due to its tannin content. STORAGE Store in a cool, dry place, away from direct light. Keep out of reach of children. REFERENCES Beaux D, Fleurentin J, Mortier F. Effect of extracts of Orthosiphon stamineus Benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) Spreng. in rats. Phytother Res 1999 May;13(3):222-5 Grases F, Melero G, Costa-Bauza A, Prieto R, March JG. -
And Natural Community Restoration
RECOMMENDATIONS FOR LANDSCAPING AND NATURAL COMMUNITY RESTORATION Natural Heritage Conservation Program Wisconsin Department of Natural Resources P.O. Box 7921, Madison, WI 53707 August 2016, PUB-NH-936 Visit us online at dnr.wi.gov search “ER” Table of Contents Title ..……………………………………………………….……......………..… 1 Southern Forests on Dry Soils ...................................................... 22 - 24 Table of Contents ...……………………………………….….....………...….. 2 Core Species .............................................................................. 22 Background and How to Use the Plant Lists ………….……..………….….. 3 Satellite Species ......................................................................... 23 Plant List and Natural Community Descriptions .…………...…………….... 4 Shrub and Additional Satellite Species ....................................... 24 Glossary ..................................................................................................... 5 Tree Species ............................................................................... 24 Key to Symbols, Soil Texture and Moisture Figures .................................. 6 Northern Forests on Rich Soils ..................................................... 25 - 27 Prairies on Rich Soils ………………………………….…..….……....... 7 - 9 Core Species .............................................................................. 25 Core Species ...……………………………….…..…….………........ 7 Satellite Species ......................................................................... 26 Satellite Species -
Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S
Prepared in cooperation with the U.S. Department of Agriculture Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs Open-File Report 2020–1037 U.S. Department of the Interior U.S. Geological Survey A B C D E F G H I Cover. A, Bumble bee (Bombus sp.) visiting a locowood flower. Photograph by Stacy Simanonok, U.S. Geological Survey (USGS). B, Honey bee (Apis mellifera) foraging on yellow sweetclover (Melilotus officinalis). Photograph by Sarah Scott, USGS. C, Two researchers working on honey bee colonies in a North Dakota apiary. Photograph by Elyssa McCulloch, USGS. D, Purple prairie clover (Dalea purpurea) against a backdrop of grass. Photograph by Stacy Simanonok, USGS. E, Conservation Reserve Program pollinator habitat in bloom. Photograph by Clint Otto, USGS. F, Prairie onion (Allium stellatum) along the slope of a North Dakota hillside. Photograph by Mary Powley, USGS. G, A researcher assesses a honey bee colony in North Dakota. Photograph by Katie Lee, University of Minnesota. H, Honey bee foraging on alfalfa (Medicago sativa). Photograph by Savannah Adams, USGS. I, Bee resting on woolly paperflower (Psilostrophe tagetina). Photograph by Angela Begosh, Oklahoma State University. Front cover background and back cover, A USGS research transect on a North Dakota Conservation Reserve Program field in full bloom. Photograph by Mary Powley, USGS. Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs By Clint R.V. Otto, Autumn Smart, Robert S. Cornman, Michael Simanonok, and Deborah D. Iwanowicz Prepared in cooperation with the U.S. -
Genotypic Diversity and Clonal Structure of Erigeron Annuus
26. Deutsche Arbeitsbesprechung über Fragen der Unkrautbiologie und -bekämpfung, 11.-13. März 2014 in Braunschweig Genotypic diversity and clonal structure of Erigeron annuus (Asteraceae) in Lithuania Genetische Vielfalt und Klonstruktur von Erigeron annuus (Asteraceae) in Litauen Virginija Tunaitienė1*, Jolanta Patamsytė1, Tatjana Čėsnienė1, Violeta Kleizaitė1, Donatas Naugžemys2, Vytautas Rančelis1 and Donatas Žvingila1 1Department of Botany and Genetics, Vilnius University, M. K. Čiurlionio 21, Vilnius, Lithuania 2Botanical Garden of Vilnius University, Kairėnų 43, Vilnius, Lithuania *Corresponding author, [email protected] DOI 10.5073/jka.2014.443.023 Abstract This study was conducted to assess the clonal structure and genetic diversity of alien herbaceous plant species Erigeron annuus. The global warming and changes in agriculture practice in the past few decades were favourable for the expansion of this species in Lithuania. We used RAPD and ISSR assays to assess genetic variation within and among 29 populations of E. annuus. A total of 278 molecular markers were revealed. Our study detected reduced level of genetic diversity of invasive populations of E. annuus. Significant differences in DNA polymorphism among populations of E. annuus were also found. Some populations of this species are composed of genetically identical plants, while others were polymorphic. Clonal diversity of study populations ranged from 0.083 to 0.4 for both DNA marker systems. The Simpsons diversity index values ranged from 0.0 to 0.636. The average number of genotypes per population established using both assays was about 1.7. Out of 328 E. annuus individuals only 16 showed unique RAPD and 14 unique ISSR banding patterns. The remaining plants were clones of different size. -
Planting Forage for Honey Bees in Canada a Guide for Farmers, Land
Planting Forage for Honey Bees in Canada A guide for farmers, land managers, and gardeners Planting Guide Guide Planting Planting This guide entitled Planting Forage for Honey Bees in Canada: A guide for farmers, land managers, and gardeners, was produced by Pollinator Partnership Canada. The guide was commissioned for discussion purposes by Agriculture and Agri-Food Canada (AAFC) on behalf of the Bee Health Roundtable, an industry-government forum. The content of this guide does not necessarily reflect the opinions or interests of the entire Bee Health Roundtable membership or AAFC, nor does it necessarily reflect the opinions or interests of all parties interviewed during the researching of this guide. The recommendations resulting from the guide are not binding on any participant of the VCRTs or AAFC. © HER MAJESTY THE QUEEN IN RIGHT OF CANADA 2017 as represented by the Minister of Agriculture and Agri-Food - Department of Agriculture and Agri-Food Canada 2 Planting Forage for Honey Bees in Canada: A guide for farmers, land managers, and gardeners Why Support Honey Bees? _________________________________4 About this Guide ___________________________________________5 Honey Bees _______________________________________________6 Where to Put Honey Bee Forage _____________________________8 How to Preserve, Enhance, Maintain __________________________9 Plant Selection and Design _________________________________11 Site Preparation and Invasive Species ______________________ 12 Integrative Vegetation Management ________________________ 13 -
Northern American Nectar Sources for Honey Bees
A honey bee collecting nectar from an rosaceous flower. The nectar resource in a given area depends on the kinds of flowering plants present and their blooming periods. Which kinds grow in an area depends on soil texture, soil pH, soil drainage, daily maximum and minimum temperatures, precipitation, extreme minimum winter temperature, and growing degree days. The plants listed below grow in USDA Hardiness zone 5. A good predictor for when a plant will bloom and produce nectar is a calculation of the growing degree days. Hopkins' Bioclimatic Law states that in North America east of the Rockies, a 130 m (400-foot) increase in elevation, a 4° change in latitude north (444.48 km), or a 10° change in longitude east (two thirds of a time zone) will cause a biological event to occur four days later in the spring or four days earlier in the fall. In botany, the term phenology refers to the timing of flower emergence, sequence of bloom, fruiting, and leaf drop in autumn. The classification in major or minor nectar source is very dependent on the agricultural use of the land. An agricultural crop such as canola or alfalfa may be a major or minor source depending on local plantings. Generally, the more diverse a forage area is, the better for a stationary apiary. Urban, suburban and areas not under cultivation provide more consistent warm-season nectar forage than areas that are heavily cultivated with only a few agricultural crops. The nectar sources from large cultivated fields of blooming apples, cherries, canola, melons, sunflowers, clover etc. -
Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops . -
Arctostaphylos Uva-Ursi (L.) Spreng
Scientific Name: Arctostaphylos uva-ursi (L.) Spreng. Family: Ericaceae Common Names: bearberry, kinnikinnick, red bearberry, cowberry, manzanita, mealberry Fruit: Mealy (not juicy) drupe with dry, shell-like skin; 6 to 8 mm diameter, spherical, dull red. Seed: 5 to 6 seeds in a generally united round stone, individual 3.5 x 2 mm, sectioned, rough, porous, yellow brown. Habitat and Distribution Prefers rocky, open woodlands, dry, sandy hills and pine forest (Lady Bird Johnson Wildflower Center 2013). It is adapted to coarse and medium textured soils; has moderate carbonate tolerance and is highly drought tolerant. Can handle pH from 5.5 to 8.0, medium salinity and prefers intermediate shade (USDA NRCS n.d.). Seral Stage: Early, recovers well after fire (Crane 1991, Tannas 1997). Soils: Sandy and well-drained sites in woodlands and throughout the prairie, roadside, exposed rocks. Relatively low shade tolerance. Moderate acid tolerance. Tolerant to a wide range of soil textures. Common on coarse and well drained soils. Preference to gravely and sandy loams (Hardy BBT 1989). Arctostaphylos uva-ursi a. plant habit including flowering branch, leaves and roots b. arrangement of flowers in the inflorescence c. flower d. flower (cut away) e – g. seed. Plant Description Trailing evergreen perennial shrub 7.5 to 10 cm tall; forms mats with prostrate and rooting branches 50 to 100 cm long; alternate leaves, coriaceous, obovate to spatulate 1 to 2 cm long; 1 to 3 cm long drooping urn- shaped flowers nodding in a dense raceme (3 to 10); rhizomatous with nodal feeder roots that form in the second years (Moss 1983).