Rainbow Lorikeet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRUSTVETASSISTSSURVIVAL of WORLD'srarestparrot New Clues to Echo Parakeet Problem Bypallia Harris
News about parrot conservation, aviculture and welfare from qg&%rld q&rrot~t TRUSTVETASSISTSSURVIVAL OF WORLD'SRARESTPARROT New clues to Echo Parakeet problem ByPallIa Harris When the World Parrot Trust was The World Parrot Trust has project, contributing funds and of the World Parrot Trust and a launched in 1989, our first consistently provided funding for parrot expertise to both the member of the International Zoo priority was to help the world's the Echo Parakeet and maintained captive breeding programme and Veterinary Group. When the rarest parrot, the Echo Parakeet, close relations with the project's wild population management captive population of parrots which still numbers less than 20 director, Carl Jones, and the efforts. This new opportunity became ill this spring, Andrew birds in the wild. With your Jersey Wildlife Preservation provides the World Parrot Trust advised project staff in Mauritius generous donations, the Trust Trust, which finances and with one of the greatest by telephone and by fax. was proud to present the Echo manages the project with the co- challenges in parrot conservation Subsequently, at the request of Parakeet project with a badly operation of the Mauritius today. the Jersey Wildlife Preservation needed four wheel drive vehicle government's Conservation Unit. The followingstory is drawn, Trust, the World Parrot Trust sent to enable field researchers to Recently, the World Parrot Trust in part, from a veterinary report Andrew to Mauritius to reach the remote forest in which was invited to become a major by Andrew Greenwood,MAVetMB investigate tragic mortalities the parrot struggles to survive. partner in the Echo Parakeet MIBiolMRCVS,a founder Trustee among the Echo Parakeets. -
TAG Operational Structure
PARROT TAXON ADVISORY GROUP (TAG) Regional Collection Plan 5th Edition 2020-2025 Sustainability of Parrot Populations in AZA Facilities ...................................................................... 1 Mission/Objectives/Strategies......................................................................................................... 2 TAG Operational Structure .............................................................................................................. 3 Steering Committee .................................................................................................................... 3 TAG Advisors ............................................................................................................................... 4 SSP Coordinators ......................................................................................................................... 5 Hot Topics: TAG Recommendations ................................................................................................ 8 Parrots as Ambassador Animals .................................................................................................. 9 Interactive Aviaries Housing Psittaciformes .............................................................................. 10 Private Aviculture ...................................................................................................................... 13 Communication ........................................................................................................................ -
Influences of Oceanic Islands and the Pleistocene on The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LJMU Research Online 1 1 Manuscript for European Journal of Ecology http://www.degruyter.com/view/j/eje 2 Influences of oceanic islands and the Pleistocene on the 3 biogeography and evolution of two groups of Australasian parrots 4 (Aves: Psittaciformes: Eclectus roratus, Trichoglossus haematodus 5 complex). Rapid evolution and implications for taxonomy and 6 conservation 7 8 Michael P. Braun1*, Matthias Reinschmidt2, Thomas Datzmann3, David Waugh2, Rafael Zamora2, Annett Häbich2, 9 Luís Neves2, Helga Gerlach2, Thomas Arndt4, Claudia Mettke-Hofmann5, Hedwig Sauer-Gürth1 & Michael Wink1 10 11 Author Affiliations: 12 13 1Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Dep. Biology, Im Neuenheimer Feld 14 364, 69120 Heidelberg, Germany 15 2Loro Parque Fundacíon, Camino Burgado, 38400 Puerto de la Cruz (Tenerife), Spain 16 3Senckenberg Collection of Natural History Dresden Museum of Zoology, Koenigsbruecker Landstr. 159, 01109 17 Dresden, Germany 18 4Thomas Arndt, Brückenfeldstraße 28, 75015 Bretten, Germany 19 5School of Natural Sciences & Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, 20 United Kingdom 21 * corresponding author 22 Michael P. Braun 23 Email: [email protected] 24 University of Heidelberg 25 Institute of Pharmacy and Molecular Biotechnology (IPMB) 26 Dep. Biology, 4th floor 27 Im Neuenheimer Feld 364 28 69120 Heidelberg 29 Tel.: 0049 176 - 228 59 333 30 Fax.: 0049 62 21 - 54 48 31 2 32 SUMMARY 33 Background 34 The Australasian region is a centre of biodiversity and endemism, mainly based on the tropical climate in 35 combination with the large amount of islands. -
Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................ -
1 Schefflera Actinophylla (Umbrella Tree)
Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants in Florida using the Australian Weed Risk Assessment. Invasive Plant Science and Management 1: 178-195. Schefflera actinophylla (umbrella tree) Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to Florida's USDA climate zones (0-low; 1-intermediate; 2- 2 high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) 2.04 Native or naturalized in habitats with periodic inundation y 1 2.05 Does the species have a history of repeated introductions outside its natural y range? 3.01 Naturalized beyond native range y 0 3.02 Garden/amenity/disturbance weed y 0 3.03 Weed of agriculture n 0 3.04 Environmental weed y 0 3.05 Congeneric weed n 0 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic n 0 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens 4.07 Causes allergies or is otherwise toxic to humans y 1 4.08 Creates a fire hazard in natural ecosystems n 0 4.09 Is a shade tolerant plant at some stage of its life cycle y 1 4.1 Grows on infertile soils (oligotrophic, limerock, or excessively draining soils) y 1 4.11 Climbing or smothering growth habit n -
Phylogeography of the Military Macaw (Ara Militaris) and the Great Green Macaw (A
The Wilson Journal of Ornithology 127(4):661–669, 2015 PHYLOGEOGRAPHY OF THE MILITARY MACAW (ARA MILITARIS) AND THE GREAT GREEN MACAW (A. AMBIGUUS) BASED ON MTDNA SEQUENCE DATA JESSICA R. EBERHARD,1,5 EDUARDO E. IÑIGO-ELIAS,2 ERNESTO ENKERLIN-HOEFLICH,3 AND E. PAÙL CUN4 ABSTRACT.—The Military Macaw (Ara militaris) and the Great Green Macaw (A. ambiguus) are species whose close relationship is reflected in their morphological similarity as well as their geographic ranges. Military Macaws have a disjunct distribution, found in Mexico as well as several areas in South America, while Great Green Macaws have two or more disjunct populations from Honduras to eastern Ecuador. We used mitochondrial sequence data to examine the phylogenetic relationships between these two species, and also among representative samples across their ranges. Our data clearly support recognition of the two species as being distinct evolutionary lineages, and while we found significant phylogeographic structure within A. militaris (between samples collected in eastern and western Mexico), we did not find any evidence of lineage divergence between A. ambiguus from Costa Rica and Ecuador. Received 12 December 2014. Accepted 30 May 2015. Key words: disjunct distribution, Great Green Macaw, Military Macaw, phylogeny, phylogeography. The Military Macaw (Ara militaris) and the South America, primarily east of the Andes from Great Green Macaw (A. ambiguus), sometimes northwestern Colombia and northwestern Vene- named Buffon’s Macaw, are both large macaws zuela to north-western Argentina (Ridgway 1916; that are closely related and possibly conspecific Chapman 1917; Alvarez del Toro 1980; Ridgely (Fjeldså et al. 1987, Collar et al. -
Christmas Island Biodiversity Monitoring Program: December 2003 to April 2007
Christmas Island Biodiversity Monitoring Program: December 2003 to April 2007 Report to the Department of Finance and Deregulation, from the Director of National Parks September 2008 2 Christmas Island Biodiversity Monitoring Program Project Contributions Project coordination: D.J. James; Field survey: D.J. James, K. Retallick; Data management, GIS: D.J. James, K. Retallick; Analyses and reporting: D.J. James Citation This document can be cited as: Christmas Island Biodiversity Monitoring Program: December 2003 to April 2007. Report to the Department of Finance and Deregulation from the Director of National Parks © Director of National Parks 2008 Christmas Island Biodiversity Monitoring Program 3 Contents EXECUTIVE SUMMARY ........................................................................................................................7 1. INTRODUCTION.................................................................................................................................9 1.1 Checklist of flora and fauna of Christmas Island.....................................................................9 1.2 Christmas Island biodiversity inventory database.................................................................10 2. CHRISTMAS ISLAND PIPISTRELLE ........................................................................................11 2.1 Summary of the results .........................................................................................................11 2.2 Research and monitoring methods .......................................................................................12 -
Bird Abundances in Primary and Secondary Growths in Papua New Guinea: a Preliminary Assessment
Mongabay.com Open Access Journal - Tropical Conservation Science Vol.3 (4):373-388, 2010 Research Article Bird abundances in primary and secondary growths in Papua New Guinea: a preliminary assessment Kateřina Tvardíková1 1 Department of Zoology, Faculty of Biological Science, University of South Bohemia, Branišovská 31, CZ- 370 05 České Budějovice. Email: <[email protected] Abstract Papua New Guinea is the third largest remaining area of tropical forest after the Amazon and Congo basins. However, the growing intensity of large-scale slash-and-burn agriculture and logging call for conservation research to assess how local people´s traditional land-use practices result in conservation of local biodiversity, of which a species-rich and diverse component is the avian community. With this in mind, I conducted a preliminary survey of birds in small-scale secondary plots and in adjacent primary forest in Wanang Conservation Area in Papua New Guinea. I used mist-netting, point counts, and transect walks to compare the bird communities of 7-year-old secondary growth, and neighboring primary forest. The preliminary survey lasted 10 days and was conducted during the dry season (July) of 2008. I found no significant differences in summed bird abundances between forest types. However, species richness was higher in primary forest (98 species) than in secondary (78 species). The response of individual feeding guilds was also variable. Two habitats differed mainly in presence of canopy frugivores, which were more abundant (more than 80%) in primary than in secondary forests. A large difference (70%) was found also in understory and mid-story insectivores. Species occurring mainly in secondary forest were Hooded Butcherbird (Cracticus cassicus), Brown Oriole (Oriolus szalayi), and Helmeted Friarbird (Philemon buceroides). -
The Status and Impact of the Rainbow Lorikeet (Trichoglossus Haematodus Moluccanus) in South-West Western Australia
Research Library Miscellaneous Publications Research Publications 2005 The status and impact of the Rainbow lorikeet (Trichoglossus haematodus moluccanus) in south-west Western Australia Tamara Chapman Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/misc_pbns Part of the Behavior and Ethology Commons, Biosecurity Commons, Environmental Studies Commons, Ornithology Commons, and the Population Biology Commons Recommended Citation Chapman, T. (2005), The status and impact of the Rainbow lorikeet (Trichoglossus haematodus moluccanus) in south-west Western Australia. Department of Primary Industries and Regional Development, Western Australia, Perth. Report 04/2005. This report is brought to you for free and open access by the Research Publications at Research Library. It has been accepted for inclusion in Miscellaneous Publications by an authorized administrator of Research Library. For more information, please contact [email protected]. ISSN 1447-4980 Miscellaneous Publication 04/2005 THE STATUS AND IMPACT OF THE RAINBOW LORIKEET (TRICHOGLOSSUS HAEMATODUS MOLUCCANUS) IN SOUTH-WEST WESTERN AUSTRALIA February 2005 © State of Western Australia, 2005. DISCLAIMER The Chief Executive Officer of the Department of Agriculture and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from use or release of this information or any part of it. THE STATUS AND IMPACT OF THE RAINBOW LORIKEET (TRICHOGLOSSUS HAEMATODUS MOLUCCANUS) IN SOUTH-WEST WESTERN AUSTRALIA By Tamra -
A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus Hyacinthinus) Pair
The Pegasus Review: UCF Undergraduate Research Journal (URJ) Volume 12 Issue 1 Article 2 2020 A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus hyacinthinus) Pair Pamela Mulkay University of Central Florida Find similar works at: https://stars.library.ucf.edu/urj University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Office of Undergraduate Research at STARS. It has been accepted for inclusion in The Pegasus Review: UCF Undergraduate Research Journal (URJ) by an authorized editor of STARS. For more information, please contact [email protected]. Recommended Citation Mulkay, Pamela (2020) "A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus hyacinthinus) Pair," The Pegasus Review: UCF Undergraduate Research Journal (URJ): Vol. 12 : Iss. 1 , Article 2. Available at: https://stars.library.ucf.edu/urj/vol12/iss1/2 Mulkay: A Courting Behavioral Study on a Hyacinth Macaw Published 9-17 Vol. 12.1: April 8, 2020 THE PEGASUS REVIEW: UNIVERSITY OF CENTRAL FLORIDA UNDERGRADUATE RESEARCH JOURNAL A Courting Behavioral Study on a Hyacinth Macaw (Anodorhynchus hyacinthinus) Pair By: Pamela Mulkay Faculty Mentor: Frank Logiudice UCF Department of Biology ABSTRACT: This study observes the courtship behaviors of an Anodorhynchus hyacinthinus pair in the Central Florida Zoo and Botanical Gardens in Sanford, Florida. A. hyacinthinus reproductive behaviors occur in four steps in the following order: Allopreening, Cloacal allopreening, Back to Back Copulation Position and finally, Copulation (Schneider 2006). Behavioral observations were taken twice a week for an average of 2 to 3 hours each day for ten weeks. The resulting data was analyzed based on the different actions, types of movement, and types of maintenance observed of the A. -
Scarlet Macaw Ara Macao
Scarlet Macaw Ara macao Class: Aves Order: Psittaciformes Family: Psittacidae Characteristics: Named for their bright red plumage, scarlet macaws also have green and blue primary and flight feathers. They have bare white skin between their beak and their eye. Typical of parrots, they use their feet to climb, grip and also as a “hand” for feeding and grasping (Blank Park Zoo). Behavior: Very social, “talkative” birds which live in flocks of up to 30 birds. They are fast flyers with great maneuverability. Vocalization is important for group communication (Sedgewick County Zoo). Reproduction: Similar to other macaws, the female lays 2 to 4 eggs on a nest cavity. The chicks hatch following a 24 to 26 day incubation period. When the chicks Range & Habitat: hatch, they are blind and featherless. They fledge the nest around 3.5 months old. Rainforests, forests bordering rivers, wooded grasslands Diet: Wild: Fruits, vegetable matter and nuts. Often found at clay licks around exposed river banks eating soil which may provide them with nutrients and minerals lacking in their diet and neutralize acid in their system. Zoo: Parrot pellets, seeds, apples, carrots, greens, oranges Conservation: Like other parrots, scarlet macaws also are suffering a decline due to Lifespan: up to 60 years in habitat loss and the illegal pet trade. While only one out of many birds captivity and in the wild. smuggled into the pet trade will survive, the smugglers think the payoff is worth the loss. A single macaw sold on the black market may be worth Special Adaptations: Can eat fruit thousands of dollars (Rainforest Alliance). -
Brain Size Associated with Foot Preferences in Australian Parrots
S S symmetry Article Brain Size Associated with Foot Preferences in Australian Parrots Gisela Kaplan * and Lesley J. Rogers * School of Science and Technology, University of New England, Armidale, NSW 2351, Australia * Correspondence: [email protected] (G.K.); [email protected] (L.J.R.) Abstract: Since foot preference of cockatoos and parrots to hold and manipulate food and other ob- jects has been associated with better ability to perform certain tasks, we predicted that either strength or direction of foot preference would correlate with brain size. Our study of 25 psittacine species of Australia found that species with larger absolute brain mass have stronger foot preferences and that percent left-footedness is correlated positively with brain mass. In a sub-sample of 11 species, we found an association between foot preference and size of the nidopallial region of the telencephalon, an area equivalent to the mammalian cortex and including regions with executive function and other higher-level functions. Our analysis showed that percent left-foot use correlates positively and significantly with size of the nidopallium relative to the whole brain, but not with the relative size of the optic tecta. Psittacine species with stronger left-foot preferences have larger brains, with the nidopallium making up a greater proportion of those brains. Our results are the first to show an asso- ciation between brain size and asymmetrical limb use by parrots and cockatoos. Our results support the hypothesis that limb preference enhances brain capacity and higher (nidopallial) functioning. Keywords: parrots; footedness; brain mass; body mass; nidopallium; optic tectum; optic tecta; Wulst; Citation: Kaplan, G.; Rogers, L.J.