<<

„EXTREME CONVECTIVE CASES THE USE OF SATELLITE PRODUCTSFORNOWCASTINGANDMONITORING” MonikaPajek 1,RafalIwanski 1,MarianneKönig 2,PiotrStruzik 1 1InstituteofMeteorologyandWaterManagement,P.BorowegoStr.14,30215Krakow,Poland 2EUMETSAT,AmKavalleriesand31,D64205Darmstadt,Germany Abstract Adetailedstormnowcastingisstillaverydemandingactivityforoperationalactivitiesofforecasting offices.Properpredictionofexactlocationandintensityoftheinitialconvection,estimationofstorm intensitybasedonitsdevelopmentandstormtrajectorymonitoringandforecastingareveryimportant forwarningpurposes.Useofdedicatedsatelliteproductsmayimproveoperationalstormprediction andmonitoring.Earlydetectionoftheunstableairandassessmentofthepotentialofdeepconvection werealreadypresentedonEUMETSATConferencesin2006and2007.Intheframeofcooperation betweenEUMETSATandIMWM,furtherworksonstormnowcastingweredone. Thispaperfocusesonselectedcasestudy,whereextremeconvectivecasewereusedtodemonstrate usefulness of satellite products for analysis of prestorm conditions, convection detection, characterisationofconvectivecellsandnowcastingfuturestormbehaviour.TheareaofPolandused for this analysis suffers frommany severe between April and September with highest storm activity in the May to August period. Selected case was connected with , intense lightning activity(includingstratosphericspriteregisteredinPoland),heavyandrainfalldamages. Possibilities and weaknesses of used satellite products for storm nowcasting and monitoring were discussed. Introduction. Process of storm development consists of prestorm conditions leading to the development of convectionfollowed by developmentofdeepconvective, whichbecamestormcellsafterthe firstlightning.Maingoalofthispaperispresentationofvarioussatelliteproductsforanalysisofthe wholeconvectiveprocessandpossibleuseofthemforwarnings.Selectedcasewasagoodexample ofstormsdevelopmentconnectedwithextremeweatherphenomena,suchas:tornado,largehailand heavy . The satellite products used for analysis are both operational ones available for forecastersandproductswhicharestillunderinvestigationandtesting. Shortdescriptionofanalysedsynopticprocess. Presentedanalysisofsatellitedatauseforstormnowcasingandmonitoringisbasedon20.07.2007 case.OnthisdayPolandwasintheareaoflowpressurewiththecentreovertheBritishIsleswith warmfronthorizontallysplittingcountry(Fig.1).Very warmtropicalairwascomingfromSEatlow levelandSWoccurredathigherlevels.HighleveljetwascrossingfrontsoverGermanyand moving over Poland. F2/T4 tornado occurred in Częstochowa region (Huby φ 50,52 λ 19,21) at 16:10UTCwithwindspeedpeeking5060m/s.Tornadopathwas14kmlongandupto500mwide. Ontheedgesoftheareasoffunnelpath,intensivehailstormswerereportedbefore(1515UTC) andafter(1625UTC)tornado.ConvectivecloudswereclassifiedasaMCSfromitearlystageatthe 1300untilabout2200whenthecellweakensanddisappears. T

Fig.1Synopticsituationon20.07.2007andresultedbyhailandtornadodamages. Synopticsituation(upperleft)1500UTCwithmarkedlocalizationoftornado(T)andradiosounding(star). RadiosoundingprofileforWroclaw1200UTC(upperright). Verticalwindprofileindicatesjetstreamatahighof9,2– 12kmandthewindshear atthelowlayeroftheatmosphere. Synoptic map (bottom right) 1600 UTC (tornado time). The surface convergence zone over in the area of forming tornadoisclearlyvisible.Airtemperaturereached32,3ºCanddewpointtemperaturewasveryhigh–exceeded21ºC. Mapoftornadoandhailoccurrence(bottomleft):SourceG.Beblot. Largedamageswereregistered:783housesand1361farmbuildingsweredamagedbyhailwithsize 57 cm. Tornado damages cover: 111 houses, 151 farm buildings 120 ha of forest, 3 high voltage pylons24mtall(Fig.2). NWPmesoscalemodels(COSMO,ALADINwithspatialresolution14km)andotherdataavailableat themorningdidnotsuggestextrememeteorologicalphenomena.Expectedconditionswere:wind24 m/s,precipitation04mm.

Fig.2.Funnelcloudandresultedbyhailandtornadodamages.Sourcewww.IMGW.pl,G.Beblot. Introductiontoappliedsatelliteproducts. Thevarietyofsatelliteproductswasusedatdifferentstagesofstormdevelopment.Theserangesare notstrictanduseonlyfororderpurposes(Tab.1).Detaileddescriptionofproductsisavailableviathe internetdistributeddocuments(references). Preconvectivesituation Convectioninitiation Stormdevelopment MPEF/GII:KI,LI,TPW,LPW, Met9/Images:HRV,IR,RGB Met9:OvershootingTops pseudoprofiles compositions, (WVIR) NWCSAF:SAI,LPW ConvectionInitiation(CI), Met9/Images:IRColour Enhancement(M.Setvak MPEF:AMA,DIV NWCSAF:RDT,CT, palette),WV TOVS/NOAAsounding(T,Td, MPEF:CTH MPEF:CTH,MPE Geopotentialheight, TOVS/NOAAsounding geostrophicwind) NWCSAF:CRR, RapidScan:HRV,WV Table1.Listofsatelliteproductsusedforanalysisatthedifferentstagesofprocess. Prestormconditions.(0600UTC–1300UTC) Conditions leading to the development of deep convection and resulted sever weather events are characterisedgenerallyby:unstableair,highmoistureatlowandmidlevelandforcewhichstimulate convection. This force may be caused for example by ground heating, orography, convergence, atmospheric front, jet stream etc. Use of satellite data and specialized products make possible to detectandcharacterisemanyofmentionedfeatures.Whatisveryimportant,stateoftheatmosphere can be determined several hours before the beginning of convection and dynamically traced in 15 minutessteps(5minwithuseofMeteosat9/RapidScan). On selected day, high air instability in southern part of Poland was observed since early morning hours,whilenorthernpartofPolandwasstable.Withinthenexthourshigherinstabilitywasretrieved, especially on GII/Lifted Index field (below 8 deg) presenting regional maxima located just in the placeswherethestrongeststormswereeventuallydeveloping.(Fig.3.).Similarresultswereobtained for the same GII indices (Lifted Index and K index) but with use of Aladin NWP mesoscale model (insteadofECMWFglobalmodel)usedasafirstguess. Fig.3StabilityIndices GII/Lifted Indexupper row. GII/KIndexbottom row. Resolution 3x3 SEVIRI pixels. First guess ECMWF forecast. 0600UTC(left)preconvection,1300UTC(middle)convectionbeginning,1500UTC(right)convectiondeveloping.Both indices present unstable situation since early morning hours. An hour before development of tornadic storm, well depictedareaofstormdevelopmentespeciallybyLI. During06001645UTChoursincreasedvaluesofmoisturewatercontentwasdetected,theamountof precipitable water (GII/PW) in the area of future storm developing exceeded 45 mm in the whole column of the atmosphere at 1300 UTC. Availability of high moisture in the lower , reaching25mmat1500 UTC(NWCSaf/LPWproductonFig.3)presentedfavourableconditionsfor tornadodevelopment.

Fig.4PrecipitableWater–amountofprecipitablewaterintheatmosphereincloudfreeareas. UpperrowGII/PrecipitableWaterContent,resolution3x3SEVIRIpixels,physicalretrieval,andfirstguessECMWF forecast. Bottom row NWCSAFv.2.1/ Layer PrecipitableWater in Boundary Layer (1013hPa 840 hPa), resolution 1x1SEVIRI pixels.Obtainedwithneuralnetworkalgorithm. 0900UTC(left)preconvection,1300UTC(middle)convectionbeginning,1500UTC(right)convectiondeveloping High level jet stream strengthen the updraft motion on the left side of its axis and let convection developreallyhigh.Presenceandexactlocationofjetstreamcouldbedepictedwithuseofsatellite soundings. Geopotential height and geostrophic wind retrieved from NOAA/TOVS soundings shows increased wind speed in area of interest and indicates probable jet stream (unfortunately TOVS calibrationcycleisinthesameplace). At 1515 UTC NOAA/TOVS retrieved temperature presents high horizontal gradient of temperature betweenhotairmassatsouthandcoldoneatthenorthofPoland.Alsocontentofmoistureismuch higher(42mm)intheareaofinteresttheninnearby.Theadvantageofthiscalculationswithuseof polar satellite NOAA/TOVS data is that they could be made on different geopotential high, also in cloudyareas,butunfortunatelyonlyfewtimesperday(dependingonNOAAsatellitepasses).

Fig.5.NOAA/TOVS/AVHRRretrieval.NOAA171515UTC. Leftgeostrophicalwindfield.500hPalevel.MiddleupTemperatureretrievalondifferentgeopotentiallevels. Middle down – Total precipitable Water (compare to Fig.4 – good coincidence). Right – NOAA/ AVHRR RGB composition,channels1/2/4. Convectioninitiation.(1300UTC–1600UTC) Fast development of convective clouds occurred at 1300 – 1600 UTC. Clouds were continuously movingtowardsnortheastforming‘MCS’–MezoscaleConvectiveSystem.Intheareaoftornadotwo convectivecellsmergedintooneobjectatthetimeoffunnelcloudforming1610UTC.Incaseofsuch a big amount of convective clouds, important issue is recognition and tracing of convective cells responsibleforfuturesevereevents(storm,hailandtornado).

Fig.5RDT(RapidDeveloping)–NWCSAFv.2.1,backgroundMeteosat9ch.IR10.8mmask(see/land) enhancedpalette.Locationoftornadoevent(1610UTC)marked. Left1400UTCfirstdetectionofrapidlydevelopingconvectivecloud–partoflaterMCS.Cirruscloudsembeddedto theconvectivecell.Middle1600UTCandright1715UTCgoodandwrongrecognitionofconvectivecloud’ssizeand movement,respectively. Rapid Developping (RTD) product was designed for this purpose. Unfortunately, in some cases proper recognition of cells is questionable. It makes difficult to use this product operationallybyforecasters. The idea of another product the Convective Initiation was to identify strongly growing cumulus clouds even before the radar picks them up. Modified algorithm developed for GOES satellites (Mecikalski, J. R., and K. M. Bedka, 2006 ) was implemented for European conditions and satellites by EUMETSAT. First the convective cloud mask is computed mostly on the base of Met9/HRV cloud classification process (daylight algorithm). Then for clouds classified as "cumulus" the final classificationisperformedwithuseoftwocriteria:changeofIRcloudtoptemperaturesfromaboveto below0deg.Celsiuswithinlast15minutes(betweentwoMet9slots),coolingrates(computedfor25 by25MSGIRpixelboxesaverages)haveexceeded4K/15minutes).(Fig.6).Cloudsmeetingthose conditionsareidentifiedasstronglygrowingcumulusclouds. In this case, improvement of storm cell recognition comparing to radar image is not high (about 10 minutesleadtime).Butpresented"veryfirstresults"lookspromising.Moreresearchandadaptations aredefinitelyneeded.ThethresholdsweresimplytakenfromUSworkandprobablyshouldbeslightly modified for European conditions. The advantage of CI nowcasting product is simplified analysis of large sets of individual products, and as a results give very clear and easy to interpretation output, whichcanbeusefulinforecasterswork.

Fig.6TestsofCInowcastalgorithm:channel10,8umimagesofsatelliteMET9andcalculatedcoolingrate,convective cloudmaskbasedonHRVimageanalysis. CINowcastproductat1400UTCdetectedthemostactivepartoffutureMCS.Cloudsclassifiedaspotentialextreme convection,haveonly27dBZradarreflectivity,whichturnedtomore45dBZwithinnexttenminutes. Thelightningarecloseconnectedwithsevereconvectionandcouldgiveinformationaboutconvective cellphase.Cloudtogrounddischargesappearedusuallywhenthestormcellturnintomaturestage, amount of positive lightning responsible for most damages, shows storm severity (positive lightnings are typically six to ten times more powerful then the negative ones). On 20.07.2007 h igh electricactivityofanalyzedMCScomparingtotheotherstormcellswasobserved.(Fig.7.)

CloudtocloudCC CloudtogroundnegativeCG CloudtogroundpositiveCG+ Fig.7Spatialandtimedistributionoflightningon20.07.2007 Left–LightningregisteredbyPERUN(safir)systembetween16001610UTCSuperimposedoverMet9/HRVimage. MiddleSpatialdistributionoflightningduringtheperiod0800–2100UTCinfourtemporalclasses. RightTemporaldistributionoflightningintheperiod0900–1900UTCinhourlyclasses. The system of lightning detection PERUN/safir registered first, single Cloud to Ground (CG) dischargesaboutnoon,Thenthenumberofdischargesrapidlyincreasedtillmorethen3000between 16001700UTC.Thepeakoflightning–CGdischargesintheareaofmovingtornadowasjustafter theoccurrenceoffunnelcloudat16251630UTCwhenthestormcellbecomematured. General high lightning activity in the evening hours creates good condition to Sprites observations duringlatehours.Onthenightof20 th ofJuly2007duringtheSPARTANSpriteWatchcampaign2007 (Odzimek,A., et al, 2008) the first red sprite events were scientifically observed from Poland. Red spritesbelongtoabiggergroupofphenomenacollectivelytermedTransientLuminousEvents(TLEs). Theyoccurabovethunderstormsintheupperatmosphere,emittingvisible(mostlyred)light.Asprite discharge and related light emission starts at about 6575 km altitude and proceeds downwards. It also develops upwards in the form of blurred red or purple glow, reaching levels of up to 90 km altitude.Onthenightofinteresttwoverypowerfulstormsemerged–onefromEastGermanyandthe secondoneoverCzechRepublicprovidingsuitableconditionsforstrongelectricactivityinthevicinity ofthedevelopingcellsandalsointheperimeteroftherecordingsysteminstalledonŚnieŜkaMount. TheopticalsystemforTLEobservationsatŚnieŜkaconsistedofalowlightTVcamera,afixed16mm lens and joint peripheral processing equipment connected to notebook endowed with night sky inspectionsoftware.ItwascapabletodetectfiveTLEeventsduringonenightfrom20:10till00:18for theveryfirsttimefromPoland.(Fig.8.)AsaconclusionwecanstatethatinCentralEuropesprites canbeproducedbymassivestormcellsbuildonwarmfrontssuppliedbywarmandhumidtropicalair masses,duringlocalsummerthunderstormseason.

Fig.8.TheredspritesrecordedatŚnieŜkaPeak(SudetyMountains)after20:10:08UTCon20.07.2007.Differentcell thentornadicone. Stormcelldevelopment.(1600–lateevening) At 1610 UTC funnel cloud near Czestochowa region occurred. In this time vertical extend of storm cloud was very deep. On the radar image representing the height of the clouds’ tops EHT, values exceeded 15 km. Similar values are shown on satellite product CTH (Cloud Top High). Clouds developmentupto16kmcorrespondswelltoradarcrossections.(Fig.9)

Fig.9 Echo Top radar product Radar Brzuchania (left) 1610 UTC, MPEF/Cloud Top High product (right) 1645 UTC.Corespondingareamarked . Stormcellanalysis. At1515UTCseverehailwasreportedintheareaofMykanow(nearCzestochowa).Itisconsidered, that this local circumstances were a “trigger” which substantially contributed to the formation of tornado.Considerableaircoolinginthisareacausedbyintensehailstormafter1500UTCmightlead toformationofbigthermalcontrast.Thunderstormsmaydevelopalongadistinctdry/moistboundary. Thehailstormstartedat1515timeandafter5minutesthegroundwascoveredwiththicklayerofice, insomeplacesreachingthekneesofthegrownman.Suchabighailindicateverystrongupdraft.Just before hail event, at 1445 UTC the darkstripe was observed on the Met9/WV image (Fig.10). This darkstripeisasignofdryadiabaticdescentinitiallyoccurringwithinrearinflow.Thedescendingair wouldacceleratedevelopmentofthecirculationinthecloud.Strongmesoscaledowndraftsaremost likely created by sublimating snow or ice, so the hail could be the reason of starting mesoscale (Schulz,D.M,Schumacher,P.N,1999).

Fig.10Evolutionofconvectivecell(s)inMET9/WV6,2umimagery,enhancedpalette.20.07.2007 Left–1445UTCWVdarkstripefirstappearance,closetofirsthailevent.(1515UTC) Middle–1615UTCWelldevelopeddarkstripe–closetotornadoevent(1610UTC) Right–1815UTCDdarkstripedisappeard AdditionalyschemeofclasicallookofMCSInWVband:source http://www.zamg.ac.at/docu/Manual/SatManu/main.htm?/docu/Manual/SatManu/CMs/CbC/structure.htm Also at 1445 UTC, for the first time on this day, the positive difference of brightness temperature channelsWV6,2 and IR 10,8.(Overshooting Tops) was noted. Within next few hours Overshooting Topswereregisteredoneveryslotindicatingareaofcloudswherethestrongestupdraftexist.Also the IR 10.8 brightness temperature (T below 63 deg C) confirms, that severe weather and heavy rainfallmaybeexpected.TheinterestingfeatureiscorrelationbetweenOvershotingTopsImageand thebrightnesstemperatureofIR10,8andWV6,2.At1715,atalaterstageofstorm’slifecyclethe largepositivevaluesofOvershootingTops(+3C)inaSouthEastpartofclouddoesnotcorrespondto thelowestvalueofIR10,8andWV6,2.(Fig11).

Fig.11.EvolutionofstormcloudindifferentchannelsofMet9.20.07.2007. Upperrow1600UTC–tornadoevent,bottomrow1715UTC–MAturemesoscaleConvectiveSystem From left to the right, IT 10,8 um enhanced Martin Setvak palette, WV 6,2 enhanced palette, VWIR „Overshooting Tops”Image,HRVImage(arrowpointsTornadoarea.),respectively. Conclusions On 20.07.2007 big instability, enough moisture and convergence at the low level let the deep convection developed. Jet stream in high atmosphere, high dew point temperature and inflow of different air mass at the higher level (wind shear) were favourable conditions to funnel cloud and tornado development. Satellite products help to recognize, diagnose and monitor of the whole process. Specialized satellite products improve analysis of convective process development and providesvaluableinformationofpossiblefuturephenomena.Someproductspresenttheirweakness, otherproducts(oftenindevelopmentphase)arepromisingoperationaltools.Useofsatelliteproducts increaseleadtimeforstormnowcastingby30min–2hours. More studies concerning relations between satellite products and physical phenomena at different stages of convection process are highly required. Number of useful satellite products requires „automaticexpertsystem”forpreliminarydataanalysisandforecasterwarning. Furtheruseofvarioussatelliteproductsforcasestudiesisrecommended,toproperlyunderstandtheir addedvalue. Duetolimitedsizeofpapaeronlypartofavailablesatellitetoolswerepresented. Acknowledgments: Authors would like to thank Grazyna Beblot, Irena Tuszynska, Danuta SerafinRek, Małgorzata SzczechGajewskaAleksandraZawadzka,JoannaKozakiewicz,WitoldWiazewski,PiotrDrzewiecki, Leokadia Zagajewska, Magdalena Wells, Roman Kaseja, Józef Warmuz for contribution with data analysisandpreparation. ThepaperisaresultsofcooperationbetweenIMGW/PolandandEUMETSATorganization. References Beblot,G.,Holda,I,KorbekK.,(2008),TrabapowietrznawrejonieCzęstochowywdniu20lipca2007 roku,w:VIIIOgolnopolskaSzkolaZagroŜeńśrodowiska,Paszkowka,MonografieIMGW,Warszawa Koenig, M., (2002):Atmospheric Instability Parameters Derived from MSG SEVIRI Observations. EUMETSATTechnicalMemorandumNo.9. Koenig, M., Pajek, M., Struzik, P., (2007), MSG Global Instability Indices for Storm Nowcasting – ValidationStudiesonproductQualityandanalysisofsensibilitytoinputmodeldata.,In:Joint2007 EUMETSATand15 th AMSConference, P.50 Mecikalski,J.R.,andK.M.Bedka,2006:Forecastingconvectiveinitiationbymonitoringtheevolution ofmovingconvectionindaytimeGOESimagery. Mon. Wea. Rev . 134 ,4978. Odzimek,A.,L.B.N.Clausen,V.Kanawade,I.Cnossen,N.Edberg,F.Faedi,A.DelMoro,U.Ural, K.Byckling,P.Krzaczkowski,R.Iwanski,P.Struzik,M.PajekandW.Gajda(2008),SPARTAN SpriteWatch Campaign 2007, In: 15th Young Scientists Conference on Astronomy and Space Physics.ProceedingsofContributed Papers,editedbyH.Ivashchenkoetal.,'KyivskyiUniversytet',Kyiv.(inprinting) Schulz,D.M,Schumacher,P.N,(1999)TheuseandmisuseofconditionalSymetricinstability,Monthly WeatherReview,Volume127,pp27092732. Setvak, M., Rabin R.M, (2005), MSG observations of deep convective storm. Proc. The 2005 EUMETSATMeteorologicalSatelliteConference,Dubrovnik,Croatia,EUMETSAT ,P.46 .460466. Internet: http://nwcsaf.inm.es/ NWCSAFproductsdescription http://www.eumetsat.int/HOME/Main/Access_to_Data/Meteosat_Meteorological_Products/Product_Lis t/index.htm?l=en –EUMETSATMPEFproductsdescription