Fusing Ancient Concepts Into Contemporary Walkabilty By: Fanis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Highlight
research highlight October 2007 Socio-economic Series 07-013 A Plan for Rainy Days: Water Runoff and Site Planning Introduction In 2004, the City of Stratford (population 30,000) approved a Theoretical secondary plan for a future city expansion area of 155 ha (383 acres), based on an evaluation of three plans, one of which was derived from the CMHC planning model, the Fused Grid.1 The evaluation compared the plans against 16 criteria falling under three overarching concepts of efficiency, quality and environmental impact. Rainwater can be an asset or a liability depending on the approach to dealing with runoff. Since all three plans protected site watercourses and included stormwater management (SWM) ponds as a requirement, the evaluation criteria did not include rainwater runoff impacts. Current research shows that runoff from development can be detrimental to water quality, aquatic life and the maintenance of Figure 1 An experimental site plan layout using medium water resources. New tools for modelling rainwater behaviour and density forms and estate lots. management, such as the Water Balance Model (WBM) for Canada,2 and new approaches for reducing runoff, have been developed and Purpose and Research Approach have begun to be applied. The available land use plans, the need for The study aims to set out the effects of site design approaches, site effective ways to protect watersheds and the new methods of modelling infrastructure methods and site development standards on the potential presented an opportunity to examine in detail what factors influence for reducing or eliminating water runoff from new development. water runoff and to what extent. -
MDOT Access Management Guidebook
ReducingTrafficCongestion andImprovingTrafficSafety inMichiganCommunities: THE ACCESSMANAGEMENT GUIDEBOOK COMMUNITYA COMMUNITYB Cover graphics and ROW graphic by John Warbach, Planning & Zoning Center, Inc. Photos by Tom Doyle, Michigan Department of Transportation. Speed Differential graphic by Michigan Department of Transportation. Road Hierarchy graphic by Rossman Martin & Associates, Inc. Reducing Traffic Congestion and Improving Traffic Safety in Michigan Communities: THE ACCESS MANAGEMENT GUIDEBOOK October, 2001 Prepared by the Planning & Zoning Center, Inc. 715 N. Cedar Street Lansing, MI 48906-5206 517/886-0555 (tele), www.pzcenter.com Under contract to the Michigan Department of Transportation With the assistance of three Advisory Committees listed on the next page The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the Michigan State Transportation Commission or the Michigan Department of Transportation or the Federal Highway Administration. Dedication This Guidebook is dedicated to the countless local elected officials, planning and zoning commissioners, zoning administrators, building inspectors, professional planners, and local, county and state road authority personnel who: • work tirelessly every day to make taxpayers investment in Michigan roads stretch as far as it can with the best possible result; and • who try to make land use decisions that build better communities without undermining the integrity of Michigan's road system. D:\word\access\title -
MEMORANDUM Date: July 10, 2009 TG: 08164.00 To: Terry Moore, Econorthwest From: Andrew Mortensen, Transpo Group Cc: Subject: Street and Non-Motorized Connectivity
MEMORANDUM Date: July 10, 2009 TG: 08164.00 To: Terry Moore, ECONorthwest From: Andrew Mortensen, Transpo Group cc: Subject: Street and Non-Motorized Connectivity This memorandum provides context to the subject matter of street and non-motorized system connectivity. It was originally written as a broad summary for application in various transportation planning studies. It has been modified slightly for better summary of concepts critical to the transportation plan and policy subject matter considered in the Motorized and Non-Motorized Travel Reports as part of the Olympia Mobility Strategy project. The memorandum includes four major sections: 1. Introduction 2. Importance of Connectivity 3. Barriers to Connectivity 4. Travel Impacts Associated with Connectivity 5. Implementing Connectivity Introduction In the early 1960’s a federally driven process was initiated to establish the first set of consistent, street functional classification plans for U.S. cities. These plans and policies were updated and revised in the 1970’s as Metropolitan Planning Organizations (MPOs) were formed to assist in regional transportation planning. Most regional and many local roadway and street functional classification policies originated from the FHWA Functional Classification guidelines1. As noted in the FHWA guideline for urban streets and shown in Figure 1, collectors are mapped on an internal, 1-mile grid to essentially provide ½ or 1/3-mile connection between local streets and the perimeter arterials, Figure 1: FHWA Scheme which form the grid boundary. FHWA’s original ‘scheme” does not indicate nor did the underlying policy direction emphasize external continuity of collector and local street connectors beyond the arterial-bound grid. Since the 1960s, and up until the 1990s, many cities have favored a land development pattern and street hierarchical network of poor connectivity, with numerous cul-de-sacs that connect to a few major arterials. -
Chapter 3: Design an Interconnected Street System
Chapter 3: Design an Interconnected Street System [Figure 3.1 in margin near here] Street systems either maximize connectivity or frustrate it. North American neighborhoods built prior 1950 were rich in connectivity, as evidenced by the relatively high number of street intersections per square mile typically found there.1 Interconnected street systems provide more than one path to reach surrounding major streets. In most interconnected street networks two types of streets predominate: narrow residential streets and arterial streets. In this book, for reasons explained in chapter two, we call these arterial streets in interconnected networks “streetcar” arterials. On the other end of the spectrum are the post WWII suburban cul-de-sac systems where dead end streets predominate and offer only one path from home to surrounding suburban arterials. This cul-de-sac-dominated system can be characterized as dendritic or “treelike”, the opposite of the web of connections found in interconnected systems. Streets in this system all branch out from the main “trunk”, which in Canadian and U.S. cities is usually the freeway. Attached to the main trunk of the freeway are the major “branches”, which are the feeder suburban arterial streets or minor highways. These large branches then give access to the next category down the tree, the collector streets or the minor branches in the system. Collector streets then connect to the “twigs and branch tips” of the system, the residential streets, and dead end cul-de-sacs. The major advantages of the interconnected system is that it makes all trips as short as possible, allows pedestrians and bikes to flow through the system without inconvenience, and relieves congestion by providing many alternate routes to the same place. -
Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps
Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps Master’s Thesis of Florian Pierre Joseph Piewak Department of Computer Science Institute for Anthropomatics and FZI Research Center for Information Technology arXiv:1709.03138v1 [cs.CV] 10 Sep 2017 Reviewer: Prof. Dr.–Ing. J. M. Zöllner Second reviewer: Prof. Dr.–Ing. R. Dillmann Advisors: Dipl.–Inform. Michael Weber Dipl.–Ing. Timo Rehfeld Research Period: December 13th, 2015 – June 12th, 2016 KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps by Florian Pierre Joseph Piewak Master’s Thesis June 2016 Master’s Thesis, FZI Department of Computer Science, 2016 Reviewer: Prof. Dr.–Ing. J. M. Zöllner, Prof. Dr.–Ing. R. Dillmann Department Technical Cognitive Systems FZI Research Center for Information Technology Affirmation Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel voll- ständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben. Sunnyvale, Florian Pierre Joseph Piewak June 2016 iv Abstract One of the most important parts of environment perception is the detection of obstacles in the surrounding of the vehicle. To achieve that, several sensors like radars, LiDARs and cameras are installed in autonomous vehicles. The produced sensor data is fused to a general representation of the surrounding. In this thesis the dynamic occupancy grid map approach of Nuss et al. -
Transportation Master Plan
District of West Kelowna Transportation Master Plan February 20, 2014 District of West Kelowna Transportation Master Plan FORWARD This document represents the work of three independent consultants: Boulevard Transportation Group; Strategic Infrastructure Management Inc.; and Urban Systems Ltd. The experience of each of these consultants was drawn upon to develop and interpret available transportation system data to produce a long‐term strategy and plan intended to achieve a diverse, affordable and sustainable transportation system based upon the vision and goals described herein. District of West Kelowna Transportation Master Plan Revision Log Revision # Revised By Date Revision Description 1 Boulevard Transportation February 27, 2014 Table 7 amended District of West Kelowna Transportation Master Plan EXECUTIVE SUMMARY The Transportation Master Plan (TMP) builds upon the goals and objectives of the District’s Official Community Plan (OCP) to support the social and economic health of the District. The TMP uses current and future travel patterns and public expectations to determine incremental system improvements, and integrates these with existing infrastructure maintenance and renewal needs, to present a practical and affordable long-term transportation strategy. The recommended goals for the West Kelowna TMP are separated into the short-term and long-term. Short-term goals reflect supporting the gaps in the existing road network system as priority. The long-term goals focus on the improvements that will refine the transportation network and the efficiency of the system. Goals and Objectives The TMP’s 3 short term goals are: Connect residential, business, and industrial communities effectively and efficiently; Promote the safety and security of the transportation system; and Reduce vehicular travel with higher degree of mixed land uses. -
Guide to Traffic Management Part 1: Introduction to Traffic Management
SUPERSEDED PUBLICATION This document has been superseded. It should only be used for reference purposes. For current guidance please visit the Austroads website: www.austroads.com.au Guide to Traffic Management Part 1: Introduction to Traffic Management Sydney 2015 Guide to Traffic Management Part 1: Introduction to Traffic Management Third edition project manager: Jill Hislop Publisher Austroads Ltd. Level 9, 287 Elizabeth Street Third edition prepared by: Clarissa Han and James Luk Sydney NSW 2000 Australia First and second edition prepared by: Peter Croft Phone: +61 2 8265 3300 [email protected] Third edition May 2015 www.austroads.com.au Second edition November 2009 First edition published November 2007 About Austroads This third edition includes updated descriptions of each Part in Section 2 and Table 2.1. It also includes additional information on the functional road Austroads’ purpose is to: hierarchy in Section 3.4 and a new Section 4.5 on road environment safety. • promote improved Australian and New Zealand This edition also includes updated referencing to relevant legislations, transport outcomes standards and guidelines. • provide expert technical input to national policy development on road and road transport issues Pages 13 ISBN 978-1-925294-38-5 • promote improved practice and capability by Austroads Project No. NT2004 road agencies. • promote consistency in road and road agency Austroads Publication No. AGTM01-15 operations. © Austroads Ltd 2015 Austroads membership comprises: This work is copyright. Apart from any use as permitted under the • Roads and Maritime Services New South Copyright Act 1968, no part may be reproduced by any process without Wales the prior written permission of Austroads. -
Line Structure Representation for Road Network Analysis
Line Structure Representation for Road Network Analysis Abstract: Road hierarchy and network structure are intimately linked; however, there is not a consistent basis for representing and analysing the particular hierarchical nature of road network structure. The paper introduces the line structure – identified mathematically as a kind of linearly ordered incidence structure – as a means of representing road network structure, and demonstrates its relation to existing representations of road networks: the ‘primal’ graph, the ‘dual’ graph and the route structure. In doing so, the paper shows how properties of continuity, junction type and hierarchy relating to differential continuity and termination are necessarily absent from primal and dual graph representations, but intrinsically present in line structure representations. The information requirements (in terms of matrix size) for specifying line structures relative to graphs are considered. A new property indicative of hierarchical status – ‘cardinality’ – is introduced and illustrated with application to example networks. The paper provides a more comprehensive understanding of the structure of road networks, relating different kinds of network representation, and suggesting potential application to network analysis. Keywords: Network science; Road hierarchy; Route structure; Graph theory; Line structure; Cardinality 1 1 Introduction Road network structure is routinely interpreted in terms of the configuration of roads in structures such as ‘trees’ or ‘grids’; but structure can also be interpreted in terms of the hierarchical relations between main and subsidiary, strategic and local, or through and side roads. In fact, these two kinds of structure – relating to configuration and constitution – are in some ways related. However, despite the proliferation of studies of road network structure, there is not a consistent basis for representing and analysing this dual nature of road network structure, either within traditions of network science or network design and management. -
STAKEHOLDERS' PERCEPTIONS on the DESIGN and FEASIBILITY of the FUSED GRID STREET NETWORK PATTERN by HONG ANH MANG Presented To
STAKEHOLDERS' PERCEPTIONS ON THE DESIGN AND FEASIBILITY OF THE FUSED GRID STREET NETWORK PATTERN by HONG ANH MANG Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF LANDSCAPE ARCHITECTURE THE UNIVERSITY OF TEXAS AT ARLINGTON December 2012 Copyright © by Hong A. Mang 2012 All Rights Reserved ACKNOWLEDGEMENTS There are many professionals who have significantly contributed to this research project with their time and their willingness to share their knowledge, and through their understanding and insights about the fused grid. I have learned a tremendous amount from them and thank them for sharing their wealth of knowledge with me. If not for these people, who set aside precious time from their professional endeavors, this research would not have been possible. I would like to express my utmost gratitude to my chair, Dr. Taner R. Ozdil. From choosing a thesis topic to finalizing my thesis paper, his guidance and patience with me has been invaluable. I deeply appreciate his dedication to research and the long hours he spent discussing this thesis with me. I am also grateful to my professors. Dr. Pat D. Taylor’s thought provoking lectures opened doors that led to both innovation and new ideas. Thank you for allowing me to develop my own way of thinking in regards to urban design. Professor David Hopman’s guidance of people places, planting design and construction drawings are practical lessons that I have come to value as I continue my professional development. Thank you for making site visits possible; it has taught me what the value of an education is, surpassing anything you can learn in classroom lectures. -
LOCAL AREA TRAFFIC MANAGEMENT POLICY and GUIDELINES
LOCAL AREA TRAFFIC MANAGEMENT POLICY and GUIDELINES DM#295899 June 2003 PNCC Local Area Traffic Management(LATM) Policy and Guidelines CONTENTS 1 INTRODUCTION ................................................................................................................ 3 2 OBJECTIVES ..................................................................................................................... 5 3 BENEFITS AND EFFECTS ................................................................................................ 6 4 TYPES OF CONTROLS ..................................................................................................... 9 4.1 Signs ........................................................................................................................... 9 4.1.1 Stop and Give Way .............................................................................................. 9 4.1.2 Prohibited turn signs .......................................................................................... 10 4.1.3 One way streets ................................................................................................. 10 4.2 Vertical Displacement Controls (Speed Humps) ....................................................... 11 4.3 Horizontal Deflection Controls ( Chicanes ) .............................................................. 14 5 SCHEME IMPLEMENTATION PROCESS....................................................................... 18 5.1 Step 1 - Initial Inquiry ................................................................................................ -
Road Markings Sadc - Rtsm - Vol 1 May 2012 Guidance 7.4.5
7.4.4 GUIDANCE BICYCLE GUIDE LINES For dimensions COLOUR: ref. Vo/4 White page 12.1.2 to 12.1.7 GM5 7.4.5 Bicycle Guide Lines 1 BICYCLE GUIDE LINES guidance marking GM5 is a ation, OR where a bicycle lane running parallel to one transverse marking which may be used to indicate to roadway crosses an intersecting side road (see Sub• road users the section of roadway to be used by section 7.2.13). cyclists to cross the roadway. 4 Bicycle crossings will frequently be adjacent to pedestrian 2 BICYCLE GUIDE LINES shall comprise a pair of broken crossings. In such situations, if space is limited, one white lines with a minimum width of 300 mm and a line- BICYCLE GUIDE LINE of the marking may be omitted to-gap ratio of 1 to 3 using dimensions of 300 mm and and that side of the bicycle crossing may be defined by 900 mm. For the normal application of this marking the the PEDESTRIAN CROSSING LINES marking RTM3, or pairs of lines shall be spaced at least 1,5 m apart. BLOCK PEDESTRIAN CROSSING marking RTM4. If there is insufficient space for two separate crossings a 3 Bicycle crossings may require to be marked when an pedestrian crossing should be marked and both exclusive bicycle path, or shared bicycle/pedestrian pedestrians and cyclists directed to use it. path, crosses a roadway, normally in a mid-block situ- ROAD MARKINGS SADC - RTSM - VOL 1 MAY 2012 GUIDANCE 7.4.5 ROAD MARKING SYMBOLS COLOUR: For dimensions ref. -
Filtered and Unfiltered Permeability – the European and Anglo-Saxon Approaches
Steve Melia Filtered and Unfiltered Permeability – The European and Anglo-Saxon Approaches 1. Bus and cycle gate in Delft, Netherlands. Credit: Steve Melia, 2007. Steve Melia is a senior lecturer in transport The term ‘filtered permeability’ was coined by and planning. His research interests have Melia (2008) and subsequently defined in guidance mainly focussed on the interaction between prepared for the Department of Communities and the two. His PhD concerned the potential Local Government in the UK as follows: for carfree development in the UK. He has advised UK Government departments on “Filtered permeability means separating the eco-towns and the Olympic Park Legacy sustainable modes from private motor traffic in Company on planning for the legacy site. order to give them an advantage in terms of speed, distance and convenience. There are many ways in which this can be done: separate cycle and walk ways, bus lanes, bus gates, bridges or tunnels solely for sustainable modes.” (TCPA and CLG, 2008) The term ‘filtered permeability’ was originally coined, following observations and interviews of transport planners around continental Europe, to differentiate these types of layout from the ‘unfiltered permeability’ which is widely recommended by governments, planners and 6 INTERNATIONAL PRACTICE urban designers in the UK and North America. pedestrians and cyclists. Local examples permitting Unfiltered permeability refers to road layouts which such a comparison are rare in North America and provide equal permeability for all modes. In North the UK. America, the rectilinear grid – with streets open to all traffic – was the traditional street layout for One exception to this (Frank and Hawkins, 2008) settlements developed before the late twentieth compared four areas in Washington State, similar century.