Notes for Commutative Algebra Instructor: Johan De Jong
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Geometry of Syzygies
The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points . -
Arxiv:1906.02669V2 [Math.AC] 6 May 2020 Ti O Nw Hte H Ulne-Etncnetr Od for Holds Conjecture Auslander-Reiten Theor the [19, Whether and Rings
THE AUSLANDER-REITEN CONJECTURE FOR CERTAIN NON-GORENSTEIN COHEN-MACAULAY RINGS SHINYA KUMASHIRO Abstract. The Auslander-Reiten conjecture is a notorious open problem about the vanishing of Ext modules. In a Cohen-Macaulay local ring R with a parameter ideal Q, the Auslander-Reiten conjecture holds for R if and only if it holds for the residue ring R/Q. In the former part of this paper, we study the Auslander-Reiten conjecture for the ring R/Qℓ in connection with that for R, and prove the equivalence of them for the case where R is Gorenstein and ℓ ≤ dim R. In the latter part, we generalize the result of the minimal multiplicity by J. Sally. Due to these two of our results, we see that the Auslander-Reiten conjecture holds if there exists an Ulrich ideal whose residue ring is a complete intersection. We also explore the Auslander-Reiten conjecture for determinantal rings. 1. Introduction The Auslander-Reiten conjecture and several related conjectures are problems about the vanishing of Ext modules. As is well-known, the vanishing of cohomology plays a very important role in the study of rings and modules. For a guide to these conjectures, one can consult [8, Appendix A] and [7, 16, 24, 25]. These conjectures originate from the representation theory of algebras, and the theory of commutative ring also greatly contributes to the development of the Auslander-Reiten conjecture; see, for examples, [1, 19, 20, 21]. Let us recall the Auslander-Reiten conjecture over a commutative Noetherian ring R. i Conjecture 1.1. [3] Let M be a finitely generated R-module. -
CATENARITY in MODULE-FINITE ALGEBRAS 1. Introduction Let R Be
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 12, Pages 3495{3502 S 0002-9939(99)04962-X Article electronically published on May 13, 1999 CATENARITY IN MODULE-FINITE ALGEBRAS SHIRO GOTO AND KENJI NISHIDA (Communicated by Ken Goodearl) Abstract. The main theorem says that any module-finite (but not necessarily commutative) algebra Λ over a commutative Noetherian universally catenary ring R is catenary. Hence the ring Λ is catenary if R is Cohen-Macaulay. When R is local and Λ is a Cohen-Macaulay R-module, we have that Λ is a catenary ring, dim Λ = dim Λ=Q +htΛQfor any Q Spec Λ, and the equality ∈ n =htΛQ htΛP holds true for any pair P Q of prime ideals in Λ and for − ⊆ any saturated chain P = P0 P1 Pn =Qof prime ideals between P ⊂ ⊂···⊂ and Q. 1. Introduction Let R be a commutative Noetherian ring and let Λ be an R-algebra which is finitely generated as an R-module. Here we don’t assume Λ to be a commutative ring. The purpose of this article is to prove the following Theorem 1.1. Any module-finite R-algebra Λ is catenary if R is universally cate- nary. Before going ahead, let us recall the definition of catenarity and universal cate- narity ([Ma, p. 84]). We say that our ring Λ is catenary if for any pair P Q of ⊆ prime ideals in Λ and for any saturated chain P = P0 P1 Pn = Q of prime ideals between P and Q, the length n of the chain⊂ is independent⊂ ··· ⊂ of its par- ticular choice and hence equal to htΛ=P Q=P ,wherehtΛ=P Q=P denotes the height of the prime ideal Q=P in Λ=P . -
SPECIALIZATION and INTEGRAL CLOSURE 3 Provided U = U
SPECIALIZATION AND INTEGRAL CLOSURE JOOYOUN HONG AND BERND ULRICH Abstract. We prove that the integral closedness of any ideal of height at least two is com- patible with specialization by a generic element. This opens the possibility for proofs using induction on the height of an ideal. Also, with additional assumptions, we show that an ele- ment is integral over a module if it is so modulo a generic element of the module. This turns questions about integral closures of modules into problems about integral closures of ideals, by means of a construction known as Bourbaki ideal. In this paper we prove in a rather general setting that the integral closure of ideals and modules is preserved under specialization modulo generic elements. Recall that the integral closure I of an ideal I in a commutative ring R is the set of all elements y that are integral over I, i.e., satisfy a polynomial equation of the form ym + α ym−1 + + α ym−i + + α = 0 , 1 · · · i · · · m where α Ii. Alternatively, one can consider the Rees algebra (I) of I, which is the i ∈ R subalgebra R[It] of the polynomial ring R[t]. The integral closure (I) of (I) in R[t] is again a graded algebra, and its graded components recover the integralR closuresR of all powers of I, (I)= R It I2t2 Iiti . R ⊕ ⊕ ⊕ ··· ⊕ ⊕ ··· In our main result, Theorem 2.1, we consider a Noetherian ring R such that the completion (Rm/√0) is reduced and equidimensional for every maximal ideal m of R; for instance, R could be an equidimensional excellent local ring. -
Commutative Algebra
Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions . -
Gorenstein Rings Examples References
Origin Aim of the Thesis Structure of Minimal Injective Resolution Gorenstein Rings Examples References Gorenstein Rings Chau Chi Trung Bachelor Thesis Defense Presentation Supervisor: Dr. Tran Ngoc Hoi University of Science - Vietnam National University Ho Chi Minh City May 2018 Email: [email protected] Origin Aim of the Thesis Structure of Minimal Injective Resolution Gorenstein Rings Examples References Content 1 Origin 2 Aim of the Thesis 3 Structure of Minimal Injective Resolution 4 Gorenstein Rings 5 Examples 6 References Origin ∙ Grothendieck introduced the notion of Gorenstein variety in algebraic geometry. ∙ Serre made a remark that rings of finite injective dimension are just Gorenstein rings. The remark can be found in [9]. ∙ Gorenstein rings have now become a popular notion in commutative algebra and given birth to several definitions such as nearly Gorenstein rings or almost Gorenstein rings. Aim of the Thesis This thesis aims to 1 present basic results on the minimal injective resolution of a module over a Noetherian ring, 2 introduce Gorenstein rings via Bass number and 3 answer elementary questions when one inspects a type of ring (e.g. Is a subring of a Gorenstein ring Gorenstein?). Origin Aim of the Thesis Structure of Minimal Injective Resolution Gorenstein Rings Examples References Structure of Minimal Injective Resolution Unless otherwise specified, let R be a Noetherian commutative ring with 1 6= 0 and M be an R-module. Theorem (E. Matlis) Let E be a nonzero injective R-module. Then we have a direct sum ∼ decomposition E = ⊕i2I Xi in which for each i 2 I, Xi = ER(R=P ) for some P 2 Spec(R). -
Commutative Algebra Ii, Spring 2019, A. Kustin, Class Notes
COMMUTATIVE ALGEBRA II, SPRING 2019, A. KUSTIN, CLASS NOTES 1. REGULAR SEQUENCES This section loosely follows sections 16 and 17 of [6]. Definition 1.1. Let R be a ring and M be a non-zero R-module. (a) The element r of R is regular on M if rm = 0 =) m = 0, for m 2 M. (b) The elements r1; : : : ; rs (of R) form a regular sequence on M, if (i) (r1; : : : ; rs)M 6= M, (ii) r1 is regular on M, r2 is regular on M=(r1)M, ::: , and rs is regular on M=(r1; : : : ; rs−1)M. Example 1.2. The elements x1; : : : ; xn in the polynomial ring R = k[x1; : : : ; xn] form a regular sequence on R. Example 1.3. In general, order matters. Let R = k[x; y; z]. The elements x; y(1 − x); z(1 − x) of R form a regular sequence on R. But the elements y(1 − x); z(1 − x); x do not form a regular sequence on R. Lemma 1.4. If M is a finitely generated module over a Noetherian local ring R, then every regular sequence on M is a regular sequence in any order. Proof. It suffices to show that if x1; x2 is a regular sequence on M, then x2; x1 is a regular sequence on M. Assume x1; x2 is a regular sequence on M. We first show that x2 is regular on M. If x2m = 0, then the hypothesis that x1; x2 is a regular sequence on M guarantees that m 2 x1M; thus m = x1m1 for some m1. -
Lectures on Local Cohomology
Contemporary Mathematics Lectures on Local Cohomology Craig Huneke and Appendix 1 by Amelia Taylor Abstract. This article is based on five lectures the author gave during the summer school, In- teractions between Homotopy Theory and Algebra, from July 26–August 6, 2004, held at the University of Chicago, organized by Lucho Avramov, Dan Christensen, Bill Dwyer, Mike Mandell, and Brooke Shipley. These notes introduce basic concepts concerning local cohomology, and use them to build a proof of a theorem Grothendieck concerning the connectedness of the spectrum of certain rings. Several applications are given, including a theorem of Fulton and Hansen concern- ing the connectedness of intersections of algebraic varieties. In an appendix written by Amelia Taylor, an another application is given to prove a theorem of Kalkbrenner and Sturmfels about the reduced initial ideals of prime ideals. Contents 1. Introduction 1 2. Local Cohomology 3 3. Injective Modules over Noetherian Rings and Matlis Duality 10 4. Cohen-Macaulay and Gorenstein rings 16 d 5. Vanishing Theorems and the Structure of Hm(R) 22 6. Vanishing Theorems II 26 7. Appendix 1: Using local cohomology to prove a result of Kalkbrenner and Sturmfels 32 8. Appendix 2: Bass numbers and Gorenstein Rings 37 References 41 1. Introduction Local cohomology was introduced by Grothendieck in the early 1960s, in part to answer a conjecture of Pierre Samuel about when certain types of commutative rings are unique factorization 2000 Mathematics Subject Classification. Primary 13C11, 13D45, 13H10. Key words and phrases. local cohomology, Gorenstein ring, initial ideal. The first author was supported in part by a grant from the National Science Foundation, DMS-0244405. -
Cohen-Macaulay Rings and Schemes
Cohen-Macaulay rings and schemes Caleb Ji Summer 2021 Several of my friends and I were traumatized by Cohen-Macaulay rings in our commuta- tive algebra class. In particular, we did not understand the motivation for the definition, nor what it implied geometrically. The purpose of this paper is to show that the Cohen-Macaulay condition is indeed a fruitful notion in algebraic geometry. First we explain the basic defini- tions from commutative algebra. Then we give various geometric interpretations of Cohen- Macaulay rings. Finally we touch on some other areas where the Cohen-Macaulay condition shows up: Serre duality and the Upper Bound Theorem. Contents 1 Definitions and first examples1 1.1 Preliminary notions..................................1 1.2 Depth and Cohen-Macaulay rings...........................3 2 Geometric properties3 2.1 Complete intersections and smoothness.......................3 2.2 Catenary and equidimensional rings.........................4 2.3 The unmixedness theorem and miracle flatness...................5 3 Other applications5 3.1 Serre duality......................................5 3.2 The Upper Bound Theorem (combinatorics!)....................6 References 7 1 Definitions and first examples We begin by listing some relevant foundational results (without commentary, but with a few hints on proofs) of commutative algebra. Then we define depth and Cohen-Macaulay rings and present some basic properties and examples. Most of this section and the next are based on the exposition in [1]. 1.1 Preliminary notions Full details regarding the following standard facts can be found in most commutative algebra textbooks, e.g. Theorem 1.1 (Nakayama’s lemma). Let (A; m) be a local ring and let M be a finitely generated A-module. -
Math 711: Lecture of September 19, 2007
Math 711: Lecture of September 19, 2007 Earlier (see the Lecture of September 7, p. 7) we discussed very briefly the class of excellent Noetherian rings. The condition that a ring be excellent or, at least, locally ex- cellent, is the right hypothesis for many theorems on tight closure. The theory of excellent rings is substantial enough to occupy an entire course, and we do not want to spend an inordinate amount of time on it here. We shall summarize what we need to know about excellent rings in this lecture. In the sequel, the reader who prefers may restrict attention to rings essentially of finite type over a field or over a complete local ring, which is the most important family of rings for applications. The definition of an excellent Noetherian ring was given by Grothendieck. A readable treatment of the subject, which is a reference for all of the facts about excellent rings stated without proof in this lecture, is [H. Matsumura, Commutative Algebra, W.A. Benjamin, New York, 1970], Chapter 13. Before discussing excellence, we want to review the notion of fibers of ring homomor- phisms. Fibers Let f : R → S be a ring homomorphism and let P be a prime ideal of R. We write κP for the canonically isomorphic R-algrebras ∼ frac (R/P ) = RP /P RP . By the fiber of f over P we mean the κP -algebra ∼ −1 κP ⊗R S = (R − P ) S/P S which is also an R-algebra (since we have R → κP ) and an S-algebra. One of the key points about this terminology is that the map Spec (κP ⊗R S) → Spec (S) gives a bijection between the prime ideals of κP ⊗R S and the prime ideals of S that lie over P ⊆ R. -
Associated Primes and Integral Closure of Noetherian Rings
ASSOCIATED PRIMES AND INTEGRAL CLOSURE OF NOETHERIAN RINGS ANTONI RANGACHEV Abstract. Let A be a Noetherian ring and B be a finitely generated A-algebra. Denote by A the integral closure of A in B. We give necessary and sufficient conditions for a prime p in A to be in AssA(B=A) generalizing and strengthening classical results for rings of special type. 1. Introduction Let A ⊂ B be commutative rings with identity. Denote the integral closure of A in B by A. The main result of the paper is the following theorem. Theorem 1.1. Suppose A is Noetherian and B is a finitely generated A-algebra. (i) Suppose that the minimal primes of B contract to primes of height at most one in A. If q 2 AssA(B=A), then ht(q) ≤ 1. If p 2 AssA(B=A), then there exists a prime q in A with ht(q) ≤ 1 that contracts to p. (ii) Suppose that the minimal primes of B contract to minimal primes of A and Apmin = Apmin for each minimal prime pmin of A. Then there exists f 2 A such that AssA(B=A) ⊆ AssA(Bf =Af ) [ AssA(Ared=fAred): Furthermore, AssA(B=A) is finite. (iii) Suppose A is equidimensional and universally catenary and suppose that the minimal primes of B contract to minimal primes of A. If p 2 AssA(B=A), then ht(p) ≤ 1. If A is reduced, and if B is contained in the ring of fractions of A and is integrally closed, then A is the integral closure of A in its ring of fractions. -
Some Homological Properties of Modules Over a Complete Intersection, with Applications
SOME HOMOLOGICAL PROPERTIES OF MODULES OVER A COMPLETE INTERSECTION, WITH APPLICATIONS HAILONG DAO Abstract. We survey some recent developments in understanding homological properties of finitely generated modules over a complete intersection. These properties mainly concern with vanishing patterns of Ext and Tor functors. We focus on applications to related areas and open questions. Contents 1. Introduction 2 2. Notations and preliminary results 3 2.1. Generalities on rings and modules 3 2.2. The Auslander-Bridger transpose 4 2.3. Serre's condition (Sn) 4 2.4. Partial Euler characteristics and intersection multiplicities 5 2.5. Change of rings sequences 6 2.6. Chow and Grothendieck groups 6 3. Tor-rigidity and some consequences 7 3.1. Tor-rigidity 7 4. Warm-up: modules over regular local rings 8 4.1. Tor-rigidity and the UFD property 8 4.2. Torsion-freeness of tensor products and a flatness criterion 9 4.3. An equivalent condition for vanishing of Tor and intersection multiplicities 10 5. The hypersurface case and Hochster's theta pairing 11 5.1. Periodic resolutions 11 5.2. Hochster's theta pairing and Tor-rigidity 12 5.3. Vanishing of θR(−; −) 13 6. Asymptotic behavior of Ext and Tor over complete intersections 15 6.1. Cohomology operators and support varieties 15 6.2. Length of Tor and a generalized version of Hochster's pairing 16 7. Applications: class groups and Picard groups 18 7.1. The Lipman-Danilov theorem 18 7.2. The Grothendieck-Lefschetz theorem 18 7.3. Gabber's conjecture 19 8. Applications: intersection of subvarieties, splitting of vector bundles and non- commutative crepant resolutions 21 8.1.