Hyman Bass and Ubiquity: Gorenstein Rings

Total Page:16

File Type:pdf, Size:1020Kb

Hyman Bass and Ubiquity: Gorenstein Rings Contemp orary Mathematics Volume 00 XXXX Hyman Bass and Ubiquity Gorenstein Rings Craig Huneke Dedicated to Hyman Bass Abstract This pap er is based on a talk given by the author in Octob er at a conference in Columbia University in celebration of Hyman Basss th birthday The pap er details some of the history of Gorenstein rings and their uses Contents Intro duction Plane Curves Commutative Algebra circa Gorenstein Rings Examples and Low Co dimension Injective Mo dules and Matlis Duality Ubiquity Homological Themes Inverse Powers and dimensional Gorenstein Rings Hilb ert Functions Invariants and Gorenstein Rings Ubiquity and Mo dule Theory Bibliography Intro duction In an article app eared in Mathematische Zeitschrift with an interesting title On the ubiquity of Gorenstein rings and fascinating content The author Mathematics Subject Classication Primary CDH Secondary B Key words and phrases Gorenstein rings The author was supp orted in part by the NSF c XXXX American Mathematical So ciety CRAIG HUNEKE was Hyman Bass The article has b ecome one of the mostread and quoted math articles in the world A journal survey done in Ga showed that it ranked third among mostquoted pap ers from core math journals For every young student in commutative algebra it is at the top of a list of pap ers to read The rst thing I did as a graduate student when I op ened the journal to this pap er was to reach for a dictionary Definition Ubiquity The state or capacity of b eing everywhere esp ecially at the same time omnipresent This article will give some of the historical background of Gorenstein rings explain a little of why they are ubiquitous and useful and give practical ways of computing them The prop erty of a ring b eing Gorenstein is fundamentally a statement of symmetry The Gorenstein of Gorenstein rings is Daniel Gorenstein the same who is famous for his role in the classication of nite simple groups A question o ccurring to everyone who studies Gorenstein rings is Why are they called Gorenstein rings His name b eing attached to this concept go es back to his thesis on plane curves written under Oscar Zariski and published in the Transactions of the American Mathematical So ciety in Go As we shall see they could p erhaps more justiably b e called Bass rings or Grothendieck rings or Serre rings or Rosenlicht rings The usual denition now used in most textb o oks go es back to the work of Bass in the ubiquity pap er Plane Curves The origins of Gorenstein rings go back to the classical study of plane curves Fix a eld k and let f X Y b e a p olynomial in the ring k X Y By a plane curve we will mean the ring R k X Y f If k is algebraically closed Hilb erts Nullstellensatz allows us to identify the maximal ideals of this ring with the solutions of f X Y which lie in k via the corresp ondence of solutions k with maximal ideals X Y In his thesis Gorenstein was interested in the prop erties of the socalled adjoint curves to an irreducible plane curve f However his main theorem had to do with the integral closure of a plane curve Definition Let R b e an integral domain with fraction eld K The integral closure of R is the set of all elements of K satisfying a monic p olynomial with co ecients in R The integral closure is a ring T containing R which is itself integrally closed An imp ortant measure of the dierence b etween R and its integral closure T is the conductor ideal denoted C CT R C fr R j r T R g It is the largest common ideal of b oth R and T Example Let R k t t k X Y X Y The element t t t is in the fraction eld of R and is clearly integral over R It follows that the integral closure of R is T k t The dimension over k of T R can b e computed by counting HYMAN BASS AND UBIQUITY GORENSTEIN RINGS p owers of t in T but not in R since the p owers of t form a k basis of b oth R and T The conductor is the largest common ideal of b oth T and R It will contain some c least p ower of t say t and then must contain all higher p owers of t since it is an ideal in T To describ e R T and C it suces to give the exp onents of the p owers of t inside each of them For T For R For C A surprising phenomenon can b e found by examining this chart the numb er of monomials in T but not in R is the same as the numb er in R but not in the conductor C In this example there are six such monomials More precisely the vector space dimension of T R is equal to that of R C Is this an accident It is no accident and this equality is the main theorem of Gorenstein lo cally on the curve In fact indep endently Apery A in Samuel Sa in and Gorenstein Go in all proved that given a prime Q of a plane curve R with integral closure T and conductor C dim T R dim R C k Q Q k Q Q where T R and C are the lo calizations at the prime Q In other words we Q Q Q invert all elements outside of Q R is then a lo cal ring with unique maximal ideal Q Q It turns out that al l dimensional lo cal Gorenstein domains have this fun Q damental equality in fact it essentially characterizes such dimensional domains Plane curves are a simple example of Gorenstein rings the simplest examples are p olynomial rings or formal p ower series rings More general than plane curves are complete intersections Let S a regular ring eg the p olynomial ring k X X or a regular lo cal ring and let R SI n The co dimension of R or I is dened by co dimR dim S dim R n dimR R is said to b e a complete intersection if I can b e generated by co dim R elements Plane curves are a simple example since they are dened by one equation All complete intersections are CohenMacaulay and the dening ideal I will b e generated by a regular sequence An imp ortant example of a complete intersection is Z where is a nitely generated ab elian group In Rosenlicht Ro proved the equality dim T R dim R C k Q Q k Q Q for lo calizations of complete intersection curves ie for onedimensional domains R of the form R k X X F F n n with integral closure T and conductor C Furthermore Rosenlicht proved that a lo cal ring R of an algebraic curve had the prop erty that dim T R dim R C i the mo dule of regular dierentials k k is a free R mo dule It is interesting that b oth Gorenstein and Rosenlicht were students of Zariski As for plane curves complete intersections are also sp ecial examples of Gorenstein rings To explain the background and denitions we need to review the state of commutative algebra around CRAIG HUNEKE Commutative Algebra circa The most basic commutative rings are the p olynomials rings over a eld or the integers and their quotient rings Of particular imp ortance are the rings whose cor resp onding varieties are nonsingular To understand the notion of nonsingularity in terms of the ring structure the notion of regular lo cal rings was develop ed DefinitionTheorem A regular local ring S n is a No etherian lo cal ring which satises one of the following equivalent prop erties The maximal ideal n is generated by dimS elements Every nitely generated S mo dule M has a nite resolution by nitely gen erated free S mo dules ie there is an exact sequence k 1 k F F F M k k where the F are nitely generated free S mo dules i The residue eld Sn has a nite free resolution as in These equivalences are due to AuslanderBuchsbaum AuBu and Serre Se and marked a watershed in commutative algebra One immediate use of this theo rem was to prove that the lo calization of a regular lo cal ring is still regular Regular lo cal rings corresp ond to the lo calizations of ane varieties at nonsingular p oints The existence of a nite free resolution for nitely generated mo dules is of crucial imp ortance For example in Auslander and Buchsbaum AuBu used the existence of such resolutions to prove their celebrated result that regular lo cal rings are UFDs A resolution as in is said to b e minimal if F nF In this case it is i i i unique up to an isomorphism The length of a minimal resolution is the pro jective dimension of M denoted p d M S We say a No etherian ring is regular if it is lo cally at each of its primes Every p olynomial ring or p ower series ring over a eld is regular Other typ es of rings were b ecoming increasingly interesting and imp ortant To explain these some further denitions are helpful A lo cal ring R m is a No etherian commutative ring with a unique maximal ideal m An mprimary ideal I is any ideal such that one of the following equivalent conditions hold R I is dimension R I is Artinian The nilradical of I is m SuppR I fmg A regular sequence x x on an R mo dule M is any set of elements such t that x x M M and such that x is not a zerodivisor on M x is not t a zerodivisor on the mo dule M x M and in general x is not a zerodivisor on i M x x M i The depth of a nitely generated mo dule over a lo cal ring R is the maximal length of a regular sequence on the mo dule M is said to b e CohenMacaulay if depthM dim M This is the largest p ossible value for the depth HYMAN BASS AND UBIQUITY GORENSTEIN RINGS A sop system of parameters for a lo cal ring R of dimension d is any d elements x x which generate an mprimary ideal d A lo cal ring is CohenMacaulay i every equivalently one system of param eters forms a regular sequence A lo cal ring R is regular i the maximal ideal is generated by a sop The height of a prime ideal P in a commutative ring R is the supremum of integers n such that there is a chain of distinct prime ideals P P P P
Recommended publications
  • R Mathematics Esearch Eports
    Mathematics r research reports M r Boris Hasselblatt, Svetlana Katok, Michele Benzi, Dmitry Burago, Alessandra Celletti, Tobias Holck Colding, Brian Conrey, Josselin Garnier, Timothy Gowers, Robert Griess, Linus Kramer, Barry Mazur, Walter Neumann, Alexander Olshanskii, Christopher Sogge, Benjamin Sudakov, Hugh Woodin, Yuri Zarhin, Tamar Ziegler Editorial Volume 1 (2020), p. 1-3. <http://mrr.centre-mersenne.org/item/MRR_2020__1__1_0> © The journal and the authors, 2020. Some rights reserved. This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ Mathematics Research Reports is member of the Centre Mersenne for Open Scientific Publishing www.centre-mersenne.org Mathema tics research reports Volume 1 (2020), 1–3 Editorial This is the inaugural volume of Mathematics Research Reports, a journal owned by mathematicians, and dedicated to the principles of fair open access and academic self- determination. Articles in Mathematics Research Reports are freely available for a world-wide audi- ence, with no author publication charges (diamond open access) but high production value, thanks to financial support from the Anatole Katok Center for Dynamical Sys- tems and Geometry at the Pennsylvania State University and to the infrastructure of the Centre Mersenne. The articles in MRR are research announcements of significant ad- vances in all branches of mathematics, short complete papers of original research (up to about 15 journal pages), and review articles (up to about 30 journal pages). They communicate their contents to a broad mathematical audience and should meet high standards for mathematical content and clarity. The entire Editorial Board approves the acceptance of any paper for publication, and appointments to the board are made by the board itself.
    [Show full text]
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • Metabelian Groups with the Same Finite Quotients
    BULL. AUSTRAL. MATH. SOC. 20E25, 20EI5, I6A64 VOL. II (1974), 115-120. Metabelian groups with the same finite quotients P.F. Pickel Let F(G) denote the set of isomorphism classes of finite quotients of the group G . Two groups G and H are said to have the same finite quotients if F(G) = T(H) . We construct infinitely many nonisomorphic finitely presented metabelian groups with the same finite quotients, using modules over a suitably chosen ring. These groups also give an example of infinitely many nonisomorphic split extensions of a fixed finitely presented metabelian. group by a fixed finite abelian group, all having the same finite quotients. Let F(G) denote the set of isomorphism classes of finite quotients of the group G . We say groups G and H have the same finite quotients if F(G) = F(fl) . Many examples have been given of nonisomorphic groups with the same finite quotients ([77], [5H, [4], [9], [72]). In each of these examples the groups are polycyclic and the number of nonisomorphic groups with the same finite quotients is finite. In fact, it has been shown ([70]) that for the class of nilpotent-by-finite groups, the number of isomorphism classes of groups with the same finite quotients must always be finite. In this paper, we construct infinitely many nonisomorphic finitely presented metabelian groups with the same finite quotients. Since metabelian groups are residually finite ([7]) and satisfy the maximal condition for normal subgroups ([6]), it seems that rather stringent conditions must hold in order that the number of groups with the same finite quotients be finite.
    [Show full text]
  • M-Adic Perturbations in Noetherian Local Rings
    Perturbations in Noetherian Local Rings m-adic Perturbations in Noetherian Local Rings Nick Cox-Steib [email protected] University of Missouri Abstract We develop new methods to study m-adic stability in an arbitrary Noetherian local ring. These tech- niques are used to prove results about the behavior of Hilbert-Samuel and Hilbert-Kunz multiplicities under fine m-adic perturbations. 1 Introduction The topic of this paper involves comparing a fixed ideal, I =( f1,..., fc) = f , inside a Noetherian local ring, (R,m ), with ideals of the form ( f + ε , f + ε ,..., f + ε ) = f + ε , where ε ,...,ε are in R 1 1 2 2 c c 1 c some large power of the maximal ideal of R. When it is in the interest of clarity and space and the ideal I is understood, we often use the notation M M M M := = , and M := IM f M ( f +ε) f + ε M where M is an R-module. We will refer to the ideals f + ε , as mR-adic perturbations of I, and, more generally, we may also speak of the quotients M as perturbations of M. At the most basic level, we ( f +ε) want to understand the relationship between I and its perturbations. Recent interest in these problems stems from their relationship to the deformation of properties. This arXiv:2011.08044v2 [math.AC] 14 Dec 2020 relationship has been formalized in a recent paper by De Stefani and Smirnov with the concept of m-adic stability [SS20]. A property, P, of Noetherian local rings is m-adically stable if it is stable under sufficiently small perturbations of ideals generated by a regular element — that is, for every regular element f in a Noetherian local ring (R,m) such that R/( f ) has property P, there is an N ∈ N such that R/( f + ε) also has property P for all ε ∈ mN.
    [Show full text]
  • Algebra & Number Theory Vol. 7 (2013)
    Algebra & Number Theory Volume 7 2013 No. 3 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Edward Frenkel University of California, Berkeley, USA Michael Singer North Carolina State University, USA Andrew Granville Université de Montréal, Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Virginia, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale University, USA Ravi Vakil Stanford University,
    [Show full text]
  • Semi-Dualizing Complexes and Their Auslander Categories
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 5, Pages 1839{1883 S 0002-9947(01)02627-7 Article electronically published on January 4, 2001 SEMI-DUALIZING COMPLEXES AND THEIR AUSLANDER CATEGORIES LARS WINTHER CHRISTENSEN Abstract. Let R be a commutative Noetherian ring. We study R{modules, and complexes of such, with excellent duality properties. While their common properties are strong enough to admit a rich theory, we count among them such, potentially, diverse objects as dualizing complexes for R on one side, and on the other, the ring itself. In several ways, these two examples constitute the extremes, and their well-understood properties serve as guidelines for our study; however, also the employment, in recent studies of ring homomorphisms, of complexes \lying between" these extremes is incentive. Introduction In this paper all rings are commutative and Noetherian, in particular, R always denotes such a ring. We study R{complexes (that is, complexes of R{modules) with certain excellent duality properties. The canonical example is the ring itself, considered as a complex concentrated in degree zero. Another example is dualizing complexes for R; these were introduced by A. Grothendieck in [RAD] and have proved to be a powerful tool, as demonstrated by P. Roberts in [PRb76], and by C. Peskine and L. Szpiro in [CPsLSz73]. Modules with excellent duality properties have been studied by H.{B. Foxby in [HBF72], and in [EGl84] by E.S. Golod, who used the name suitable1 for these modules. Other complexes of the kind considered here were used tacitly by L.L. Avramov and H.{B.
    [Show full text]
  • Characterizing Gorenstein Rings Using Contracting Endomorphisms
    CHARACTERIZING GORENSTEIN RINGS USING CONTRACTING ENDOMORPHISMS BRITTNEY FALAHOLA AND THOMAS MARLEY Dedicated to Craig Huneke on the occasion of his 65th birthday. Abstract. We prove several characterizations of Gorenstein rings in terms of vanishings of derived functors of certain modules or complexes whose scalars are restricted via contracting endomorphisms. These results can be viewed as analogues of results of Kunz (in the case of the Frobenius) and Avramov- Hochster-Iyengar-Yao (in the case of general contracting endomorphisms). 1. Introduction In 1969 Kunz [17] proved that a commutative Noetherian local ring of prime char- acteristic is regular if and only if some (equivalently, every) power of the Frobenius endomorphism is flat. Subsequently, the Frobenius map has been employed to great effect to study homological properties of commutative Noetherian local rings; see [20], [10], [23], [16], [4] and [3], for example. In this paper, we explore characteriza- tions of Gorenstein rings using the Frobenius map, or more generally, contracting endomorphisms. Results of this type have been obtained by Iyengar and Sather- Wagstaff [14], Goto [9], Rahmati [21], Marley [18], and others. Our primary goal is to obtain characterizations for a local ring to be Gorenstein in terms of one or more vanishings of derived functors in which one of the modules is viewed as an R-module by means of a contracting endomorphism (i.e., via restriction of scalars). A prototype of a result of this kind for regularity is given by Theorem 1.1 below. Let R be a commutative Noetherian local ring with maximal ideal m and φ : R ! R an endomorphism which is contracting, i.e., φi(m) ⊆ m2 for some i.
    [Show full text]
  • Cohen-Macaulay Modules Over Gorenstein Local Rings
    COHEN{MACAULAY MODULES OVER GORENSTEIN LOCAL RINGS RYO TAKAHASHI Contents Introduction 1 1. Associated primes 1 2. Depth 3 3. Krull dimension 6 4. Cohen{Macaulay rings and Gorenstein rings 9 Appendix A. Proof of Theorem 1.12 11 Appendix B. Proof of Theorem 4.8 13 References 17 Introduction Goal. The structure theorem of (maximal) Cohen{Macaulay modules over commutative Gorenstein local rings Throughout. • (R : a commutative Noetherian ring with 1 A = k[[X; Y ]]=(XY ) • k : a field B = k[[X; Y ]]=(X2;XY ) • x := X; y := Y 1. Associated primes Def 1.1. Let I ( R be an ideal of R (1) I is a maximal ideal if there exists no ideal J of R with I ( J ( R (2) I is a prime ideal if (ab 2 I ) a 2 I or b 2 I) (3) Spec R := fPrime ideals of Rg Ex 1.2. Spec A = f(x); (y); (x; y)g; Spec B = f(x); (x; y)g Prop 1.3. I ⊆ R an ideal (1) I is prime iff R=I is an integral domain (2) I is maximal iff R=I is a field 2010 Mathematics Subject Classification. 13C14, 13C15, 13D07, 13H10. Key words and phrases. Associated prime, Cohen{Macaulay module, Cohen{Macaulay ring, Ext module, Gorenstein ring, Krull dimension. 1 2 RYO TAKAHASHI (3) Every maximal ideal is prime Throughout the rest of this section, let M be an R-module. Def 1.4. p 2 Spec R is an associated prime of M if 9 x 2 M s.t p = ann(x) AssR M := fAssociated primes of Mg Ex 1.5.
    [Show full text]
  • Irving Kaplansky
    Portraying and remembering Irving Kaplansky Hyman Bass University of Michigan Mathematical Sciences Research Institute • February 23, 2007 1 Irving (“Kap”) Kaplansky “infinitely algebraic” “I liked the algebraic way of looking at things. I’m additionally fascinated when the algebraic method is applied to infinite objects.” 1917 - 2006 A Gallery of Portraits 2 Family portrait: Kap as son • Born 22 March, 1917 in Toronto, (youngest of 4 children) shortly after his parents emigrated to Canada from Poland. • Father Samuel: Studied to be a rabbi in Poland; worked as a tailor in Toronto. • Mother Anna: Little schooling, but enterprising: “Health Bread Bakeries” supported (& employed) the whole family 3 Kap’s father’s grandfather Kap’s father’s parents Kap (age 4) with family 4 Family Portrait: Kap as father • 1951: Married Chellie Brenner, a grad student at Harvard Warm hearted, ebullient, outwardly emotional (unlike Kap) • Three children: Steven, Alex, Lucy "He taught me and my brothers a lot, (including) what is really the most important lesson: to do the thing you love and not worry about making money." • Died 25 June, 2006, at Steven’s home in Sherman Oaks, CA Eight months before his death he was still doing mathematics. Steven asked, -“What are you working on, Dad?” -“It would take too long to explain.” 5 Kap & Chellie marry 1951 Family portrait, 1972 Alex Steven Lucy Kap Chellie 6 Kap – The perfect accompanist “At age 4, I was taken to a Yiddish musical, Die Goldene Kala. It was a revelation to me that there could be this kind of entertainment with music.
    [Show full text]
  • Arxiv:1906.02669V2 [Math.AC] 6 May 2020 Ti O Nw Hte H Ulne-Etncnetr Od for Holds Conjecture Auslander-Reiten Theor the [19, Whether and Rings
    THE AUSLANDER-REITEN CONJECTURE FOR CERTAIN NON-GORENSTEIN COHEN-MACAULAY RINGS SHINYA KUMASHIRO Abstract. The Auslander-Reiten conjecture is a notorious open problem about the vanishing of Ext modules. In a Cohen-Macaulay local ring R with a parameter ideal Q, the Auslander-Reiten conjecture holds for R if and only if it holds for the residue ring R/Q. In the former part of this paper, we study the Auslander-Reiten conjecture for the ring R/Qℓ in connection with that for R, and prove the equivalence of them for the case where R is Gorenstein and ℓ ≤ dim R. In the latter part, we generalize the result of the minimal multiplicity by J. Sally. Due to these two of our results, we see that the Auslander-Reiten conjecture holds if there exists an Ulrich ideal whose residue ring is a complete intersection. We also explore the Auslander-Reiten conjecture for determinantal rings. 1. Introduction The Auslander-Reiten conjecture and several related conjectures are problems about the vanishing of Ext modules. As is well-known, the vanishing of cohomology plays a very important role in the study of rings and modules. For a guide to these conjectures, one can consult [8, Appendix A] and [7, 16, 24, 25]. These conjectures originate from the representation theory of algebras, and the theory of commutative ring also greatly contributes to the development of the Auslander-Reiten conjecture; see, for examples, [1, 19, 20, 21]. Let us recall the Auslander-Reiten conjecture over a commutative Noetherian ring R. i Conjecture 1.1. [3] Let M be a finitely generated R-module.
    [Show full text]
  • Mathematical Genealogy of the Wellesley College Department Of
    Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe
    [Show full text]
  • Commutative Algebra Provides a Big Surprise for Craig Huneke's Birthday
    CÓÑÑÙØaØiÚe aÐgebÖa ÔÖÓÚide× a big ×ÙÖÔÖi×e fÓÖ CÖaig ÀÙÒeke³× biÖØhdaÝ Irena Swanson Communicated by Tom Garrity A commutative algebra conference in July, 2016, on the occasion of Craig Huneke’s 65th birthday, included a major mathematical surprise. Craig Huneke has been at the forefront of research in commutative algebra, introducing and advancing several influential notions, such as d-sequences, licci ideals, symbolic powers, homological methods, computational methods, tight closure, uniform bounds, and prime characteristic methods. He has mentored 24 PhD students and many postdocs; he has co-organized conferences, such as the Kansas-Missouri-Nebraska KUMUNU commutative algebra conference; he has served on the Executive Committee of the AMS and on the Board of Trustees of the MSRI. Almost all the talks were directly related to Huneke’s work, and most speakers started their talks describing how Huneke affected their work as a mathematician and as a person; they talked about his mathematical productivity, extensive collaborations, productive and precious lunches with napkin notes, excellent and influential talks, his advising, mentoring, his friendly competitiveness, and so on. Claudia Polini addressed how commutative algebra in general is friendly to women (possibly due to Emmy Noether being one of us), and in particular how Huneke has been a tremendous role model as a teacher, collaborator, mentor, and organizer. His own family life, with wife Edith Clowes, Professor of Slavic Languages and Literatures, and their children Sam and Ned, has been a shining example for possibilities in home and professional life for women in academia. During the banquet, Hochster read his poem honoring Huneke.
    [Show full text]