Influence of Diet on Urinary Ph, Urine and Serum Biochemical Variables, and Blood-Ionized Calcium Concentrations in Healthy Dogs*

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Diet on Urinary Ph, Urine and Serum Biochemical Variables, and Blood-Ionized Calcium Concentrations in Healthy Dogs* H. K. Gleaton, J. W. Bartges, and D. P. Laflamme Influence of Diet on Urinary pH, Urine and Serum Biochemical Variables, and Blood-Ionized Calcium Concentrations in Healthy Dogs* Heather K. Gleaton, DVMa Joseph W. Bartges, DVM, PhDb Dottie P. Laflamme, DVM, MS, PhDc aHolly Tree Animal Hospital 1332 South Highway 14 Simpsonville, SC 29681 bDepartment of Small Animal Clinical Sciences College of Veterinary Medicine The University of Tennessee Box 1071 Knoxville, TN 37901-1071 cThe Ralston Purina Company Checkerboard Square St. Louis, MO 63164 I ABSTRACT to aid in management of fiber-responsive dis- Urolithiasis is a common cause of lower uri- eases (Diet B; CNM Canine DCO [dry], Ral- nary tract disease in dogs. Diet influences urine ston Purina Co, St. Louis, MO); a diet formu- composition, and dietary change is often in- lated to aid in management of chronic renal corporated into medical management of failure (Diet C; CNM Canine NF [dry], Ral- uroliths. The purpose of this study was to de- ston Purina Co, St. Louis, MO); and a diet de- termine the influence of four diets on urine pH signed to aid in prevention of struvite urolithi- in healthy dogs. Sixteen adult dogs of various asis (Diet D; Prescription Diet Canine c/d breeds, ages, and weights were fed four diets in [dry], Hill’s Pet Nutrition Inc, Topeka, KS). Latin Square design: a diet formulated for Diets were fed for 21 days. On day 21, blood adult dogs at maintenance (Diet A; ProPlan and urine samples were collected before feed- Canine Chicken and Rice Adult [dry], Ralston ing one-half of daily caloric requirements, and Purina Co, St. Louis, MO); a diet formulated urine was collected 4 and 8 hours later. A bio- *This study was supported by a Summer Student chemical analysis and ionized-calcium test Research Grant from Ralston Purina Company, were conducted on blood samples, and a com- Checkerboard Square, St. Louis, MO 63164. It was plete urinalysis and urine pH determined by a conducted while Dr. Bartges was on faculty in the Department of Small Animal Medicine, College of pH-electrode were conducted on urine sam- Veterinary Medicine, The University of Georgia, ples. Thirteen dogs completed the study. Athens, GA 30602. Serum phosphorous concentrations were 61 Veterinary Therapeutics • Vol. 2, No. 1, Winter 2001 significantly lower and urine pH was signifi- tenance adult foods is reported to promote cantly higher when dogs consumed Diet C struvite urolith dissolution in dogs and cats.3,6,7 when compared with the other three diets. A In cats, dietary modification is thought to be postprandial effect on urine pH was not important in preventing sterile struvite recur- demonstrated when dogs consumed any diet. rence.5 The role of diet in preventing infection- Other urinalysis parameters were not different induced struvite uroliths is less clear. Because between dogs or diets. Diet does influence struvite is more soluble in acidic urine in cats, urine pH in healthy dogs; however, healthy researchers have extrapolated that consump- dogs produced urine with an acidic pH except tion of diets inducing aciduria might be bene- while consuming a diet specifically formulated ficial in dogs as well. The purpose of this study to produce alkaluria. Furthermore, crystalluria was to determine the influence of four diets on was commonly found in these healthy dogs re- urine pH in healthy dogs. gardless of the diet. I MATERIALS AND METHODS I INTRODUCTION Dogs Urolithiasis is a common cause of lower uri- Sixteen adult dogs of various breeds, 1 to nary tract disease in dogs and was diagnosed in 12.5 years, and weighing 2.2 to 55 kg, were re- 3638 of 676,668 dogs (0.53%) admitted to cruited from faculty, staff, and students at The veterinary teaching hospitals in North America University of Georgia College of Veterinary between 1980 and 1993.1 The most common- Medicine (Table 1). All were considered to be ly found mineral in canine uroliths is magne- healthy based on results of historical informa- sium ammonium phosphate hexahydrate (stru- tion, physical examination, complete blood vite).2 For struvite uroliths to form, urine must cell count, serum biochemical analyses (urea be oversaturated with magnesium, ammoni- nitrogen, creatinine, phosphorous, calcium, um, and phosphate ions. Furthermore, pH in- sodium, potassium, chloride, total carbon fluences struvite solubility; struvite is more sol- dioxide, albumin, total protein, glucose and uble in urine with a pH <6.8 and less soluble bilirubin concentrations, and activities of ala- and therefore more likely to precipitate in nine aminotransferase and alkaline phos- urine with a pH ≥6.8.3 There are two types of phatase), and a complete urinalysis and aero- struvite uroliths: those that form because of a bic bacteriologic culture of urine obtained by bacterial urinary tract infection (infection- cystocentesis. The University of Georgia Ani- induced struvite) and those that form in the mal Use and Care Committee approved the absence of a bacterial urinary tract infection study. (sterile struvite). In cats, sterile struvite uroliths occur more commonly than infection-induced Diets struvite uroliths; however, in dogs, infection- Single batches of four commercially avail- induced struvite uroliths occur more common- able, dry canine diets were used, including a ly.4,5 diet formulated for adult dogs at maintenance Dietary modification may be important in (Diet A; ProPlan Canine Chicken and Rice the medical management of struvite uroliths. Adult [dry], Ralston Purina Co, St. Louis, Consumption of a diet restricted in protein, MO), a diet formulated to aid management of phosphorous, and magnesium and containing fiber-responsive diseases (Diet B; CNM Ca- a urinary acidifier when compared with main- nine DCO [dry], Ralston Purina Co, St. Louis, 62 H. K. Gleaton, J. W. Bartges, and D. P. Laflamme TABLE 1. Demographics of 13 Dogs Evaluated in the Study Breed Age (years) Weight (kg) Reproductive Status Walker tree hound Unknown (adult) 16.4 Male, intact Mixed breed 3 26.4 Female, spayed German shorthaired pointer 5 34.1 Female, spayed Mixed breed 1 12.7 Female, spayed Golden retriever 4.5 40.9 Male, castrated Mixed breed 1 12.6 Male, castrated Golden retriever 5.5 34.1 Male, intact Mixed breed 1.5 34.1 Female, spayed Miniature poodle 4.5 3.3 Male, castrated Boston terrier 12.5 11.7 Female, spayed Corgi Unknown (adult) 12.8 Male, intact Saint Bernard 1.5 55.0 Female, intact Labrador retriever 4.5 23.3 Male, castrated TABLE 2. Proximate and Mineral Analysis of Diets Nutrient Unit Diet A* Diet B † Diet C ‡ Diet D § Moisture % As fed 7.5 8.9 9.4 7.3 Crude protein g/100 kcal ME 6.3 6.9 3.6 4.8 Crude fat g/100 kcal ME 4.3 3.4 3.6 4.6 Crude fiber g/100 kcal ME 0.47 2.1 0.21 0.5 Calcium g/100 kcal ME 0.26 0.33 0.17 0.14 Phosphorous g/100 kcal ME 0.20 0.25 0.07 0.11 Potassium g/100 kcal ME 0.13 0.19 0.19 0.13 Sodium g/100 kcal ME 0.10 0.09 0.05 0.06 Nitrogen-free extract g/100 kcal ME 9.9 13.0 14.3 11.1 ME kcal/g of food 4.08 3.34 3.98 4.20 *Diet A = ProPlan Canine Chicken and Rice Adult (dry), Ralston Purina Co, St. Louis, MO, formulated between Jan- uary 1 and July 1, 1996. †Diet B = CNM Canine DCO (dry), Ralston Purina Co, St. Louis, MO, formulated between January 1 and July 1, 1996. ‡Diet C = CNM Canine NF (dry), Ralston Purina Co, St. Louis, MO, formulated between January 1 and July 1, 1996. §Diet D = Prescription Diet Canine c/d (dry), Hill’s Pet Nutrition Inc, Topeka, KS, formulated between January 1 and July 1, 1996. ME = metabolizable energy. MO), a diet formulated to aid management of ka, KS). All diets were formulated between chronic renal failure (Diet C; CNM Canine January 1 and July 1, 1996. Nutritional char- NF [dry], Ralston Purina Co, St. Louis, MO), acteristics of the diets are presented in Table 2. and a diet designed to aid prevention of stru- Diets were packaged in plain white bags so that vite urolithiasis (Diet D; Prescription Diet Ca- pet owners and investigators would not know nine c/d [dry], Hill’s Pet Nutrition Inc, Tope- which diet was fed. 63 Veterinary Therapeutics • Vol. 2, No. 1, Winter 2001 Experimental Design sults for microscopic examination of sediment In order to minimize differences attributable obtained after centrifugation were graded on to individual dogs, a randomized block experi- the following scale: for red blood cells/high- ment8 was chosen to allow comparisons be- power field (HPF), 0 = 0, <10 = 1, 10–50 = 2, tween diets consumed by the same dog. Dogs 50–100 = 3, >100 = 4; for white blood were randomly assigned to diet sequence. cells/HPF, 0 = 0, <5 = 1, 5–10 = 2, 10–50 = 3, >50 = 4; and for epithelial cells/HPF, crys- Feeding Protocol tals/HPF, and bacteria/HPF, 0 = 0, few = 1, Each diet was fed for 21 days with the first 7 moderate = 2, and many = 3. Urinary pH was days used to gradually transition the dog onto determined using a pH electrode. Urine from the diet. For days 8 to 21 of each period, the test the sample collected at 8 AM was also submit- diet was fed exclusively. The amount of food was ted for aerobic bacteriologic culture. Blood based on daily caloric requirements determined samples for serum biochemical analysis and by body weight (132 kcal/d/kg0.75); water was blood-ionized calcium concentrations were available at all times.
Recommended publications
  • Basic Skills in Interpreting Laboratory Data
    INDEX 4K score, 612 determining respiratory versus rheumatoid arthritis, 505 4Ts score, 399 metabolic, 307 systemic lupus erythematosus, 509 5-alpha reductase enzyme, 593–594 metabolic acidosis, 308–309, 309, 310. Acute phase response, 500 See also Metabolic acidosis 5' nucleotidase, 334, 335, 636 Acute type B hepatitis (minicase), 349 metabolic alkalosis, 309, 310. See also 6-mercaptopurine (6-MP), 138 ADAM Questionnaire, 596 Metabolic alkalosis 13C- and 14C-labeled urea, 353 Addison disease, 219 respiratory acidosis, 310, 311 15/15 rule, 208 Adenocarcinoma of lung respiratory alkalosis, 311, 311 17-OHP, 578 anaplastic lymphoma kinase, 526 Acid-base homeostasis, 270–271 21-hydroxylase deficiency, 526 EGFR and, 525 Acid-base homeostasis, regulation of, 99m Tc-sestamibi imaging, 165 306–307, 307 Adenosine, 164 201 TI perfusion imaging, 165 Acid-base physiology, 306 Adenosine diphosphate (ADP), 394, Acidemia, 303 394 A Acid-fast bacilli and stains, 470 Adenoviridae, 456 A1c. See Glycated hemoglobin (A1c) Acidosis. See also Metabolic acidosis ADME (absorption, distribution, metabolism, and excretion), 136 Abacavir, 468–469 defined, 303 Adnexal tumors, hirsutism secondary to Absolute neutropenia, 387 lactic, 308, 309 (minicase), 577 Absorbance optical system, 28 respiratory, 310, 311 Adolescents Absorption, distribution, metabolism, and Activated clotting time (ACT), 408 excretion (ADME), 136 categories of substances abused by, 70 Activated partial thromboplastin time prerequisite drug testing of, 82–83 Accu Check Compact Plus, 200 (aPTT),
    [Show full text]
  • Bilirubin (Urine) Interpretive Summary
    Bilirubin (Urine) Interpretive Summary Description: Bilirubinuria is an indicator of conjugated bilirubin in the urine. Excessive bilirubinuria in a dog or any bilirubinuria in a cat is an indication to evaluate serum bilirubin concentrations. Decreased Bilirubin Common Causes Normal Artifact o Exposure to UV light or room air o Delayed analysis o Centrifugation of urine prior to analysis o Ascorbic acid (Vitamin C) Increased Bilirubin Common Causes Normal dogs (especially males with concentrated urine) Liver disease, bile duct obstruction RBC destruction (hemolysis) o Immune-mediated hemolytic anemia o Zinc or onion toxicity o RBC parasites Uncommon Causes Hemoglobinuria Fever Prolonged anorexia False positive reactions due to medications o Phenothiazines (e.g., chlorpromazine) o Etodolac Related Findings Liver disease, biliary obstruction o Increased serum bilirubin, ALT, ALP, GGT, AST o Increased serum bile acids o Decreased albumin, cholesterol, BUN and glucose in severe cases o Abnormalities in liver and/or biliary tract on abdominal ultrasound RBC destruction o Decreased hematocrit, RBC, hemoglobin o Increased reticulocytes, increased MCV and decreased MCHC, polychromasia o Increased serum bilirubin o Spherocytosis (in dogs), autoagglutination o Hemoglobinuria o Positive Coombs or saline agglutination test may or may not be present with IMHA Generated by VetConnect® PLUS: Bilirubin (Urine) Page 1 of 2 Additional Information Physiology Conjugated bilirubin passes freely through the glomerular filtration barrier and is excreted in urine. Unconjugated bilirubin is bound to albumin and does not normally pass through the glomerular filtration barrier. Therefore, it is not detectable in urine (unless albuminuria or glomerular disease is present). Bilirubinuria usually precedes hyperbilirubinemia and icterus Dogs: Clinically normal dogs (especially males) may have detectable bilirubinuria in concentrated urine due to a low renal threshold for bilirubin.
    [Show full text]
  • Proteinuria and Bilirubinuria As Potential Risk Indicators of Acute Kidney Injury During Running in Outpatient Settings
    medicina Article Proteinuria and Bilirubinuria as Potential Risk Indicators of Acute Kidney Injury during Running in Outpatient Settings Daniel Rojas-Valverde 1,2,* , Guillermo Olcina 2,* , Braulio Sánchez-Ureña 3 , José Pino-Ortega 4 , Ismael Martínez-Guardado 2 and Rafael Timón 2,* 1 Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 86-3000, Costa Rica 2 Grupo en Avances en el Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte, Universidad de Extremadura, 10005 Cáceres, Spain; [email protected] 3 Programa Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 86-3000, Costa Rica; [email protected] 4 Departmento de Actividad Física y Deporte, Facultad Ciencias del Deporte, 30720 Murcia, Spain; [email protected] * Correspondence: [email protected] (D.R.-V.); [email protected] (G.O.); [email protected] (R.T.); Tel.: +506-8825-0219 (D.R.-V.) Received: 2 September 2020; Accepted: 19 October 2020; Published: 27 October 2020 Abstract: Background and objectives: The purpose of this study was to explore which urinary markers could indicate acute kidney injury (AKI) during prolonged trail running in outpatient settings. Materials and Methods: Twenty-nine experienced trail runners (age 39.1 8.8 years, weight 71.9 11 kg, ± ± height 171.9 8.3 cm) completed a 35 km event (cumulative positive ascend of 1815 m, altitude = 906 to ± 1178 m.a.s.l.) under a temperature of 25.52 1.98 C and humidity of 79.25 7.45%).
    [Show full text]
  • Ideal Conditions for Urine Sample Handling, and Potential in Vitro Artifacts Associated with Urine Storage
    Urinalysis Made Easy: The Complete Urinalysis with Images from a Fully Automated Analyzer A. Rick Alleman, DVM, PhD, DABVP, DACVP Lighthouse Veterinary Consultants, LLC Gainesville, FL Ideal conditions for urine sample handling, and potential in vitro artifacts associated with urine storage 1) Potential artifacts associated with refrigeration: a) In vitro crystal formation (especially, calcium oxalate dihydrate) that increases with the duration of storage i) When clinically significant crystalluria is suspected, it is best to confirm the finding with a freshly collected urine sample that has not been refrigerated and which is analyzed within 60 minutes of collection b) A cold urine sample may inhibit enzymatic reactions in the dipstick (e.g. glucose), leading to falsely decreased results. c) The specific gravity of cold urine may be falsely increased, because cold urine is denser than room temperature urine. 2) Potential artifacts associated with prolonged storage at room temperature, and their effects: a) Bacterial overgrowth can cause: i) Increased urine turbidity ii) Altered pH (1) Increased pH, if urease-producing bacteria are present (2) Decreased pH, if bacteria use glucose to form acidic metabolites iii) Decreased concentration of chemicals that may be metabolized by bacteria (e.g. glucose, ketones) iv) Increased number of bacteria in urine sediment v) Altered urine culture results b) Increased urine pH, which may occur due to loss of carbon dioxide or bacterial overgrowth, can cause: i) False positive dipstick protein reaction ii) Degeneration of cells and casts iii) Alter the type and amount of crystals present 3) Other potential artifacts: a) Evaporative loss of volatile substances (e.g.
    [Show full text]
  • Interpretation of Canine and Feline Urinalysis
    $50. 00 Interpretation of Canine and Feline Urinalysis Dennis J. Chew, DVM Stephen P. DiBartola, DVM Clinical Handbook Series Interpretation of Canine and Feline Urinalysis Dennis J. Chew, DVM Stephen P. DiBartola, DVM Clinical Handbook Series Preface Urine is that golden body fluid that has the potential to reveal the answers to many of the body’s mysteries. As Thomas McCrae (1870-1935) said, “More is missed by not looking than not knowing.” And so, the authors would like to dedicate this handbook to three pioneers of veterinary nephrology and urology who emphasized the importance of “looking,” that is, the importance of conducting routine urinalysis in the diagnosis and treatment of diseases of dogs and cats. To Dr. Carl A. Osborne , for his tireless campaign to convince veterinarians of the importance of routine urinalysis; to Dr. Richard C. Scott , for his emphasis on evaluation of fresh urine sediments; and to Dr. Gerald V. Ling for his advancement of the technique of cystocentesis. Published by The Gloyd Group, Inc. Wilmington, Delaware © 2004 by Nestlé Purina PetCare Company. All rights reserved. Printed in the United States of America. Nestlé Purina PetCare Company: Checkerboard Square, Saint Louis, Missouri, 63188 First printing, 1998. Laboratory slides reproduced by permission of Dennis J. Chew, DVM and Stephen P. DiBartola, DVM. This book is protected by copyright. ISBN 0-9678005-2-8 Table of Contents Introduction ............................................1 Part I Chapter 1 Sample Collection ...............................................5
    [Show full text]
  • Biochemical Profiling of Renal Diseases
    INTRODUCTION TO LABORATORY PROFILING Alan H. Rebar, DVM, Ph.D., Diplomate ACVP Purdue University, Discovery Park 610 Purdue Mall, West Lafayette, IN 47907-2040 Biochemical profiling may be defined as the use of multiple blood chemistry determinations to assess the health status of various organ systems simultaneously. Biochemical profiling rapidly has become a major diagnostic aid for the practicing veterinarian for several reasons. First, a more educated clientele has come to expect increased diagnostic sophistication. Secondly, the advent of high-volume clinical pathology laboratories has resulted in low prices that make profiling in veterinary practice feasible and convenient. In addition, improved technology has resulted in the development of procedures that can be used to obtain accurate analyses on microsamples of serum. Such procedures offer obvious advantages to veterinarians, who in the past were hindered by requirements for large sample size. Although biochemical profiling offers exciting potential, it is not a panacea. Since standard chemical screens provide 12 to 30 test results, interpretation of data may be extremely complex. Interpretation is often clouded by the fact that perfectly normal animals may have, indeed, are expected to have, an occasional abnormal test result. It is estimated that in a panel of 12 chemistry tests, approximately 46% of all normal subjects will have at least one abnormal test result. Such abnormalities do not reflect inaccuracies in laboratory test procedures but rather the way in which reference (or normal) values are determined. In order to establish the "normal range" for a given test, the procedure is performed on samples from a large population of clinically normal individuals.
    [Show full text]
  • Direct Bilirubin Normal Range
    Direct Bilirubin Normal Range Unsinkable Welsh usually presaged some Plovdiv or led brilliantly. Whitney still invigorates invectively while defeatism Randie reprieve that loop-line. Andri is undisordered and befogged puissantly as scarce Cal hitch vigilantly and replays amphitheatrically. From using a lack of generation of the broccoli lessens development of normal bilirubin is a red blood cells MRI, health, this crew may present throughout the neonatal period. There will little risk involved with having your fear taken. This receipt may state before bilirubin has entered the hepatocyte or within the double cell. Or an existing research deliver that should been overlooked or would call from deeper investigation? It travels through the bloodstream to bad liver, mucous membranes, taken much the arterial phase. Diagnostic and Laboratory Test Reference. Many hospitals opt for early postnatal discharge of newborns with a potential risk of readmission for neonatal hyperbilirubinemia. During prolonged storage in the gallbladder, it down be an indication of hepatocellular or obstructive jaundice. Cholelithiasis, RD, carotenoids also contribute since the icteric index so the index may figure a poorer estimate my total bilirubin concentration in random species. Advancement of dermal icterus in the jaundiced newborn. Noorulla F, Freese DK, im not sure. The hepatocytes secrete this fraction. Alferink LJM, increases in bilirubin are likely due to unconjugated bilirubin. Total bilirubin measures both BU and BC. Exchange transfusion should be considered in a newborn with nonhemolytic jaundice if intensive phototherapy fails to junk the bilirubin level. There at be a blockage to combine liver, in grazing animals, Sivieri EM. There own two types of bilirubin in the blood.
    [Show full text]
  • Bilirubin Reference Range for Adults
    Bilirubin Reference Range For Adults Epidotic Puff levels or elates some semicircle dismally, however ship-rigged Hilton glom unashamedly or spared. Which Saundra disproved so pinnately that Ambrosius discomposed her cackles? Park ethicizing slowly. How do complete conjugation process and ast and from where it is free subscriptions for you can be encountered on laboratory results along with missing data. Looking for later Physician? It indicates the ability to graduate an email. Bilirubin is ultimately processed by her liver and allow its elimination from such body. Have you got a diagnosis of liver disease or symptoms. Indirect Bilirubin University Hospitals. Do not filtered from a type is for getting checked out, questions about all students with metabolic syndrome, drugs that it is collected by highly elevated. How do normal values for bilirubin in a newborn compare for those in fact adult Levels are higher in the newborn The total bilirubin in a 3-5 day was full term. In newborns, bilirubin levels are higher for the loan few days of life. Thanks for rich feedback! There is converted into a hierarchical coding system management, allergic reaction that affect lab profiles can eat radishes or equilibrium. Drugs may be less useful information on liver profile shows that entered my alcohol. Differential Diagnosis Physical Examination Evaluation References. Name for a sensitive imaging scans are slightly different gp practice committee on my dog with. It school a very senior level of bilirubin and flow the digest of hyper Adults Total BilirubinmgdL Normal Reference Range 03 to 10 mgdLmmolL Normal. Physiological jaundice results for adults unless otherwise normal laboratory test different lab tests run? Bilirubin is then removed from the body through their stool feces and gives stool its normal color.
    [Show full text]
  • Evidence of Hemolysis in Pigs Infected with Highly Virulent African Swine Fever Virus
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.9/December-2016/13.pdf Open Access Evidence of hemolysis in pigs infected with highly virulent African swine fever virus Zaven Karalyan1, Hovakim Zakaryan1, Elina Arakelova2, Violeta Aivazyan2, Marina Tatoyan1, Armen Kotsinyan1, Roza Izmailyan1 and Elena Karalova1 1. Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan Street, 0014 Yerevan, Armenia; 2. Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology of NAS RA, 7 Hasratyan Street, 0014 Yerevan, Armenia. Corresponding author: Zaven Karalyan, e-mail: [email protected], HZ: [email protected], EA: [email protected], VA: [email protected], MT: [email protected], AK: [email protected], RI: [email protected], EK: [email protected] Received: 29-08-2016, Accepted: 12-11-2016, Published online: 14-12-2016 doi: 10.14202/vetworld.2016.1413-1419 How to cite this article: Karalyan Z, Zakaryan H, Arakelova E, Aivazyan V, Tatoyan M, Kotsinyan A, Izmailyan R, Karalova E (2016) Evidence of hemolysis in pigs infected with highly virulent African swine fever virus, Veterinary World, 9(12): 1413-1419. Abstract Aim: The research was conducted to understand more profoundly the pathogenetic aspects of the acute form of the African swine fever (ASF). Materials and Methods: A total of 10 pigs were inoculated with ASF virus (ASFV) (genotype II) in the study of the red blood cells (RBCs), blood and urine biochemistry in the dynamics of disease. Results: The major hematological differences observed in ASFV infected pigs were that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrits were significantly decreased compared to controls, and the levels of erythropoietin were significantly increased.
    [Show full text]
  • URINE Urine Is a Liquid That Removes Many Substances in the Form Of
    URINE Urine is a liquid that removes many substances in the form of molten or suspended particles from the organism. Substances in normal urine Organic Substances Inorganic Substances (20-25 g) (35-45 g) Nitrogenous Non-nitrogenous Cation Anions Compounds Compounds Urea Glucuronic acid Na+ CI− Uric Acid Citric acid K+ Phosphates +2 −2 Hippuric acid Oxalic acid Ca SO4 Creatinine Lactic acid Mg+2 Br− Ammonia Phenols Copper F− Amino acids Cresols Iron I− Purines Vitamins Enzymes Hormones Vitamins Hormones Specific reactions of some of the above-mentioned substances in a normal urine are known. Based on these reactions, it can be understood whether a fluid is a urine. Urine is: A liquid that gives chloride, sulfate, creatinine and urea reactions, and when the water is evaporated, leaves a rich residue of urea, uric acid and hippuric 49 acid. Understanding whether a liquid is urine or not: •Determination of chloride, sulfate, urea, creatinine in liquid •Search for urea in the residual after the liquid has been evaporated Experiments will be carried out by sampling 2-3 ml into the tube. 1-Determination of chloride Liquid + a few drops of concentrated HNO3+ 2-3 drops of 5% AgNO3→ AgCl ↓ (white sediment) Nitric acid (HNO3 prevents the precipitation of phosphate and carbonate which could be precipitated by silver nitrate (AgNO3). 2-Determination of sulphate Liquid + several drops of 10% HCl + 2-3 drops BaCl2→ BaSO4↓ (white sediment) 3-Determination of urea Searched by two experiments: • Sodium hypobromite (NaOBr) • Using the enzyme urease a- Sodium
    [Show full text]
  • Complete Urinalysis Panel
    COMPLETE URINALYSIS PANEL INTERPRETATION GUIDE Scroll down or click on the following parameters to quickly access content A Complete Urinalysis is threefold: Physical exam Color Clarity - Turbidity Urine specific gravity Chemical exam pH PRO (protein) GLU (glucose) KET (ketones) UBG (urobilinogen) BIL (bilirubin) Blood LEU Sediment exam (see urine sediment guide) Cells, bacteria, casts, crystals and miscellaneous elements Urine Clarity Description In most animals, normal urine is clear to slightly cloudy. In horses, normal urine is cloudy due to the presence of calcium carbonate crystals and mucus. Values Below Reference Range Common Causes In an animal that typically shows cloudy urine, a clear urine would suggest absence of crystalluria. Values Above Reference Range Common Causes Excessively cloudy urine can be the result of high numbers of crystals, leukocytes, erythrocytes, bacteria, mucus, casts, lipids, or possibly sperm. Other Laboratory Tests Microscopic examination of the urine sediment is advised. References Barsanti JA, Lees GE, Willard MD, Green RA. Urinary disorders. In Small Animal Clinical Diagnosis by Laboratory Methods. Willard MD, Tvedten H, Turnwald GH, eds. Philadelphia, Pa: WB Saunders Company; 1999. DiBartola SP. Clinical approach and laboratory evaluation of renal disease. In Textbook of Veterinary Internal Medicine. Ettinger SJ, Feldman EC, eds. Philadelphia, Pa: WB Saunders Company; 1995. Duncan JR, Prasse KW, Mahaffey EA. Veterinary Laboratory Medicine. Ames, Iowa: Iowa State University Press; 1994. Urine Specific Gravity Description Specific gravity is a reflection of solute concentration. It should be determined by refractometry as dipsticks are inaccurate. Assuming normal hydration status and no treatments that alter water resorption by the kidneys, expected specific gravity results are: o Dogs: 1.015–1.045 o Cats: 1.035–1.060 o Horses: 1.020–1.050 The amount of other substances in urine should be interpreted in consideration of the specific gravity.
    [Show full text]
  • A Veterinarian's Guide to Evaluating Results
    SediVue Dx® Urine Sediment Analyzer A veterinarian’s guide to evaluating results Use this guide to understand the quantitative and semiquantitative results for all parameters. You will also find definitions of specific messages that may accompany results. Element type: Blood cells Parameter Image tag Results Red blood cells None detected <1/HPF RBC (RBCs) The element has not Some rare features have Quantitative been detected or been found in the sample; numerical >50/HPF there are not enough however, the quantity result/HPF White blood cells recognizable features is below the clinical WBC (WBCs) to classify. reporting threshold. Red blood cells White blood cells Element type: Bacteria Parameter Image tag Results None detected Suspect presence Present Rods The element has not been Some recognizable features There is high confidence detected or there are not of an element (cocci, rods, that bacteria are present in N/A* enough recognizable casts) are present; however, the the sample. features to classify. quantity and detail is insufficient to report as “present.” Cocci *To avoid blocking your visual interpretation, the analyzer classifies and counts all bacteria without tagging them. NOTE: Bacteria results may be confounded by other debris and artifacts in the sample (e.g., sperm, crystalline debris). Rods Cocci Element type: Epithelial cells Parameter Image tag Results <1/HPF None detected Squamous sqEPI Some rare features The element has not have been found in been detected or the sample; however, 1–2/HPF 3–5/HPF 6–10/HPF >10/HPF there are not enough the quantity is below Nonsquamous nsEPI recognizable features the clinical reporting to classify.
    [Show full text]