CHAPTER 3 ADC and DAC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MPA15-16 a Baseband Pulse Shaping Filter for Gaussian Minimum Shift Keying
A BASEBAND PULSE SHAPING FILTER FOR GAUSSIAN MINIMUM SHIFT KEYING 1 2 3 3 N. Krishnapura , S. Pavan , C. Mathiazhagan ,B.Ramamurthi 1 Department of Electrical Engineering, Columbia University, New York, NY 10027, USA 2 Texas Instruments, Edison, NJ 08837, USA 3 Department of Electrical Engineering, Indian Institute of Technology, Chennai, 600036, India Email: [email protected] measurement results. ABSTRACT A quadrature mo dulation scheme to realize the Gaussian pulse shaping is used in digital commu- same function as Fig. 1 can be derived. In this pap er, nication systems like DECT, GSM, WLAN to min- we consider only the scheme shown in Fig. 1. imize the out of band sp ectral energy. The base- band rectangular pulse stream is passed through a 2. GAUSSIAN FREQUENCY SHIFT lter with a Gaussian impulse resp onse b efore fre- KEYING GFSK quency mo dulating the carrier. Traditionally this The output of the system shown in Fig. 1 can b e describ ed is done by storing the values of the pulse shap e by in a ROM and converting it to an analog wave- Z t form with a DAC followed by a smo othing lter. g d 1 y t = cos 2f t +2k c f This pap er explores a fully analog implementation 1 of an integrated Gaussian pulse shap er, which can where f is the unmo dulated carrier frequency, k is the c f result in a reduced power consumption and chip mo dulating index k =0:25 for Gaussian Minimum Shift f area. Keying|GMSK[1] and g denotes the convolution of the rectangular bit stream bt with values in f1; 1g 1. -
Advanced Electronic Systems Damien Prêle
Advanced Electronic Systems Damien Prêle To cite this version: Damien Prêle. Advanced Electronic Systems . Master. Advanced Electronic Systems, Hanoi, Vietnam. 2016, pp.140. cel-00843641v5 HAL Id: cel-00843641 https://cel.archives-ouvertes.fr/cel-00843641v5 Submitted on 18 Nov 2016 (v5), last revised 26 May 2021 (v8) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. advanced electronic systems ST 11.7 - Master SPACE & AERONAUTICS University of Science and Technology of Hanoi Paris Diderot University Lectures, tutorials and labs 2016-2017 Damien PRÊLE [email protected] Contents I Filters 7 1 Filters 9 1.1 Introduction . .9 1.2 Filter parameters . .9 1.2.1 Voltage transfer function . .9 1.2.2 S plane (Laplace domain) . 11 1.2.3 Bode plot (Fourier domain) . 12 1.3 Cascading filter stages . 16 1.3.1 Polynomial equations . 17 1.3.2 Filter Tables . 20 1.3.3 The use of filter tables . 22 1.3.4 Conversion from low-pass filter . 23 1.4 Filter synthesis . 25 1.4.1 Sallen-Key topology . 25 1.5 Amplitude responses . 28 1.5.1 Filter specifications . 28 1.5.2 Amplitude response curves . -
Whiguqzgdrjracxb.Pdf
Analog Filters Using MATLAB Lars Wanhammar Analog Filters Using MATLAB 13 Lars Wanhammar Department of Electrical Engineering Division of Electronics Systems Linkoping¨ University SE-581 83 Linkoping¨ Sweden [email protected] ISBN 978-0-387-92766-4 e-ISBN 978-0-387-92767-1 DOI 10.1007/978-0-387-92767-1 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2008942084 # Springer ScienceþBusiness Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceþBusiness Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface This book was written for use in a course at Linkoping¨ University and to aid the electrical engineer to understand and design analog filters. Most of the advanced mathematics required for the synthesis of analog filters has been avoided by providing a set of MATLAB functions that allows sophisticated filters to be designed. Most of these functions can easily be converted to run under Octave as well. -
Efficient Implementations of Discrete Wavelet Transforms Using Fpgas Deepika Sripathi
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2003 Efficient Implementations of Discrete Wavelet Transforms Using Fpgas Deepika Sripathi Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING EFFICIENT IMPLEMENTATIONS OF DISCRETE WAVELET TRANSFORMS USING FPGAs By DEEPIKA SRIPATHI A Thesis submitted to the Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2003 The members of the committee approve the thesis of Deepika Sripathi defended on November 18th, 2003. Simon Y. Foo Professor Directing Thesis Uwe Meyer-Baese Committee Member Anke Meyer-Baese Committee Member Approved: Reginald J. Perry, Chair, Department of Electrical and Computer Engineering The office of Graduate Studies has verified and approved the above named committee members ii ACKNOWLEDGEMENTS I would like to express my gratitude to my major professor, Dr. Simon Foo for his guidance, advice and constant support throughout my thesis work. I would like to thank him for being my advisor here at Florida State University. I would like to thank Dr. Uwe Meyer-Baese for his guidance and valuable suggestions. I also wish to thank Dr. Anke Meyer-Baese for her advice and support. I would like to thank my parents for their constant encouragement. I would like to thank my husband for his cooperation and support. I wish to thank the administrative staff of the Electrical and Computer Engineering Department for their kind support. Finally, I would like to thank Dr. -
Post-Sampling Aliasing Control for Natural Images
POST-SAMPLING ALIASING CONTROL FOR NATURAL IMAGES Dinei A. F. Florêncio and Ronald W. Schafer Digital Signal Processing Laboratory School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia 30332 f1orenceedsp . gatech . edu rws@eedsp . gatech . edu ABSTRACT Shannon sampling theorem, and can be useful in developing Sampling and recollstruction are usuaiiy analyzed under better pre- and post-filters based on non-linear techniques. the framework of linear signal processing. Powerful tools Critical Morphological Sampling is similar to traditional like the Fourier transform and optimum linear filter design techniques in the sense that it also requires pre-ifitering be- techniques, allow for a very precise analysis of the process. fore subsampling. In some applications, this pre-ifitering In particular, an optimum linear filter of any length can be maybe undesirable, or even impossible, in which case the derived under most situations. Many of these tools are not signal is simply subsampled, without any pre-filtering, or available for non—linear systems, and it is usually difficult to a very simple filter is used. An example of increasing im find an optimum non4inear system under any criteria. In portance is video processing, where the high data rate and this paper we analyze the possibility of using non-linear fil memory restrictions often limit the filtering to very short tering in the interpolation of subsampled images. We show windows. that a very simple (5x5) non-linear reconstruction filter out- In this paper we show how it is possible to reduce performs (for the images analyzed) linear filters of up to the effects of aliasing by using non-linear reconstruction 256x256, including optimum (separable) Wiener filters of techniques. -
Sections 5-1 to 5-4: Analog Filters
ANALOG FILTERS H Op Amp History 1 Op Amp Basics 2 Specialty Amplifiers 3 Using Op Amps with Data Converters ◆ 4 Sensor Signal Conditioning ◆ 5 Analog Filters 1 Introduction 2 The Transfer Function 3 Time Domain Response 4 Standard Responses 5 Frequency Transformations 6 Filter Realizations 7 Practical Problems in Filter Implementation 8 Design Examples 6 Signal Amplifiers 7 Hardware and Housekeeping Techniques OP AMP APPLICATIONS ANALOG FILTERS INTRODUCTION CHAPTER 5: ANALOG FILTERS Hank Zumbahlen SECTION 5-1: INTRODUCTION Filters are networks that process signals in a frequency-dependent manner. The basic concept of a filter can be explained by examining the frequency dependent nature of the impedance of capacitors and inductors. Consider a voltage divider where the shunt leg is a reactive impedance. As the frequency is changed, the value of the reactive impedance changes, and the voltage divider ratio changes. This mechanism yields the frequency dependent change in the input/output transfer function that is defined as the frequency response. Filters have many practical applications. A simple, single pole, lowpass filter (the integrator) is often used to stabilize amplifiers by rolling off the gain at higher frequencies where excessive phase shift may cause oscillations. A simple, single pole, highpass filter can be used to block DC offset in high gain amplifiers or single supply circuits. Filters can be used to separate signals, passing those of interest, and attenuating the unwanted frequencies. An example of this is a radio receiver, where the signal you wish to process is passed through, typically with gain, while attenuating the rest of the signals. -
Compensation of Reconstruction Filter Effect in Digital Signal Processing System
Journal of Signal Processing, Vol.18, No.3, pp.121-134, May 2014 PAPER Compensation of Reconstruction Filter Effect in Digital Signal Processing System Sukanya Praesomboon1, Kobchai Dejhan1 and Surapun Yimman2 1Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand 2Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand E-mail: [email protected], [email protected], [email protected] Abstract This paper proposes the reduction effect of reconstruction filter for digital signal processing system. It is well known that the reconstruction filter limits the bandwidth of output signal processing and the output signal is staircase form or has high frequency components. For effect reduction we use the nonrecursive system which corresponds with the inverse system function of the reconstruction filter. The initial step starts with the analog system function of the reconstruction filter and is converted to a discrete-time system using the approximation of derivative technique and inverse system. This inverse discrete-time system function is a nonrecursive system to compensate the reduction effect of the reconstruction filter implemented by using the software. For hardware experiments, we use TMS320C31 digital signal processor, D/A, PIC-32 microcontroller, PWM analog output. The experimental results of the proposed principle show that it can be used to compensate the bandwidth and reduce the total harmonic distortion (THD) of high frequency signal. In addition, this experiment shows that the nonrecursive system for compensation uses only first-order system and it does not utilizes any more processor. Furthermore, it is able to increase the performance. -
Oversampled Perfect Reconstruction Filter Bank Transceivers
Oversampled Perfect Reconstruction Filter Bank Transceivers Siavash Rahimi Department of Electrical & Computer Engineering McGill University Montreal, Canada March 2014 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. c 2014 Siavash Rahimi 2014/03/05 i Contents 1 Introduction 1 1.1 Multicarrier Modulation ............................ 1 1.2 Literature Review ................................ 3 1.2.1 Oversampled perfect reconstruction filter bank ............ 5 1.2.2 Synchronization and equalization ................... 6 1.2.3 Extension to multi-user applications .................. 8 1.3 Thesis Objectives and Contributions ..................... 9 1.4 Thesis Organization and Notations ...................... 12 2 Background on Filter Bank Multicarrier Modulation 14 2.1 OFDM ...................................... 15 2.1.1 The Cyclic Prefix ............................ 17 2.1.2 OFDM Challenges ........................... 19 2.2 Multirate Filter Banks ............................. 22 2.2.1 Basic Multirate Operations ...................... 24 2.2.2 Transceiver Transfer Relations and Reconstruction Conditions . 29 2.2.3 Modulated Filter Banks ........................ 32 2.2.4 Oversampled Filter Banks ....................... 37 2.3 A Basic Survey of Different FBMC Types .................. 39 2.3.1 Cosine Modulated Multitone ...................... 39 2.3.2 OFDM/OQAM ............................. 41 2.3.3 FMT ................................... 45 2.3.4 DFT modulated OPRFB ........................ 46 Contents ii 3 OPRFB Transceivers 47 3.1 Background and Problem Formulation .................... 47 3.2 A Factorization of Polyphase Matrix P(z) .................. 51 3.2.1 Preliminary Factorization of P(z)................... 51 3.2.2 Structure of U(z) ........................... 52 3.2.3 Expressing U(z) in terms of Paraunitary Building Blocks ...... 54 3.3 Choice of a Parameterization for Paraunitary Matrix B(z) ........ -
Filter Approximation Concepts
622 (ESS) 1 Filter Approximation Concepts How do you translate filter specifications into a mathematical expression which can be synthesized ? • Approximation Techniques Why an ideal Brick Wall Filter can not be implemented ? • Causality: Ideal filter is non-causal • Rationality: No rational transfer function of finite degree (n) can have such abrupt transition |H(jω)| h(t) Passband Stopband ω t -ωc ωc -Tc Tc 2 Filter Approximation Concepts Practical Implementations are given via window specs. |H(jω)| 1 Amax Amin ω ωc ωs Amax = Ap is the maximum attenuation in the passband Amin = As is the minimum attenuation in the stopband ωs-ωc is the Transition Width 3 Approximation Types of Lowpass Filter 1 Definitions Ap As Ripple = 1-Ap wc ws Stopband attenuation =As Filter specs Maximally flat (Butterworth) Passband (cutoff frequency) = wc Stopband frequency = ws Equal-ripple (Chebyshev) Elliptic 4 Approximation of the Ideal Lowpass Filter Since the ideal LPF is unrealizable, we will accept a small error in the passband, a non-zero transition band, and a finite stopband attenuation 1 퐻 푗휔 2 = 1 + 퐾 푗휔 2 |H(jω)| • 퐻 푗휔 : filter’s transfer function • 퐾 푗휔 : Characteristic function (deviation of 푇 푗휔 from unity) For 0 ≤ 휔 ≤ 휔푐 → 0 ≤ 퐾 푗휔 ≤ 1 For 휔 > 휔푐 → 퐾 푗휔 increases very fast Passband Stopband ω ωc 5 Maximally Flat Approximation (Butterworth) Stephen Butterworth showed in 1930 that the gain of an nth order maximally flat magnitude filter is given by 1 퐻 푗휔 2 = 퐻 푗휔 퐻 −푗휔 = 1 + 휀2휔2푛 퐾 푗휔 ≅ 0 in the passband in a maximally flat sense 푑푘 퐾 푗휔 -
3-Channel ED Filter Video Amplifier with 4-V/V Gain Datasheet
THS7320 www.ti.com SBOS565B –JULY 2011–REVISED SEPTEMBER 2012 3-Channel ED Filter Video Amplifier with 4-V/V Gain Check for Samples: THS7320 1FEATURES DESCRIPTION Fabricated using the revolutionary, complementary 2• Very Low Total Quiescent Current: 3.5 mA at 3 V Silicon-Germanium (SiGe) BiCom-3X process, the THS7320 is a very low power, single-supply, 2.6-V to • Disabled Supply Current: 0.15 µA 5-V, three-channel integrated video buffer with a gain • Third-Order Butterworth Low-Pass Filters: of 4 V/V. This device is ideal for battery-powered – –1 dB at 17 MHz applications where size and power are critical parameters. The total quiescent current is only 3.5 – –3 dB at 20 MHz mA at 3 V and the video portion can be reduced – Attenuation: 21 dB at 43 MHz down to 0.15 µA while disabled. – Supports Y’P’BP’R 480p/576p or The THS7320 video section incorporates three R’G’B’ Video enhanced definition (ED) filter channels with third- – Supports Oversampled Systems order Butterworth characteristics. These filters are Generating CVBS, S-Video, or useful as digital-to-analog converter (DAC) reconstruction filters or as analog-to-digital converter Y’P’BP’R 480i/576i (ADC) antialiasing filters. The THS7320 is also ideal • DC-Coupled Input with 150-mV Output Shift for oversampled systems that produce standard • Built-In Gain: 4 V/V (12 dB) definition (SD) signals including CVBS, S-Video, • Single-Supply Operation: +2.6 V to +5 V 480i/576iY’P’BP’R, Y’U’V’, and R’G’B’. -
M-Ary Orthogonal Modulation Using Wavelet
M-ARY ORTHOGONAL MODULATION USING WAVELET BASIS FUNCTIONS A Thesis Presented to The Faculty of the School of Electrical Engineering and Computer Science Fritz J. and Dolores H. Russ College of Engineering and Tech~~olog~. Ohio University In Partial Fulfillment of the Requirements for the Degree Master of Science by Xiaoyun Pan No\~ember,3000 THIS THESIS ENTITLED "M-ARY 0:RTHOGONAL MODULATION USING WAVELET BASIS FUNCTIONS" by Xiaoyun Pan has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology Jerrel R. Mitchell, Dean :/ ,I Fritz J. and Dolores H. Russ College of Engineering and Technology Acknowledgement I would like to express my sincere gratitude to my advisor, Dr. Jeffrey C. Dill, for his instruction and guidance during the development of this thesis. His knowledge, patience and insightful direction and continuous encouragement greatly contributed to the completion of this research. I also wish to thank all the thesis committee members, Dr. David Matolali, Dr. Joseph Essman and Dr. Thomas Hogan for their interest in this thesis, their suggestions and instructions. 'Their willingness to be part of the review process is greatly appreciated. I would like to take this opportunity to express my deepest appreciation to my parents and my husband, Ming, for the love and encouragement they have given me o\ er the years. They are always the indispensable support in my emotion and spirit. Special thanks are given to Jim, my good friend for helping nle check the grammar and spelling of this thesis. His continuous friendship and encouragement remain in my mc!noiy along ith thc two year 2nd eight nlonth's stiidy life in Athcns. -
Design Methodology for MFB Filters in ADC Interface Applications Michael Steffes
Application Report SBOA114–February 2006 Design Methodology for MFB Filters in ADC Interface Applications Michael Steffes.................................................................................................... High-Speed Products ABSTRACT While the Multiple FeedBack (MFB) filter topology is well-known, its application to very high dynamic range analog-to-digital converter (ADC) interfaces requires a careful consideration of component value selection. This application report develops the ideal transfer function, then introduces a component selection methodology and discusses its impact on noise and distortion. The impact of amplifier Gain Bandwidth Product on final pole locations is also included, showing several examples. A complete high dynamic range, differential I/O filter for wide dynamic range ADC driving is then designed. A simple design spreadsheet embodying this design approach is available for download with this application report. Contents 1 MFB Filter Transfer Function...................................................................... 2 2 MFB Active Filter Noise Gain Analysis .......................................................... 5 3 Setting the Integrator Pole to Improve Noise and Distortion.................................. 7 4 Example Designs Showing the Impact of Integrator Pole Location.......................... 8 5 MFB Filter Implemented with Non-Unity-Gain Stable Op Amps ........................... 12 6 Differential Version of 3rd-Order Design ......................................................