Generalizations of the Sampling Theorem: Seven Decades After Nyquist P

Total Page:16

File Type:pdf, Size:1020Kb

Generalizations of the Sampling Theorem: Seven Decades After Nyquist P 1094 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 9, SEPTEMBER 2001 Generalizations of the Sampling Theorem: Seven Decades After Nyquist P. P. Vaidyanathan, Fellow, IEEE Abstract—The sampling theorem is one of the most basic and then established for the cases of bandlimited as well as nonban- fascinating topics in engineering sciences. The most well- known dlimited sampling in Sections IV-B and C. The connection be- form is Shannon’s uniform-sampling theorem for bandlimited sig- tween this kind of stability and functional subspaces is reviewed nals. Extensions of this to bandpass signals and multiband signals, and to nonuniform sampling are also well-known. The connection in Section IV-D. The role of nonuniform sampling in MR theory between such extensions and the theory of filter banks in DSP has is explained in Section V. We show in particular that the MR been well established. This paper presents some of the less known coefficients can often be calculated using FIR filtering opera- aspects of sampling, with special emphasis on non bandlimited sig- tions without the use of oversampling (which is often resorted nals, pointwise stability of reconstruction, and reconstruction from to). Sampling theorems for non bandlimited discrete time signals nonuniform samples. Applications in multiresolution computation and in digital spline interpolation are also reviewed. are discussed in Section VI. These results are based on well es- tablished concepts in multirate digital signal processing. Results Index Terms—Bandlimited signals, FIR reconstruction, multi- resolution, nonuniform sampling, sampling theorems. on FIR reconstructibility in this context are established in Sec- tions VI-B–D. Certain basic properties satisfied by bandlimited signals are summarized in the Appendices for convenience. I. INTRODUCTION B. Notations HE sampling theorem is one of the most basic and fas- T cinating topics in engineering sciences. The most well- Unless mentioned otherwise, all notations are as in [23]. The known form is the uniform sampling theorem for bandlimited term -BL refers to signals that are bandlimited to signals, due to Nyquist and Shannon [9], [13]. This has also (i.e., Fourier transform is zero outside). We use the notations been attributed to Whittaker and Cauchy (see [6]). It is the fun- and to denote the decimated version damental tool that allows the processing of real signals using and its -transform. The expanded version digital signal processors (DSP). Extensions of this to bandpass mul of signals and multiband signals, and to nonuniform sampling are otherwise also well-known [6], [22]. The connection between such exten- sions and the theory of filter banks in DSP has also been well is similary denoted by and its -transform established (e.g., see Chap. 10 in [23]). Further novel extensions denoted by . In situations where the -transform does can be found in [5]. This paper is a review of some of the less not exist in the conventional sense (e.g., ideal filters), the nota- known aspects of sampling, with special emphasis on non ban- tion stands for so that is the frequency response dlimited signals, stability of reconstruction, and reconstruction . The type 1 and type 2 polyphase representations of from nonuniform samples. [24]–[27]. with respect to an integer are given by [23] A. Outline (type 1 polyphase) In Section II, we consider sampling theorems for non ban- (type 2 polyphase). dlimited signals. These are often referred to as multiresolution The type used is usually clear from the context and is therefore (MR) or wavelet sampling theorems. An application in digital often not mentioned. interpolation is reviewed in Section III, and demonstrated with BIBO stability stands for bounded input bounded output sta- -spline interpolation of images. Stability of the reconstruction bility [10]. A sequence is an sequence if process is defined in Section IV and addressed in considerable and it is an sequence if . A linear time in- detail there. We explain the importance of pointwise stability as variant filter is BIBO stable if and only if the impulse response opposed to stability in terms of energy. Such pointwise stability is is in . For continuous time signals similar definitions ( and ) apply with sums replaced by integrals. Note that Manuscript received April 16, 2000; revised March 23, 2001. This work was but we do not have . supported in part by the National Science Foundation under grant MIP-0703755, in part by the Office of Naval Research under grant N00014-99-1-1002, and in part by Microsoft Research, Redmond, WA. This paper has been presented in II. NONBANDLIMITED SIGNALS parts at conferences This paper was recommended by Associate Editor M. O. Ahmad. If we have the apriori information that a signal is bandlimited The author is with the Department of Electrical Engineering, California In- to a known region, we can recover it from appropriately-spaced stitute of Technology, Pasadena, CA 91125 USA (e-mail: [email protected] tech.edu). samples by filtering. If a signal is not bandlimited, can we still Publisher Item Identifier S 1057-7122(01)07720-0. recover it from samples? The answer depends on what other 1057–7122/01$10.00 © 2001 IEEE VAIDYANATHAN: GENERALIZATIONS OF THE SAMPLING THEOREM: SEVEN DECADES AFTER NYQUIST 1095 Fig. 1. A nonbandlimited signal. apriori information we have. For example, suppose we have the knowledge that has the form (signal model) (1) Fig. 2. Two non Nyquist choices of 0@tA. where is a known function. Denoting the continuous time If for all we can write Fourier transforms (FT) of and as and , . That is, we can identify from using and the discrete time FT of as , we equivalently have . As a first example, assume that (7) is a time-limited signal as demonstrated in Fig. 1. In this example, the samples of at integer points are . where is the of convolutional inverse of i.e., its So we can trivially reconstruct from its samples using the Fourier transform . Recovery of for formula all can then be done using (1). In summary, we have recovered from the samples . (2) Return now to the examples in Fig. 2. We see that for the first function the nonzero samples of are whereas where . More generally, this holds if has the for the second function these are . In the first case zero-crossing property , i.e., whereas in the second case, at .So is for other integers (3) reconstrucible from for the first case, but not the second. We conclude this section with a few remarks. Thus reconstruction from samples has been possible inspite of aliasing due to nonbandlimitedness. 1) Discrete time model. The preceding discussion also shows A function satisfying the zero-crossing property (3) is this: given a discrete time signal and an arbitrary also referred to as a Nyquist(1) function in the literature. The function we can almost always assume that argument “(1)” signifies that the zero crossings are separated by can be written in the form (5) for appropriate choice of one unit of time. A special case is the example where is the the only theoretical condition being that sine funtion for all . In particular, we can regard as sam- ples of a continuous time signal of the form (4) . 2) Lack of shift invariance. For fixed , let denote Since this is -BL, the sum (1) is also -BL. The sine function the space of all signals which can be represented as in is Nyquist(1), so the reconstruction formula (2) holds. This cor- (1) for appropriate finite-energy . When is the responds to the familiar Shannon sampling and reconstruction. sine function we know that any shifted version of If a function can be represented as in (1) where is not (e.g., ) also belongs to the space because Nyquist (Fig. 2), can we still reconstruct from samples time-shift does not affect bandlimitedness. For arbitrary ? The answer is yes for a large class of as we now however, even though reconstruction from samples show.1 From (1) we see that the samples of are given by is often possible, the shifted versions of do not in general belong to the same space . This is readily ver- (5) ified with examples. For example shift in Fig. 2 to obtain . This result cannot be expressed as a linear combination of the integer shifts . which is nothing but a discrete-time convolution equation. De- noting the discrete time Fourier transforms of the sequences 3) Undersampling a wideband signal. As a special case of , , and by , and we get the signal model, suppose is -BL, that is, bandlim- ited to . Then is also -BL and the (6) Shannonsampling rate would be , implying the sample spacing . Assuming for sake of argument that 1Notice that the sample spacing is aI, and that the sampling phase is such that t aHis included. For a different sampling phase, the reconstruction is real and positive in ,wesee conditions and equations have to be worked out again. that (aliased version of ) is nonzero for 1096 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 9, SEPTEMBER 2001 Fig. 3. Reconstruction of x@tA from samples. Fig. 5. MR decomposition based on ideal filters. Fig. 6. Interpolation of a signal x@nA with digital filters. The signal is assumed to have a continuous time model x@tAa @kA0@t kA. Fig. 4. Nyquist(1) or zero-crossing property of the reconstruction filter s@tA. III. APPLICATION IN INTERPOLATION all and the reconstruction (7) is valid. Thus the model As explained in Section II, a discrete time signal can be (1) allows a smaller sampling rate, that is, wider sample viewed as a sampled version of .
Recommended publications
  • Sampling Signals on Graphs from Theory to Applications
    1 Sampling Signals on Graphs From Theory to Applications Yuichi Tanaka, Yonina C. Eldar, Antonio Ortega, and Gene Cheung Abstract The study of sampling signals on graphs, with the goal of building an analog of sampling for standard signals in the time and spatial domains, has attracted considerable attention recently. Beyond adding to the growing theory on graph signal processing (GSP), sampling on graphs has various promising applications. In this article, we review current progress on sampling over graphs focusing on theory and potential applications. Although most methodologies used in graph signal sampling are designed to parallel those used in sampling for standard signals, sampling theory for graph signals significantly differs from the theory of Shannon–Nyquist and shift-invariant sampling. This is due in part to the fact that the definitions of several important properties, such as shift invariance and bandlimitedness, are different in GSP systems. Throughout this review, we discuss similarities and differences between standard and graph signal sampling and highlight open problems and challenges. I. INTRODUCTION Sampling is one of the fundamental tenets of digital signal processing (see [1] and references therein). As such, it has been studied extensively for decades and continues to draw considerable research efforts. Standard sampling theory relies on concepts of frequency domain analysis, shift invariant (SI) signals, and bandlimitedness [1]. Sampling of time and spatial domain signals in shift-invariant spaces is one of the most important building blocks of digital signal processing systems. However, in the big data era, the signals we need to process often have other types of connections and structure, such as network signals described by graphs.
    [Show full text]
  • Lecture19.Pptx
    Outline Foundations of Computer Graphics (Fall 2012) §. Basic ideas of sampling, reconstruction, aliasing CS 184, Lectures 19: Sampling and Reconstruction §. Signal processing and Fourier analysis §. http://inst.eecs.berkeley.edu /~cs184 Implementation of digital filters §. Section 14.10 of FvDFH (you really should read) §. Post-raytracing lectures more advanced topics §. No programming assignment §. But can be tested (at high level) in final Acknowledgements: Thomas Funkhouser and Pat Hanrahan Some slides courtesy Tom Funkhouser Sampling and Reconstruction Sampling and Reconstruction §. An image is a 2D array of samples §. Discrete samples from real-world continuous signal (Spatial) Aliasing (Spatial) Aliasing §. Jaggies probably biggest aliasing problem 1 Sampling and Aliasing Image Processing pipeline §. Artifacts due to undersampling or poor reconstruction §. Formally, high frequencies masquerading as low §. E.g. high frequency line as low freq jaggies Outline Motivation §. Basic ideas of sampling, reconstruction, aliasing §. Formal analysis of sampling and reconstruction §. Signal processing and Fourier analysis §. Important theory (signal-processing) for graphics §. Implementation of digital filters §. Also relevant in rendering, modeling, animation §. Section 14.10 of FvDFH Ideas Sampling Theory Analysis in the frequency (not spatial) domain §. Signal (function of time generally, here of space) §. Sum of sine waves, with possibly different offsets (phase) §. Each wave different frequency, amplitude §. Continuous: defined at all points; discrete: on a grid §. High frequency: rapid variation; Low Freq: slow variation §. Images are converting continuous to discrete. Do this sampling as best as possible. §. Signal processing theory tells us how best to do this §. Based on concept of frequency domain Fourier analysis 2 Fourier Transform Fourier Transform §. Tool for converting from spatial to frequency domain §.
    [Show full text]
  • And Bandlimiting IMAHA, November 14, 2009, 11:00–11:40
    Time- and bandlimiting IMAHA, November 14, 2009, 11:00{11:40 Joe Lakey (w Scott Izu and Jeff Hogan)1 November 16, 2009 Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting sampling theory and history Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting The multiband case Outline Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting The multiband case Outline sampling theory and history Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting connecting sampling and time- and bandlimiting The multiband case Outline sampling theory and history Time- and bandlimiting, history, definitions and basic properties Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting The multiband case Outline sampling theory and history Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Outline sampling theory and history Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting The multiband case Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting R −2πitξ Fourier transform: bf (ξ) = f (t) e dt R _ Bandlimiting:
    [Show full text]
  • CHAPTER 3 ADC and DAC
    CHAPTER 3 ADC and DAC Most of the signals directly encountered in science and engineering are continuous: light intensity that changes with distance; voltage that varies over time; a chemical reaction rate that depends on temperature, etc. Analog-to-Digital Conversion (ADC) and Digital-to-Analog Conversion (DAC) are the processes that allow digital computers to interact with these everyday signals. Digital information is different from its continuous counterpart in two important respects: it is sampled, and it is quantized. Both of these restrict how much information a digital signal can contain. This chapter is about information management: understanding what information you need to retain, and what information you can afford to lose. In turn, this dictates the selection of the sampling frequency, number of bits, and type of analog filtering needed for converting between the analog and digital realms. Quantization First, a bit of trivia. As you know, it is a digital computer, not a digit computer. The information processed is called digital data, not digit data. Why then, is analog-to-digital conversion generally called: digitize and digitization, rather than digitalize and digitalization? The answer is nothing you would expect. When electronics got around to inventing digital techniques, the preferred names had already been snatched up by the medical community nearly a century before. Digitalize and digitalization mean to administer the heart stimulant digitalis. Figure 3-1 shows the electronic waveforms of a typical analog-to-digital conversion. Figure (a) is the analog signal to be digitized. As shown by the labels on the graph, this signal is a voltage that varies over time.
    [Show full text]
  • Information Theory
    Information Theory Professor John Daugman University of Cambridge Computer Science Tripos, Part II Michaelmas Term 2016/17 H(X,Y) I(X;Y) H(X|Y) H(Y|X) H(X) H(Y) 1 / 149 Outline of Lectures 1. Foundations: probability, uncertainty, information. 2. Entropies defined, and why they are measures of information. 3. Source coding theorem; prefix, variable-, and fixed-length codes. 4. Discrete channel properties, noise, and channel capacity. 5. Spectral properties of continuous-time signals and channels. 6. Continuous information; density; noisy channel coding theorem. 7. Signal coding and transmission schemes using Fourier theorems. 8. The quantised degrees-of-freedom in a continuous signal. 9. Gabor-Heisenberg-Weyl uncertainty relation. Optimal \Logons". 10. Data compression codes and protocols. 11. Kolmogorov complexity. Minimal description length. 12. Applications of information theory in other sciences. Reference book (*) Cover, T. & Thomas, J. Elements of Information Theory (second edition). Wiley-Interscience, 2006 2 / 149 Overview: what is information theory? Key idea: The movements and transformations of information, just like those of a fluid, are constrained by mathematical and physical laws. These laws have deep connections with: I probability theory, statistics, and combinatorics I thermodynamics (statistical physics) I spectral analysis, Fourier (and other) transforms I sampling theory, prediction, estimation theory I electrical engineering (bandwidth; signal-to-noise ratio) I complexity theory (minimal description length) I signal processing, representation, compressibility As such, information theory addresses and answers the two fundamental questions which limit all data encoding and communication systems: 1. What is the ultimate data compression? (answer: the entropy of the data, H, is its compression limit.) 2.
    [Show full text]
  • Lecture 16 Bandlimiting and Nyquist Criterion
    ELG3175 Introduction to Communication Systems Lecture 16 Bandlimiting and Nyquist Criterion Bandlimiting and ISI • Real systems are usually bandlimited. • When a signal is bandlimited in the frequency domain, it is usually smeared in the time domain. This smearing results in intersymbol interference (ISI). • The only way to avoid ISI is to satisfy the 1st Nyquist criterion. • For an impulse response this means at sampling instants having only one nonzero sample. Lecture 12 Band-limited Channels and Intersymbol Interference • Rectangular pulses are suitable for infinite-bandwidth channels (practically – wideband). • Practical channels are band-limited -> pulses spread in time and are smeared into adjacent slots. This is intersymbol interference (ISI). Input binary waveform Individual pulse response Received waveform Eye Diagram • Convenient way to observe the effect of ISI and channel noise on an oscilloscope. Eye Diagram • Oscilloscope presentations of a signal with multiple sweeps (triggered by a clock signal!), each is slightly larger than symbol interval. • Quality of a received signal may be estimated. • Normal operating conditions (no ISI, no noise) -> eye is open. • Large ISI or noise -> eye is closed. • Timing error allowed – width of the eye, called eye opening (preferred sampling time – at the largest vertical eye opening). • Sensitivity to timing error -> slope of the open eye evaluated at the zero crossing point. • Noise margin -> the height of the eye opening. Pulse shapes and bandwidth • For PAM: L L sPAM (t) = ∑ai p(t − iTs ) = p(t)*∑aiδ (t − iTs ) i=0 i=0 L Let ∑aiδ (t − iTs ) = y(t) i=0 Then SPAM ( f ) = P( f )Y( f ) BPAM = Bp.
    [Show full text]
  • Frames and Other Bases in Abstract and Function Spaces Novel Methods in Harmonic Analysis, Volume 1
    Applied and Numerical Harmonic Analysis Isaac Pesenson Quoc Thong Le Gia Azita Mayeli Hrushikesh Mhaskar Ding-Xuan Zhou Editors Frames and Other Bases in Abstract and Function Spaces Novel Methods in Harmonic Analysis, Volume 1 Applied and Numerical Harmonic Analysis Series Editor John J. Benedetto University of Maryland College Park, MD, USA Editorial Advisory Board Akram Aldroubi Gitta Kutyniok Vanderbilt University Technische Universität Berlin Nashville, TN, USA Berlin, Germany Douglas Cochran Mauro Maggioni Arizona State University Duke University Phoenix, AZ, USA Durham, NC, USA Hans G. Feichtinger Zuowei Shen University of Vienna National University of Singapore Vienna, Austria Singapore, Singapore Christopher Heil Thomas Strohmer Georgia Institute of Technology University of California Atlanta, GA, USA Davis, CA, USA Stéphane Jaffard Yang Wang University of Paris XII Michigan State University Paris, France East Lansing, MI, USA Jelena Kovaceviˇ c´ Carnegie Mellon University Pittsburgh, PA, USA More information about this series at http://www.springer.com/series/4968 Isaac Pesenson • Quoc Thong Le Gia Azita Mayeli • Hrushikesh Mhaskar Ding-Xuan Zhou Editors Frames and Other Bases in Abstract and Function Spaces Novel Methods in Harmonic Analysis, Volume 1 Editors Isaac Pesenson Quoc Thong Le Gia Department of Mathematics School of Mathematics and Statistics Temple University University of New South Wales Philadelphia, PA, USA Sydney, NSW, Australia Azita Mayeli Hrushikesh Mhaskar Department of Mathematics Institute of Mathematical
    [Show full text]
  • Ideal C/D Converter
    Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341: Discrete-Time Signal Processing OpenCourseWare 2006 Lecture 4 DT Processing of CT Signals & CT Processing of DT Signals: Fractional Delay Reading: Sections 4.1 - 4.5 in Oppenheim, Schafer & Buck (OSB). A typical discrete-time system used to process a continuous-time signal is shown in OSB Figure 4.15. T is the sampling/reconstruction period for the C/D and the D/C converters. When the input signal is bandlimited, the effective system in Figure 4.15 (b) is equivalent to the continuous-time system shown in Figure 4.15 (a). Ideal C/D Converter The relationship between the input and output signals in an ideal C/D converter as depicted in OSB Figure 4.1 is: Time Domain: x[n] = xc(nT ) j! 1 P1 ! 2¼k Frequency Domain: X(e ) = T k=¡1 Xc(j( T ¡ T )); j! where X(e ) and Xc(jΩ) are the DTFT and CTFT of x[n], xc(t). These relationships are illustrated in the figures below. See Section 4.2 of OSB for their derivations and more detailed descriptions of C/D converters. Time/Frequency domain representation of C/D conversion 1 In the frequency domain, a C/D converter can be thought of in three stages: periodic 1 repetition of the spectrum at 2¼, normalization of frequency by , and scaling of the amplitude T 1 ! by . The CT frequency Ω is related to the DT frequency ! by Ω = . If x (t) is not T T c ­s ­s bandlimited to ¡ 2 < Ωmax < 2 , repetition at 2¼ will cause aliasing.
    [Show full text]
  • Focm 2017 Foundations of Computational Mathematics Barcelona, July 10Th-19Th, 2017 Organized in Partnership With
    FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th-19th, 2017 http://www.ub.edu/focm2017 Organized in partnership with Workshops Approximation Theory Computational Algebraic Geometry Computational Dynamics Computational Harmonic Analysis and Compressive Sensing Computational Mathematical Biology with emphasis on the Genome Computational Number Theory Computational Geometry and Topology Continuous Optimization Foundations of Numerical PDEs Geometric Integration and Computational Mechanics Graph Theory and Combinatorics Information-Based Complexity Learning Theory Plenary Speakers Mathematical Foundations of Data Assimilation and Inverse Problems Multiresolution and Adaptivity in Numerical PDEs Numerical Linear Algebra Karim Adiprasito Random Matrices Jean-David Benamou Real-Number Complexity Alexei Borodin Special Functions and Orthogonal Polynomials Mireille Bousquet-Mélou Stochastic Computation Symbolic Analysis Mark Braverman Claudio Canuto Martin Hairer Pierre Lairez Monique Laurent Melvin Leok Lek-Heng Lim Gábor Lugosi Bruno Salvy Sylvia Serfaty Steve Smale Andrew Stuart Joel Tropp Sponsors Shmuel Weinberger 2 FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th{19th, 2017 Books of abstracts 4 FoCM 2017 Contents Presentation . .7 Governance of FoCM . .9 Local Organizing Committee . .9 Administrative and logistic support . .9 Technical support . 10 Volunteers . 10 Workshops Committee . 10 Plenary Speakers Committee . 10 Smale Prize Committee . 11 Funding Committee . 11 Plenary talks . 13 Workshops . 21 A1 { Approximation Theory Organizers: Albert Cohen { Ron Devore { Peter Binev . 21 A2 { Computational Algebraic Geometry Organizers: Marta Casanellas { Agnes Szanto { Thorsten Theobald . 36 A3 { Computational Number Theory Organizers: Christophe Ritzenhaler { Enric Nart { Tanja Lange . 50 A4 { Computational Geometry and Topology Organizers: Joel Hass { Herbert Edelsbrunner { Gunnar Carlsson . 56 A5 { Geometric Integration and Computational Mechanics Organizers: Fernando Casas { Elena Celledoni { David Martin de Diego .
    [Show full text]
  • Aliasing Reduction in Clipped Signals
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Fabián Esqueda, Stefan Bilbao and Vesa Välimäki Title: Aliasing reduction in clipped signals Year: 2016 Version: Author accepted / Post print version Please cite the original version: Fabián Esqueda, Stefan Bilbao and Vesa Välimäki. Aliasing reduction in clipped signals. IEEE Transactions on Signal Processing, Vol. 64, No. 20, pp. 5255-5267, October 2016. DOI: 10.1109/TSP.2016.2585091 Rights: © 2016 IEEE. Reprinted with permission. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Aalto University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. This publication is included in the electronic version of the article dissertation: Esqueda, Fabián. Aliasing Reduction in Nonlinear Audio Signal Processing. Aalto University publication series DOCTORAL DISSERTATIONS, 74/2018. All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
    [Show full text]
  • Bandlimited Signal Extrapolation Using Prolate Spheroidal Wave Functions
    IAENG International Journal of Computer Science, 40:4, IJCS_40_4_09 ______________________________________________________________________________________ Bandlimited Signal Extrapolation Using Prolate Spheroidal Wave Functions Amal Devasia 1 and Michael Cada 2 reconstruction of signals. Further to this, in [11,12], they Abstract— A simple, efficient and reliable method to showed signal reconstruction using non-uniform sampling extrapolate bandlimited signals varying from lower to higher and level-crossing sampling with Slepian functions. frequencies is proposed. The orthogonal properties of linear Since the primary focus of this paper is on bandlimited prolate spheroidal wave functions (PSWFs) are exploited to signal extrapolation and not just reconstruction or form an orthogonal basis set needed for synthesis. A significant step in the process is the higher order piecewise polynomial interpolation, we will concentrate more on the recent approximation of the overlap integral required for obtaining advancements in this regard. While we consider the signals the expansion coefficients accurately with very high precision. to be bandlimited in the Fourier transform domain, much Two sets of PSWFs, one relatively with lower Slepian attention has recently been on extrapolation of signals frequency and the other with higher Slepian frequency, are bandlimited in linear canonical transform (LCT) domain, considered. Numerical results of extrapolation of some this being a four-parameter family of linear integral standard test signals using the two sets are presented, compared, discussed, and some interesting inferences are transform [13,14] that generalizes Fourier transform as one made. of its special cases. For extrapolation of LCT bandlimited signals, several iterative and non-iterative algorithms have Index Terms—Signal extrapolation; Slepian series; been proposed [15-18].
    [Show full text]
  • Efficient Implementations of Discrete Wavelet Transforms Using Fpgas Deepika Sripathi
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2003 Efficient Implementations of Discrete Wavelet Transforms Using Fpgas Deepika Sripathi Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING EFFICIENT IMPLEMENTATIONS OF DISCRETE WAVELET TRANSFORMS USING FPGAs By DEEPIKA SRIPATHI A Thesis submitted to the Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2003 The members of the committee approve the thesis of Deepika Sripathi defended on November 18th, 2003. Simon Y. Foo Professor Directing Thesis Uwe Meyer-Baese Committee Member Anke Meyer-Baese Committee Member Approved: Reginald J. Perry, Chair, Department of Electrical and Computer Engineering The office of Graduate Studies has verified and approved the above named committee members ii ACKNOWLEDGEMENTS I would like to express my gratitude to my major professor, Dr. Simon Foo for his guidance, advice and constant support throughout my thesis work. I would like to thank him for being my advisor here at Florida State University. I would like to thank Dr. Uwe Meyer-Baese for his guidance and valuable suggestions. I also wish to thank Dr. Anke Meyer-Baese for her advice and support. I would like to thank my parents for their constant encouragement. I would like to thank my husband for his cooperation and support. I wish to thank the administrative staff of the Electrical and Computer Engineering Department for their kind support. Finally, I would like to thank Dr.
    [Show full text]