Geographic Variation and Speciation in Rough-Winged Swallows (Aves: Hirundinidae: Stelgidopteryx)

Total Page:16

File Type:pdf, Size:1020Kb

Geographic Variation and Speciation in Rough-Winged Swallows (Aves: Hirundinidae: Stelgidopteryx) GEOGRAPHIC VARIATION AND SPECIATION IN ROUGH-WINGED SWALLOWS (AVES: HIRUNDINIDAE: STELGIDOPTERYX) A Thesis Submitted to the Graduate faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Biological Sciences by M. Josephine Babin B.S., George Mason University, 1993 May 2005 Acknowledgments I thank my committee Dr. Frederick Sheldon, Dr. Van Remsen, Dr. Robb Brumfield and Dr. John Chandler, as well as erstwhile members Dr. Dave Foltz and Dr. Mohamed Noor for their patience and and guidance during the research for and composition of this thesis. My fellow graduate students contributed immeasurably to this work. Their help came in the form of help with laboratory techniques, lively discussions and sharing of resources for fieldwork. I especially thank Manuel Marin, Adam Hrincevich, Jeremy Kirchmann, Theresa Spradling-Demastes, Jim Demastes, Dan Lane, Alex Aleixo, Kazuya Naoki, and David Posada. This work would not have been possible without the assistance of the long-term members of the Museum community. Most influencial were John O’Neill, Donna Dittmann,Steve Cardiff, Nannette Crochet, Clare Jones and Deb Taranik. ii Table of Contents ACKNOWLEDGMENTS . ii ABSTRACT . .iv INTRODUCTION . .1 TAXONOMY AND CLINAL PLUMAGE VARIATION IN THE ROUGH-WINGED SWALLOWS (STELGIDOPTERYX) . .7 GENETIC VARIATION IN STELGIDOPTERYX . .25 SUMMARY AND CONCLUSIONS . 59 REFERENCES CITED. .63 APPENDIX A: MORPHOLOGICAL DATA AND FACTORS FROM PRINCIPAL COMPONENTS ANALYSIS. 72 APPENDIX B: RAW SPECTRAL REFLECTANCE OF BELLY PLUMAGE . .80 APPENDIX C: RAW SPECTRAL REFLECTANCE OF CHIN PLUMAGE . 81 APPENDIX D: RAW SPECTRAL REFLECTANCE OF UNDERTAIL COVERTS . 82 APPENDIX E: COLORIMETRY DATA AND PRINCIPAL COMPONENTS, BELLY PLUMAGE . 83 APPENDIX F: COLORIMETRY DATA AND PRINCIPAL COMPONENTS, CHIN PLUMAGE . 88 APPENDIX G: COLORIMETRY DATA AND PRINCIPAL COMPONENTS, UNDERTAIL . .92 APPENDIX H: MICROSATELLITE GENOTYPES . .97 APPENDIX I: MICROSATELLITE SEQUENCES . .99 APPENDIX J: INDIVIDUALS AND STAINS USED IN ALLOZYME ANALYSIS . .103 APPENDIX K: CYTOCHROME-B SEQUENCES FOR OUTGROUP AND INGROUP TAXA USED IN GENETIC ANALYSES. .104 VITA . .134 iii Abstract This study is an examination of geographic variation and evolutionary history of Stelgidopteryx swallows. These swallows comprise two recognized species: Northern Rough-winged Swallow (S. serripennis) and Southern Rough-winged Swallow (S. ruficollis). A third species, Yucatan Rough-winged Swallow (S. ridgwayi)is also commonly recognized. The species are largely allopatric, except for a contact zone in Costa Rica. Using plumage and molecular variation, I examined the likelihood of two (or three) different species of rough-winged swallows, the genetic interrelationships among taxa, and their biogeographic history. Geographic plumage variation reveals a latitudinal cline across the genus from North to South America. Specimens from throughout the range of Stelgidopteryx show that most published subspecies should be synonymized as clinal variants. Molecular data (mitochondrial cytochrome-b sequences, microsatellite allele frequencies) show a pattern consistent with a species-level division between S. serripennis and S. ruficollis . The data also suggest that the Yucatan swallow is distinct. Phylogenetic trees from the sequence data divide Stelgidopteryx into northern and southern clades consistent with S. serripennis and S. ruficollis. The Yucatan clade, S. ridgwayi, is sister to the northern group. Microsatellite data indicate allelic frequency differences between the groups, but none fixed. Population genetic analyses among individuals within S. serripennis and S. ruficollis reveal genetic structure possibly worthy of taxonomic recognition. Measures of the population parameter theta indicate high allelic diversity in each group and suggest S. ruficollis is the younger population. The Northern Rough-winged Swallow exhibits broad clinal variation, but little subspecific subdivision. The Yucatan Rough-winged iv Swallow, is phenotypically and genetically dissimilar to the other groups, further supporting species-status. The Southern Rough-winged Swallow contains at least two subspecies, including decolor on the Pacific slope of Central America, and ruficollis throughout the rest of its range. The widespread distribution and contact zone in Costa Rica are consistent with secondary contact between the northern and southern swallows. The emergence of the Panamanian landbridge could have contributed to the formation of the contact zone. Pleistocene climatic shifts could also have played a role in isolating birds on opposite slopes of Central America allowing divergence between S. r. uropygialis and S. r. decolor. v Introduction Speciation is a slow process relative to the lifespan of human observers. Except in rare cases, the process cannot be directly documented and must be inferred from historical evidence. Modern distributions of organisms and the traits of the organisms themselves are signatures of past evolutionary processes, and the main clues for studying these processes. As divergence among groups increases, to detect the forces that created them becomes more difficult. Therefore, to understand speciation, examination recently diverged species or populations provides our best opportunity. Ideal groups for an in situ examination of speciation would consist of phenotypically similar taxa that have developed reproductive mating isolation and are largely allopatric, but in some localities hybridize (Hewitt 1988, Barton and Hewitt 1989, Harrison 1993). The rough-winged swallows (Stelgidopteryx) fit this profile and are the focus of this study. They are widespread in tropical and temperate areas of the Americas (figure 1.1). Indeed, along with Purple Martins (Progne) and tree swallows (Tachycineta), they are the only New World endemic swallows with such a broad distribution. The Northern Rough-winged Swallow (Stelgidopteryx serripennis) occupies most of North America south to Costa Rica, where it meets the Southern Rough-winged Swallow (S. ruficollis), which occurs throughout the tropical and temperate South America. The only area where Northern and Southern Rough-winged Swallows come in contact is a narrow zone in Costa Rica (figure 1.2). A third form, the Yucatan Rough-winged Swallow (S. s. ridgwayi), is found on the Yucatan Peninsula of Mexico and is sometimes considered a separate species. All rough-winged swallows have the same shape, general behavior, and plumage color patterns. They differ only in relative color intensity, the northern birds being drab and the southern ones being brighter, and also in elevational preference within the Costa Rican contact zone, southern birds occurring lower than northern 1 Figure 1.1: General range map for Stelgidopteryx Figure 1.2: Map of Stelgidopteryx breeding distributions in Costa Rica 2 birds. In the Costa Rican contact zone, birds display assortative mating, with few reports of mixed nests and no evidence of viable offspring (Stiles 1981). The contact zone between the Northern and Southern Rough-winged Swallows presents a taxonomic and interpretive challenge. Although the overall phenotypes are distinguishable, introgression of plumage traits is evident on both sides of the zone. Historically, the introgression was viewed as a steep cline (Griscom 1929, Ridgwayi 1904, Stiles 1981). Indeed there is a north/south cline in plumage color across the entire genus, which simply appears more extreme in Central America than within either of the major continental regions. However, the genus was split into two species in Costa Rica by Stiles (1981), and this was recognized by the AOU (1983) and all subsequent classifications. Using behavior and ecology to arrive at his conclusions, Stiles found not only that the birds have separate habitat preferences in Costa Rica but that they also mate assortatively. If this is the case, why do traits show some introgression? Hybridization has historically been the assumed, but untested, cause of rough-winged swallow introgression. Despite extensive observations of rough-winged swallows during their breeding periods, Stiles (1981) found no conclusive evidence for hybridization. To evaluate speciation in rough-wing swallows, it is necessary to adopt a consistent definition of species. Three definitions of species are currently popular (de Queiroz 1998): the Phylogenetic Species Concept (PSC; Cracraft 1987, McKitrick and Zink 1988), the Biological Species Concept (BSC; Mayr 1963), and the Evolutionary Species Concept (ESC; Simpson 1951, Wiley 1978). Under the BSC, the criterion for separating species is reproductive isolation. Limited hybridization between species is acceptable if mating is assortative (Mayr and Ashlock 1969). The PSC separates species based on any diagnosable difference that can be shown or assumed to be heritable within a monophyletic group (Cracraft 1983, McKitrick and Zink 1988). The ESC is a 3 lineage-based species concept emphasizing an ancestor-descendent procession. It uses the somewhat vague definition of a species as any lineage on its own evolutionary trajectory, divergent from other such lineages (Wiley 1978, de Queiroz 1998). The BSC is the most useful and practical of the three, as it incorporates variation, reproductive isolation, and hybridization. For the rough-winged swallows the northern and southern groups appear to be reproductively isolated, even though there seems to be leakage of genes as indicated
Recommended publications
  • Costa Rica 2020
    Sunrise Birding LLC COSTA RICA TRIP REPORT January 30 – February 5, 2020 Photos: Talamanca Hummingbird, Sunbittern, Resplendent Quetzal, Congenial Group! Sunrise Birding LLC COSTA RICA TRIP REPORT January 30 – February 5, 2020 Leaders: Frank Mantlik & Vernon Campos Report and photos by Frank Mantlik Highlights and top sightings of the trip as voted by participants Resplendent Quetzals, multi 20 species of hummingbirds Spectacled Owl 2 CR & 32 Regional Endemics Bare-shanked Screech Owl 4 species Owls seen in 70 Black-and-white Owl minutes Suzy the “owling” dog Russet-naped Wood-Rail Keel-billed Toucan Great Potoo Tayra!!! Long-tailed Silky-Flycatcher Black-faced Solitaire (& song) Rufous-browed Peppershrike Amazing flora, fauna, & trails American Pygmy Kingfisher Sunbittern Orange-billed Sparrow Wayne’s insect show-and-tell Volcano Hummingbird Spangle-cheeked Tanager Purple-crowned Fairy, bathing Rancho Naturalista Turquoise-browed Motmot Golden-hooded Tanager White-nosed Coati Vernon as guide and driver January 29 - Arrival San Jose All participants arrived a day early, staying at Hotel Bougainvillea. Those who arrived in daylight had time to explore the phenomenal gardens, despite a rain storm. Day 1 - January 30 Optional day-trip to Carara National Park Guides Vernon and Frank offered an optional day trip to Carara National Park before the tour officially began and all tour participants took advantage of this special opportunity. As such, we are including the sightings from this day trip in the overall tour report. We departed the Hotel at 05:40 for the drive to the National Park. En route we stopped along the road to view a beautiful Turquoise-browed Motmot.
    [Show full text]
  • Tree Swallows (Tachycineta Bicolor) Nesting on Wetlands Impacted by Oil Sands Mining Are Highly Parasitized by the Bird Blow Fly Protocalliphora Spp
    Journal of Wildlife Diseases, 43(2), 2007, pp. 167–178 # Wildlife Disease Association 2007 TREE SWALLOWS (TACHYCINETA BICOLOR) NESTING ON WETLANDS IMPACTED BY OIL SANDS MINING ARE HIGHLY PARASITIZED BY THE BIRD BLOW FLY PROTOCALLIPHORA SPP. Marie-Line Gentes,1 Terry L. Whitworth,2 Cheryl Waldner,3 Heather Fenton,1 and Judit E. Smits1,4 1 Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada 2 Whitworth Pest Solutions, Inc., 2533 Inter Avenue, Puyallup, Washington, USA 3 Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada 4 Corresponding author (email: [email protected]) ABSTRACT: Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies’ leases to assess the feasibility of this approach, and tree swallows (Tachycineta bicolor) were designated as upper trophic biological sentinels. From May to July 2004, prevalence and intensity of infestation with bird blow flies Protocalliphora spp. (Diptera: Calliphoridae) were measured in nests on oil sands reclaimed wetlands and compared with those on a reference site. Nestling growth and survival also were monitored. Prevalence of infestation was surprisingly high for a small cavity nester; 100% of the 38 nests examined were infested. Nests on wetlands containing oil sands waste materials harbored on average from 60% to 72% more blow fly larvae than those on the reference site.
    [Show full text]
  • Tachycineta Bicolor) Nestling Resting Metabolic Rate
    College of Saint Benedict and Saint John's University DigitalCommons@CSB/SJU All College Thesis Program, 2016-present Honors Program Spring 4-29-2016 Factors Affecting Tree Swallow (Tachycineta bicolor) Nestling Resting Metabolic Rate Brooke M. Piepenburg College of Saint Benedict/Saint John's University, [email protected] Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_thesis Part of the Biology Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Piepenburg, Brooke M., "Factors Affecting Tree Swallow (Tachycineta bicolor) Nestling Resting Metabolic Rate" (2016). All College Thesis Program, 2016-present. 15. https://digitalcommons.csbsju.edu/honors_thesis/15 This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in All College Thesis Program, 2016-present by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. FACTORS AFFECTING TREE SWALLOW (Tachycineta bicolor) NESTLING RESTING METABOLIC RATE AN ALL COLLEGE THESIS College of St. Benedict/St. John’s University In Partial Fulfillment of the Requirements for Distinction in the Department of Biology by Brooke Piepenburg 2015-2016 Factors Affecting Tree Swallow Nestling Resting Metabolic Rate by Brooke Piepenburg Approved by: ___________________________________ Dr. Clark Cotton Assistant Professor of Biology ___________________________________ Ms. Kristina Timmerman Professor of Biology ___________________________________ Ms. Carol Jansky Laboratory Coordinator and Summer Research Fellowship Mentor ___________________________________ Dr. William Lamberts Associate Professor of Biology and Chair, Department of Biology ___________________________________ Director, All College Thesis Program 2 Factors Affecting Tree Swallow Nestling Resting Metabolic Rate Brooke Piepenburg ABSTRACT Metabolism is the major force that maintains the most rudimentary of functions, and, therefore, maintains life in every organism.
    [Show full text]
  • Violet-Green Swallow
    Breeding Habitat Use Profile Habitats Used in Arizona Primary: Montane Riparian Secondary: Montane Forests, locally Upper Sonoran Desert Key Habitat Parameters Plant Composition Most montane forest types, often with some element of riparian, wetland, open water or 8 other moist habitat types Plant Density and Unknown Size Violet-green Swallow, photo by ©George Andrejko Microhabitat Snags, live trees, or cliffs for nesting, mesic Features areas with high insect productivity for forag- Conservation Profile ing 8; in wooded landscapes, often noted foraging and nesting near forest clearings Species Concerns and edges. Climate Change (Droughts) Increasing Fire Frequency Landscape Largely unknown, but must include some Timber Harvesting Practices old-growth forests or cliffs Conservation Status Lists Elevation Range in Arizona USFWS 1 No 3,200 – 10,500 feet, locally to 1,200 feet 9 AZGFD 2 No Density Estimate DoD 3 No Territory Size: Unknown BLM 4 No Density: Unknown, sometimes occurs in loose colonies 8 PIF Watch List 5b No PIF Regional Concern 5a No Migratory Bird Treaty Act Natural History Profile Covered Seasonal Distribution in Arizona PIF Breeding Population Size Estimates 6 Breeding April – early August, desert nesting may Arizona 710,000 ◑ begin in March 9 Global 7,200,000 ◑ Migration February – April; August – mid-October 9 9.93% Percent in Arizona Winter Rare, very small numbers 5b PIF Population Goal Nest and Nesting Habits Maintain 8 Type of Nest Cavity or crevice Trends in Arizona Nest Substrate Tree, rock, or cliff; also artificial
    [Show full text]
  • Aves: Hirundinidae)
    1 2 Received Date : 19-Jun-2016 3 Revised Date : 14-Oct-2016 4 Accepted Date : 19-Oct-2016 5 Article type : Original Research 6 7 8 Convergent evolution in social swallows (Aves: Hirundinidae) 9 Running Title: Social swallows are morphologically convergent 10 Authors: Allison E. Johnson1*, Jonathan S. Mitchell2, Mary Bomberger Brown3 11 Affiliations: 12 1Department of Ecology and Evolution, University of Chicago 13 2Department of Ecology and Evolutionary Biology, University of Michigan 14 3 School of Natural Resources, University of Nebraska 15 Contact: 16 Allison E. Johnson*, Department of Ecology and Evolution, University of Chicago, 1101 E 57th Street, 17 Chicago, IL 60637, phone: 773-702-3070, email: [email protected] 18 Jonathan S. Mitchell, Department of Ecology and Evolutionary Biology, University of Michigan, 19 Ruthven Museums Building, Ann Arbor, MI 48109, email: [email protected] 20 Mary Bomberger Brown, School of Natural Resources, University of Nebraska, Hardin Hall, 3310 21 Holdrege Street, Lincoln, NE 68583, phone: 402-472-8878, email: [email protected] 22 23 *Corresponding author. 24 Data archiving: Social and morphological data and R code utilized for data analysis have been 25 submitted as supplementary material associated with this manuscript. 26 27 Abstract: BehavioralAuthor Manuscript shifts can initiate morphological evolution by pushing lineages into new adaptive 28 zones. This has primarily been examined in ecological behaviors, such as foraging, but social behaviors 29 may also alter morphology. Swallows and martins (Hirundinidae) are aerial insectivores that exhibit a This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Birds Along Lehi's Trail
    Journal of Book of Mormon Studies Volume 15 Number 2 Article 10 7-31-2006 Birds Along Lehi's Trail Stephen L. Carr Follow this and additional works at: https://scholarsarchive.byu.edu/jbms BYU ScholarsArchive Citation Carr, Stephen L. (2006) "Birds Along Lehi's Trail," Journal of Book of Mormon Studies: Vol. 15 : No. 2 , Article 10. Available at: https://scholarsarchive.byu.edu/jbms/vol15/iss2/10 This Feature Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Journal of Book of Mormon Studies by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Title Birds Along Lehi’s Trail Author(s) Stephen L. Carr Reference Journal of Book of Mormon Studies 15/2 (2006): 84–93, 125–26. ISSN 1065-9366 (print), 2168-3158 (online) Abstract When Carr traveled to the Middle East, he observed the local birds. In this article, he suggests the possi- bility that the Book of Mormon prophet Lehi and his family relied on birds for food and for locating water. Carr discusses the various birds that Lehi’s family may have seen on their journey and the Mosaic law per- taining to those birds. Birds - ALOnG LEHI’S TRAIL stephen l. cARR 84 VOLUME 15, NUMBER 2, 2006 PHOTOGRAPHy By RICHARD wELLINGTOn he opportunity to observe The King James translators apparently ex- birds of the Middle East came to perienced difficulty in knowing exactly which me in September 2000 as a member Middle Eastern birds were meant in certain pas- Tof a small group of Latter-day Saints1 traveling in sages of the Hebrew Bible.
    [Show full text]
  • Population Dynamics and Migration Routes of Tree Swallows, Tachycineta Bicolor, in North America
    J. Field Ornithol., 59(4):395-402 POPULATION DYNAMICS AND MIGRATION ROUTES OF TREE SWALLOWS, TACHYCINETA BICOLOR, IN NORTH AMERICA ROBERT W. BUTLER Canadian Wildlife Service Box $dO Delta, British Columbia, VdK $Y$, Canada and EcologyGroup Departmentof Zoology Universityof British Columbia Vancouver, British Columbia V6T ?W5, Canada Abstract.--Band recoveriesand published accountsindicate that 79.1% of Tree Swallows (Tachycinetabicolor) die in their first year and 60.3% in eachsubsequent year. Tree Swallows live an averageof 2.7 yr. The net reproductiverate (R0) is 0.701 females/yr.At that rate a femalethat raisesan average-sizedbrood in eachbreeding year more than replacesherself in an averagelife span.However, a secondyear (SY) femalethat fails to breedmust raise an average-sizedbrood in each of the next three years to replace herself, but few females live that long. Tree Swallowsuse three migration routeseast of the Rockies:(1) eastcoast and Great Lake populationsmigrate along the easternseaboard to Florida, the Caribbean and Central America; (2) Canadian prairie and mid-west USA populationsfollow the Mississippidrainage basin to the Gulf Coast statesand Central America;(3) populations alongthe eastside of the Rockiesmigrate due southinto Mexico. Migration routesof western populationsare unknown,but a residentpopulation may exist in southernCalifornia. DINJ•MICA DE POBLACIONES Y RUTAS DE MIGRACI6N DE TACHYCINETA BICOLOR EN NORTE AMERICA Rcsumcn.--Tanto la litcratura como cl rccobrodc anillas indican quc cl 79.1% dc los individuosdc Tachycinetabicolor mucrcn durante cl primer afio y cl 60.3% cn aftossubsi- guicntcs.En promcdiocstas aves duran 2.7 aftos.La taza ncta rcproductivadc la cspccic (R0) cs dc 0.71 hcmbras/afio.A csta taza rcproductiva,una hcmbra quc cric una camada dc tamafio promcdiodurante susaftos dc vida, producirauna pcqucfiamayor cantidaddc individuosquc su rcmplazo.
    [Show full text]
  • The Evolution of Nest Construction in Swallows (Hirundinidae) Is Associated with the Decrease of Clutch Size
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 38/1 711-716 21.7.2006 The evolution of nest construction in swallows (Hirundinidae) is associated with the decrease of clutch size P. HENEBERG A b s t r a c t : Variability of the nest construction in swallows (Hirundinidae) is more diverse than in other families of oscine birds. I compared the nest-building behaviour with pooled data of clutch size and overall hatching success for 20 species of swallows. The clutch size was significantly higher in temperate cavity-adopting swallow species than in species using other nesting modes including species breeding in evolutionarily advanced mud nests (P<0.05) except of the burrow-excavating Bank Swallow. Decrease of the clutch size during the evolution of nest construction is not compensated by the increase of the overall hatching success. K e y w o r d s : Hirundinidae, nest construction, clutch size, evolution Birds use distinct methods to avoid nest-predation: active nest defence, nest camouflage and concealment or sheltered nesting. While large and powerful species prefer active nest-defence, swallows and martins usually prefer construction of sheltered nests (LLOYD 2004). The nests of swallows vary from natural cavities in trees and rocks, to self-exca- vated burrows to mud retorts and cups attached to vertical faces. Much attention has been devoted to the importance of controlling for phylogeny in com- parative tests (HARVEY & PAGEL 1991), including molecular phylogenetic studies of swallows (WINKLER & SHELDON 1993). Interactions between the nest-construction va- riability and the clutch size, however, had been ignored.
    [Show full text]
  • Head-Scratching Method in Swallows Depends on Behavioral Context
    SHORT COMMUNICATIONS 679 shoulder-spot display during their observations of behavior in partridges. In all cases that I observed, the shoulder spot appeared to be a fear or flight intention display as described by Lumsden (1970). However, the display seemed secondary in importance compared to vocalizations and “tail flicking” during periods of extreme alarm. Examination of the shoul- der spot of a partridge confirmed the realignment of white underwing coverts to the top of the wing in the patagial region. The manipulation by the bird of underwing feathers appeared to be identical to that of Ruffed Grouse (Bonusa umbellus)(Garbutt 198 1). Since “display” implies actual communication between individuals further investigation is needed to de- termine if, in fact, the shoulder spot actually is serving a communication function in Gray Partridge. The shoulder spot in Gray Partridges and the display seen in grouse are morphologically similar. Lumsden (1970) concluded that the widespread occurrence of this display among grouse indicated it appeared relatively early in evolution. The morphological and behavioral similarities between the display in grouse and partridges suggest that the shoulder spot may have evolved even earlier. Since this is an escape behavior, and since many species of partridges and pheasants are difficult to observe in the wild, it may have been overlooked. Acknowledgments.-Theseobservations were made while the author was supported by funds from the North Dakota Game and Fish Department through Pittman-Robertson Project W-67-R. Additional support was provided by the Biology Department and Institute for Ecological Studies at the University of North Dakota. Helpful editorial comments were provided by R.
    [Show full text]
  • The Best of Costa Rica March 19–31, 2019
    THE BEST OF COSTA RICA MARCH 19–31, 2019 Buffy-crowned Wood-Partridge © David Ascanio LEADERS: DAVID ASCANIO & MAURICIO CHINCHILLA LIST COMPILED BY: DAVID ASCANIO VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM THE BEST OF COSTA RICA March 19–31, 2019 By David Ascanio Photo album: https://www.flickr.com/photos/davidascanio/albums/72157706650233041 It’s about 02:00 AM in San José, and we are listening to the widespread and ubiquitous Clay-colored Robin singing outside our hotel windows. Yet, it was still too early to experience the real explosion of bird song, which usually happens after dawn. Then, after 05:30 AM, the chorus started when a vocal Great Kiskadee broke the morning silence, followed by the scratchy notes of two Hoffmann´s Woodpeckers, a nesting pair of Inca Doves, the ascending and monotonous song of the Yellow-bellied Elaenia, and the cacophony of an (apparently!) engaged pair of Rufous-naped Wrens. This was indeed a warm welcome to magical Costa Rica! To complement the first morning of birding, two boreal migrants, Baltimore Orioles and a Tennessee Warbler, joined the bird feast just outside the hotel area. Broad-billed Motmot . Photo: D. Ascanio © Victor Emanuel Nature Tours 2 The Best of Costa Rica, 2019 After breakfast, we drove towards the volcanic ring of Costa Rica. Circling the slope of Poas volcano, we eventually reached the inspiring Bosque de Paz. With its hummingbird feeders and trails transecting a beautiful moss-covered forest, this lodge offered us the opportunity to see one of Costa Rica´s most difficult-to-see Grallaridae, the Scaled Antpitta.
    [Show full text]
  • ILLINOIS BIRDS: Hirundinidae
    LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Y\o. GG - €)3 SURVEY ILLINOIS BIRDS: Hirundinidae RICHARD R. GRABER J^' JEAN W. GRABER ETHELYN L. KIRK ^^^ Biological Notes No. 80 ILLINOIS NATURAL HISTORY SURVEY Urbana, Illinois — August, 1972 State of Illinois Department of Registration and Education NATURAL HISTORY SURVEY DIVISION 1969 -1967 Fig. 1.—Routes travelled in summer (1957-1970) to study breed- ing distribution of the birds of Illinois. The encircled areas were spe- cial study areas where daily censuses of migrants and nesting popula- tions of birds were carried out, 1967-1970. , ILLINOIS BIRDS: Hirundinidae Richard R. Graber, Jean W. Graber, and Ethelyn L. Kirk THIS REPORT, the third in a series of pa- particularly interesting group for distribution studies, pers on the birds of Illinois, deals with the and to determine their population trends we should swallows. The introductions to the first two papers, know the location of every major colony or popula- on the mimids and thrushes (Graber et al. 1970, tion in the state. We therefore appeal to all students 1971) also serve as a general introduction to the of Illinois birds to examine the maps showing breed- series, and the procedures and policies outlined in ing distributions, and publish any additional infor- those papers also apply to this one. mation they may have. By this procedure we will One point that warrants emphasis and clarifica- ultimately learn the true distribution of all the Illi- tion is the geographic scope of the papers. Unless nois species. otherwise indicated, the data presented and the In bringing together the available information statements made refer to the state of Illinois (Fig.
    [Show full text]
  • Purple Martin Project Our Vision
    New York PurPle Martin Purple Martin P r o j e c t Project New York PHOTO JIM WILLIAMS Female and male parents share in building the nest to raise their young Adult female on the left shown with two of its young IN NEW YORK STATE, PURPLE MARTINS Check out these websites HAVE DECLINED BY 39% since 1985. for more information on purple martins: Help Reverse the Trend! www.friendsofiroquoisnwr.org/ The National Audubon Society suggests the purplemartins/media.html following ways that you can help to conserve newyorkwild.org/martin/martin_video.htm Purple Martins: purplemartin.org ■ Purchase or construct and install appropriate birds.audubon.org/species/purmar martin housing, including predator proofing. Project Partners Housing standards can be found at New York State Ornithological Association www.purplemartin.org Buffalo Audubon Society ■ Protect martin colonies from European Buffalo Ornithological Society Starlings and House Sparrows by trapping or Purple Martin Conservation Association otherwise removing these non-native nest Friends of Iroquois NWR site competitors. New York State Bluebird Society ■ Plant native trees, shrubs, flowers and Orleans Bluebird Society grasses which attract more insects than non- If you have questions about caring for a natives. In fact, they support almost 30 times Purple Martin colony, please contact: more insect diversity than introduced plants. FINWR c/o Carl Zenger ■ Avoid applying pesticides that kill or poison 1101 Casey Road flying insects that martins eat. Basom, NY 14013 Carl Zenger: [email protected] 716-434-7568 ■ Create a dragonfly pond to attract and breed these and other insects preferred by martins. Celeste Morien : [email protected] 585-721-8202 ■ Maintain a pile of small gravel or sand in an Pat Lynch: [email protected] open area for grit.
    [Show full text]