The HL60 Cell Line: a Model System for Studying Human Myeloid Cell Differentiation G.D

Total Page:16

File Type:pdf, Size:1020Kb

The HL60 Cell Line: a Model System for Studying Human Myeloid Cell Differentiation G.D Br. J. Cancer (1988), 58, Suppl. IX, 41-45 ,'. The Macmillan Press Ltd., 1988 The HL60 cell line: A model system for studying human myeloid cell differentiation G.D. Birnie The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 IBD, UK. Summary The HL60 cell line was established in 1977 from a patient with acute myeloid leukaemia. The cells largely resemble promyelocytes but can be induced to differentiate terminally in vitro. Some reagents cause HL60 cells to differentiate to granulocyte-like cells, others to monocyte/macrophage-like cells. The HL60 cell genome contains an amplified c-myc proto-oncogene; c-myc mRNA levels are correspondingly high in undifferentiated cells but decline rapidly following induction of differentiation. These features have made the HL60 cell line an attractive model for studies of human myeloid cell differentiation. This review summarizes the major properties of HL60 cells, describes some aspects of the regulation of gene expression in differentiating HL60 cells, including a novel interaction between transcriptional and post-transcriptional controls, and discusses the possible involvement of c-myc in proliferation and differentiation. The HL60 cell line originated from a female patient with been largely deleted (Wolf & Rotter, 1985), and one allele of acute myeloid leukaemia (Collins et al., 1977). The leukae- the GM-CSF gene on chromosome 5q21-q23 is rearranged mia was first diagnosed as acute promyelocytic leukaemia and partly deleted (Huebner et al., 1985). In addition, N-ras (FAB class M3), but a recent re-evaluation of the original mutated in codon 61 (Bos et al., 1984) has been rescued specimens from the patient indicated that FAB class M2 from HL60 DNA by transfection of NIH/3T3 cells (Murray (acute myeloblastic leukaemia with differentiation) would et al., 1983). However, the first genetic alteration observed in have been a more accurate description of the patient's HL60 cells (and the one generating most interest) is the disease (Dalton et al., 1988). The culture of peripheral blood amplification of DNA sequences encompassing the c-myc leukocytes from this patient in conditioned medium resulted gene (Collins & Groudine, 1982). In both early passage in the development of a growth-factor-independent immortal HL60 cells and in the peripheral blood leukocytes of the cell line with distinct myeloid characteristics (Gallagher et patient from whom the cell line was derived the c-myc gene al., 1979). Some of the properties of HL60 cells have made was amplified about 30-fold (Dalla-Favera et al., 1982). this cell line an attractive model for studies of differentiation Later, several sublines of HL60 cells in which the degree of in general, and human myeloid cell differentiation in particu- amplification of the c-myc gene differs were described lar, and an extensive literature (more than 700 papers) has (Graham et al., 1985). Morphological, histochemical and accumulated in the past 10 years. Despite this, the molecular immunological analyses (Graham et al., 1985), and clono- events underlying, and the mechanisms controlling, myeloid genic analyses (Donti et al., 1988), confirmed the identity of cell differentiation remain largely obscure. This brief review these sublines as HL60, but the extent to which the describes the salient features of the HL60 cell line and some c-myc-homologous sequences are amplified in the sublines novel aspects of the control of gene expression in differen- varies from 4-fold to 30-fold (Graham et al., 1985; Donti et tiating HL60 cells. It also attempts to summarize some of al., 1988). Moreover, the relative abundance of c-myc RNA the too often contradictory data and conflicting conclusions in the cells of each subline is directly proportional to the myc regarding the role of the c-myc proto-oncogene in differen- gene copy number (Graham et al., 1985). This led to the tiation, as deduced from studies of induced differentiation of conclusion that high levels of the c-myc gene and its HL60 cells and other established cell lines. transcript are not necessary for the maintenance of the HL60 cell phenotype. However, the possibility remains that over- expression of c-myc due to the amplification of the gene did Characteristics of HL60 cells have a role in the establishment of the HL60 cell line, a hypothesis with some attraction because of the known HL60 cells grow in suspension culture with a doubling time transforming activity of combinations of c-myc and a that can vary from 20h to 45h, depending on the subline. mutated rasH gene (Land et al., 1983; Lee et al., 1985; Kohl All sublines display a myeloblastic/promyelocytic morpho- & Ruley, 1987). logy: large, blast-like cells with characteristic large, rounded In normal cells the c-myc gene has been localized to nuclei containing 2-4 distinct nucleoli, and a basophilic chromosome 8q24 (Neel et al., 1982). In HL60 cells with a cytoplasm with azurophilic granules. Cultures of HL60 cells 30-fold amplification of the c-myc gene, the c-myc sequences comprise 90-95% of cells with this morphology; the remain- have been located in an abnormal banded region on chromo- ing cells display morphologies resembling those of more some 8q24 (Nowell et al., 1983) or on a marker chromosome mature myeloid cells (mainly myelocytes, with some neutro- (M3q+) (Wolman et al., 1985). In one of the sublines in phils and monocytes). The majority of the cells carry a which amplification of the c-myc gene is much reduced the variety of cell surface antigens characteristic of immature residual c-myc DNA is located on a novel chromosome, 4q+ myeloid cells as shown by their reaction with an extensive (Donti et al., 1988). These data emphasise, first, the mobility panel of monoclonal antibodies (Graham et al., 1985). Many of the genomic region containing the c-myc gene and, histochemical markers characteristic of myeloid lineage cells, second, the fluidity of much of the genome in the HL60 cell most notably myeloperoxidase and acid phosphatase, are line. also present, as well as receptors for insulin, transferrin and complement (see Tsiftsoglou & Robinson, 1985; Collins, 1987). Induced of HL60 cells Cytogenetic analysis of HL60 cells shows the occurrence differentiation of many karyotypic abnormalities, including monosomy, HL60 cultures comprise maturation-arrested cells many of trisomy and tetrasomy, and a variety of chromosomal trans- whose properties are similar to those of myeloblasts and locations (Wolman et al., 1985; Donti et al., 1988). On the promyelocytes. In all cultures of HL60 cells, however, the molecular genetic level it has been found, for example, that block in differentiation is spontaneously overcome in a small the p53 gene on chromosome 17pl3 (Isobe et al., 1986) has proportion of cells (5-10%) which display morphological 42 G.D. BIRNIE and other characteristics of more mature myeloid cells. The myeloperoxidase activity and the appearance of non-specific property of HL60 cells that has probably attracted most esterase activity (a monocyte/macrophage marker) in all interest is the ability of a variety of agents to increase the adherent cells. In addition, markedly elevated levels of proportion of cells differentiating in vitro to as great as 90%, lysozyme can be detected in the medium within 16-24h after and the capacity of cloned cell populations to differentiate initiation of differentiation. Changes in cell surface antigens either to granulocyte-like or to monocyte/macrophage-like characteristic of maturation along the monocyte/macrophage cells depending on the nature of the inducing agent (Fontana pathway also occur (Graham et al., 1985). et al., 1981; see Collins, 1987). Thus, polar-planar com- Some of the confusion surrounding the interpretation of pounds such as dimethyl sulphoxide (DMSO), and other data from experiments with HL60 cells undoubtedly arises compounds as diverse as retinoic acid and actinomycin D, all from a lack of uniformity in the response of HL60 cells to induce differentiation to granulocytes, while 1,25-dihydroxy- different inducers that have the same overall effect. For vitamin D3, phorbol esters and sodium butyrate induce example, our clones of cells differentiate more slowly when monocyte/macrophage differentiation. The bipotency of a induced with retinoic acid than with DMSO; moreover, a very large proportion (at least 80%) of the cells in HL60 higher proportion are resistant to induction with retinoic cultures is not in doubt (Fontana et al., 1981; Fibach et al., acid (40%) than with DMSO (10%). With other clones it 1982), but it does cause difficulty in the assigning of the has been reported that retinoic acid is just as effective an myeloblastic/promyelocytic HL60 cell to an appropriate inducer as DMSO (Breitman et al., 1980). Many other place in the classical scheme of myelomonocytic differen- qualitative and quantitative differences between inducers tiation (Figure 1), or perhaps casts doubt on some aspects of have been reported, some of which have been summarized this scheme (Fibach et al., 1982). by Collins (1987). However, the extent to which differences The course of the differentiation induced by any of these are due to differences between inducers or to differences agents is accompanied by a large number of changes in the between sublines of HL60 cells is unclear. In all but a few cells (Tsiftsoglou & Robinson, 1985; Collins, 1987), and is instances the effects of the different inducers have not been easily monitored by morphological, histochemical and compared directly on the same clone of cells. immunological criteria. Thus, incubation with DMSO or retinoic acid leads, over a period of 5 days, to a progressive decrease in the size of HL60 cells and condensation of Changes in gene expression with differentiation of HL60 cells nuclear material with the appearance of kidney-shaped As expected, the marked morphological and other changes nuclei characteristic of the myelocyte and, later, lobed nuclei seen when HL60 cells are induced to differentiate are characteristic of banded and segmented neutrophils.
Recommended publications
  • Cytotoxic Effect of Damnacanthal, Nordamnacanthal, Zerumbone and Betulinic Acid Isolated from Malaysian Plant Sources
    International Food Research Journal 17: 711-719 (2010) Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources 1,*Alitheen, N.B., 2Mashitoh, A.R., 1Yeap, S.K., 3Shuhaimi, M., 4Abdul Manaf, A. and 2Nordin, L. 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 2Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3Department. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 4Faculty of Agriculture and Biotechnology, Universiti Darul Iman Malaysia, 20400 Kuala Terengganu, Terengganu, Malaysia Abstract: The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL- 60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively.
    [Show full text]
  • Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase Is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis Michelle Kinder University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Immunology and Infectious Disease Commons Recommended Citation Kinder, Michelle, "Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis" (2010). Publicly Accessible Penn Dissertations. 88. https://repository.upenn.edu/edissertations/88 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/88 For more information, please contact [email protected]. Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis Abstract Fatty acid metabolism governs critical cellular processes in multiple cell types. The goal of my dissertation was to investigate the intersection between fatty acid metabolism and hematopoiesis. Although fatty acid metabolism has been extensively studied in mature hematopoietic subsets during inflammation, in developing hematopoietic cells the role of fatty acid metabolism, in particular by 12/ 15-Lipoxygenase (12/15-LOX), was unknown. The observation that 12/15-LOX-deficient (Alox15) mice developed a myeloid leukemia instigated my studies since leukemias are often a consequence of dysregulated hematopoiesis. This observation lead to the central hypothesis of this dissertation which is that polyunsaturated fatty acid metabolism mediated by 12/15-LOX participates in hematopoietic development. Using genetic mouse models and in vitro and in vivo cell development assays, I found that 12/15-LOX indeed regulates multiple stages of hematopoiesis including the function of hematopoietic stem cells (HSC) and the differentiation of B cells, T cells, basophils, granulocytes and monocytes.
    [Show full text]
  • Cytotoxic Effect of Damnacanthal, Nordamnacanthal, Zerumbone and Betulinic Acid Isolated from Malaysian Plant Sources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Putra Malaysia Institutional Repository International Food Research Journal 17: 711-719 (2010) Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources 1,*Alitheen, N.B., 2Mashitoh, A.R., 1Yeap, S.K., 3Shuhaimi, M., 4Abdul Manaf, A. and 2Nordin, L. 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 2Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3Department. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 4Faculty of Agriculture and Biotechnology, Universiti Darul Iman Malaysia, 20400 Kuala Terengganu, Terengganu, Malaysia Abstract: The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL- 60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively.
    [Show full text]
  • HL60) Variants Insensitive to Phorbol Ester Tumor Promoters1
    [CANCER RESEARCH 44, 3280-3285, August 1984] Analysis of Human Promyelocytic Leukemia Cell (HL60) Variants Insensitive to Phorbol Ester Tumor Promoters1 Deborah W. Mascioli and Richard D. Estensen2 Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455 ABSTRACT promoter (11). It is thought that this involves "tumor progression." Thus, while kinase activation may explain short-term effects of The cells of the human promyelocytic leukemia cell line (HL60) promoters (examples of short-term effects would be enzyme stop growing and differentiate into macrophage-like cells when induction or differentiation or stimulation of cell division), long- exposed to nw concentrations of the phorbol ester tumor pro term effects which involve "tumor progression" may involve other moter 12-O-tetradecanoylphorbol-13-acetate (TPA). By exposing mechanisms such as changes in chromosomal composition. cells to the frameshift mutagen ICR-191 and subsequently se While such changes may well involve C kinase, proof may be lecting for resistance to the differentiating effects of nM amounts difficult. Isolation and analysis of cells resistant to TPA may be of TPA, we have isolated TPA-insensitive variants. These var useful in understanding the biochemistry of promotion. iants can grow in up to 320 nw TPA concentrations and do not For this study, we used the human tumor cell line HL60. HL60 differentiate into morphologically or functionally mature macro cells are a continuously proliferating human promyelocytic cell phages. The number of phorbol ester receptors, their affinity for line described by Gallagher et al. (15) derived from the peripheral phorbol dibutyrate, and the regulation of receptors are the same blood of a patient with acute promyelocytic leukemia.
    [Show full text]
  • Cloning and Characterization of a Novel Inhibitory Receptor Expressed by Myeloid Cells
    UNIVERSITAT POMPEU FABRA FACULTAT DE BIOLOGIA DEPARTAMENT DE CIÈNCIES EXPERIMENTALS I DE LA SALUT CLONING AND CHARACTERIZATION OF A NOVEL INHIBITORY RECEPTOR EXPRESSED BY MYELOID CELLS PhD Thesis Damiana Alvarez Errico Barcelona, april 2006 II CLONING AND CHARACTERIZATION OF A NOVEL INHIBITORY RECEPTOR EXPRESSED BY MYELOID CELLS Damiana Alvarez Errico To be presented for the obtention of the PhD degree from Universitat Pompeu Fabra. This work was done in the Unidad de Inmunopatología Molecular, Departament de Ciències Experimentales i de la Salut, Unitat Pompeu Fabra, with the co-direction of Dr. Miguel López- Botet and Dr. Joan Sayós Ortega, en la Dr. Miguel López-Botet Dr. Joan Sayós Ortega Co-director Co-director III DL: B.23162-2007 ISBN: 978-84-690-7817-4 IV A Huguis V VI “The truth is rarely pure, and never simple” Oscar Wilde in “The impostance of being Ernest” VII VIII AKNOWLEDGEMENTS / AGRADECIMIENTOS Desde el dia en que inicié esta tesis, hace ya cinco largos años, me imaginé este momento de sentarme a escribir “los agradecimientos”, lo que no calculé, es que seria bastante más difícil de lo habia pensado. Han pasado tantas cosas en todo este tiempo, que es difícil no ser injusto y hay que hacer un esfuerzo por que la memoria no nos juegue una de las suyas. Por supuesto, es reconfortante pensar y recordar tantísima gente a la que quiero agradecer, tantísimos que de una u otra forma han estado allí y han sido parte de esta aventura. Quizás por ello, lo primero que me ha pasado por la cabeza al empezar estos agradecimientos, fue aquella acertadísima definición de Eduardo Galeano: Recordar: del latín re cordis, “volver a pasar por el corazón”, así que vamos al lio.....
    [Show full text]
  • Pin1 Inhibition Exerts Potent Activity Against Acute Myeloid Leukemia
    Lian et al. Journal of Hematology & Oncology (2018) 11:73 https://doi.org/10.1186/s13045-018-0611-7 RESEARCH Open Access Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways Xiaolan Lian1,2,3†, Yu-Min Lin2†, Shingo Kozono2, Megan K. Herbert2, Xin Li1, Xiaohong Yuan1, Jiangrui Guo1, Yafei Guo1, Min Tang1, Jia Lin1, Yiping Huang1, Bixin Wang1, Chenxi Qiu2, Cheng-Yu Tsai2, Jane Xie2, Ziang Jeff Gao2, Yong Wu1, Hekun Liu3, Xiao Zhen Zhou2,3*, Kun Ping Lu2,3* and Yuanzhong Chen1* Abstract Background: The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. Methods: The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1
    [Show full text]
  • Epoxyeicosanoids (Eets) Promote the Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-05-21 Epoxyeicosanoids (EETs) Promote The Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation El Kadiri, Zineb El Kadiri, Z. (2014). Epoxyeicosanoids (EETs) Promote The Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25928 http://hdl.handle.net/11023/1536 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Epoxyeicosanoids (EETs) Promote The Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation by Zineb El Kadiri A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCE CALGARY, ALBERTA MAY, 2014 © Zineb El Kadiri 2014 Abstract Our goal is to examine the role of epoxyeicosatrienoic acids (EETs) – omega-6 poly-unsaturated fatty acid metabolites - in modulating breast cancer cell plasticity manifest in the discrete attractor state transitions between cancerous and differentiated states. We used an in vitro breast cancer cell differentiation system, MDA-MB231 that exhibited two quasi-discrete subpopulations representing a stem-like and a differentiated state. We found that elevated EETs suppressed the vitaminD-induced shift of the MDA-MB231 cells towards the differentiated state.
    [Show full text]
  • Representational Difference Analysis of a Committed Myeloid Progenitor Cell Line Reveals Evidence for Bilineage Potential
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10129–10133, August 1998 Medical Sciences Representational difference analysis of a committed myeloid progenitor cell line reveals evidence for bilineage potential NATHAN D. LAWSON*† AND NANCY BERLINER*‡ *Section of Hematology, Department of Internal Medicine, and †Department of Biology, Yale University School of Medicine, New Haven, CT 06510 Communicated by Sherman M. Weissman, Yale University School of Medicine, New Haven, CT, June 11, 1998 (received for review February 12, 1998) ABSTRACT In this study we have sought to characterize form of the retinoic acid receptor a (11). EML cells can be a committed myeloid progenitor cell line in an attempt to induced to undergo differentiation along the erythroid, lym- isolate general factors that may promote differentiation. We phoid, and myeloid lineages, although maturation along the used cDNA representational difference analysis (RDA), which myeloid lineage requires the presence of ATRA at superphysi- allows analysis of differential gene expression, to compare ological concentrations. A more committed myeloid progen- EML and EPRO cells. We have isolated nine differentially itor cell line can be derived from EML by inducing with ATRA expressed cDNA fragments as confirmed by slot blot, North- and interleukin 3 (IL-3) in the presence of stem cell factor then ern, and PCR analysis. Three of nine sequences appear to be culturing these cells in granulocyteymacrophage colony- novel whereas the identity of the remaining fragments sug- stimulating factor (GM-CSF) alone (11). The resulting cell gested that the EPRO cell line is multipotent. Among the line, referred to as EPRO, is composed of promyelocytes that isolated sequences were eosinophilic, monocytic, and neutro- can undergo neutrophil maturation in response to ATRA.
    [Show full text]
  • Primed Human Blood Eosinophils of September 23, 2021
    Chemoattractant-Induced Signaling via the Ras−ERK and PI3K−Akt Networks, along with Leukotriene C 4 Release, Is Dependent on the Tyrosine Kinase Lyn in IL-5− and IL-3 This information is current as −Primed Human Blood Eosinophils of September 23, 2021. Yiming Zhu and Paul J. Bertics J Immunol 2011; 186:516-526; Prepublished online 24 November 2010; doi: 10.4049/jimmunol.1000955 Downloaded from http://www.jimmunol.org/content/186/1/516 References This article cites 80 articles, 27 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/186/1/516.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Chemoattractant-Induced Signaling via the Ras–ERK and PI3K–Akt Networks, along with Leukotriene C4 Release, Is Dependent on the Tyrosine Kinase Lyn in IL-5– and IL-3–Primed Human Blood Eosinophils Yiming Zhu* and Paul J.
    [Show full text]
  • Monocyte/Macrophage
    OPEN ACCESS Freely available online nalytic A a & l B y i tr o s c i h e m m e h i s c t o r Biochemistry & Analytical Biochemistry i y B ISSN: 2161-1009 Research Article Monocyte/Macrophage - like cell differentiation induced by TPA in HL60 cells leads to loss of Histone H4 Lysine 16 Acetylation Rahul Kumar Vempati* School of Life Sciences, University of Madras, Guindy Campus, Chennai, India ABSTRACT 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a phorbol ester and induces monocyte/macrophage like cell differentiation in HL60 cells. The levels and patterns of gene expression differ greatly between differentiated and undifferentiated HL60 cells. Epigenetic histone modifications play a crucial role in transcriptional activation and alterations in the modification levels greatly affect the gene expression pattern. Acetylation of Histone H4 Lysine 16 (H4K16ac) is one such modification and has a significant role in transcriptional activation. Changes in its acetylation level either due to a physiological or pathological effect will have a dramatic effect on cellular gene expression. Here, a study was done to see the effect of TPA induced differentiation on H4K16ac levels in HL60 cells. Results obtained from flow cytometric analysis showed expression of macrophage cell surface marker CD11b on TPA differentiated HL60 cells and the western blots revealed a drastic downregulation of H4K16ac in differentiated cells. Immunoblotting and co-immunoprecipitation assay revealed DNA damage dependent enhancement of H4K16 acetylation and its co-localization with γH2AX in undifferentiated cells. Whereas, TPA differentiated cells (CD11B+ve) didn’t show any such enhancement in H4K16acetylation levels in the presence of DNA damage.
    [Show full text]
  • Actin Filament Reorganization in HL-60 Leukemia Cell Line After Treatment with G-CSF and GM-CSF
    FOLIA HISTOCHEMICA ET CYTOBIOLOGICA Vol. 45, No. 3, 2007 pp. 191-197 Actin filament reorganization in HL-60 leukemia cell line after treatment with G-CSF and GM-CSF Alina Grzanka1, Magdalena Izdebska1, Anna Litwiniec1, Dariusz Grzanka2, Barbara Safiejko-Mroczka3 Departments of: 1Histology and Embryology and 2Clinical Pathomorphology, Nicolaus Copernicus University, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland 3Department of Zoology, The University of Oklahoma, USA Abstract: Currently, information regarding the influence of growth factors on the cytoskeleton, including G-CSF and GM- CSF, remains limited. In the present study we show alterations in F-actin distribution and cell cycle progression in HL-60 promyelocytic leukemia cells, resulting from treatment with these cytokines in vitro. We found that both agents caused F- actin reorganization. Although multiple potential effects of various growth factors have been described previously, in our experimental conditions, we observed some rather subtle differences between the effects of G-CSF and GM-CSF on stud- ied cells. The presence of these cytokines in the cell environment caused not only increased F-actin labeling in the cyto- plasm, but also a weaker intensity of peripheral ring staining in comparison with control cells. In spite of the fact that HL- 60 cells exposed to G-CSF and GM-CSF contained different F-actin structures such as aggregates and F-actin network, the rate of actin polymerization was not significantly enhanced. Moreover, alterations were mainly related to considerable changes in the relative proportion of these different structures, what might be reflected by specific features of the differen- tiation process, with regard to the kind of stimulating factor used.
    [Show full text]
  • Alterations of Differentiation, Clonal Proliferation, Cell Cycle
    Leukemia (1997) 11, 393–400 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Alterations of differentiation, clonal proliferation, cell cycle progression and bcl-2 expression in RARa-altered sublines of HL-60 I Grillier1, T Umiel1, E Elstner1, SJ Collins2 and HP Koeffler1 1Division of Hematology/Oncology, Cedars-Sinai Medical Center/UCLA School of Medicine, Los Angeles, CA; and 2Fred Hutchinson Cancer Research Center, Seattle, WA, USA All-trans retinoic acid (RA) induces granulocytic differentiation bind all-trans RA as well as 9-cis RA, while RXRs bind only of acute promyelocytic leukemia cells both in vivo and in vitro. 9-cis RA.19–21 Thus, RARs heterodimerize to form RAR/RXR In the HL-60 wild-type (WT) early promyelocytic leukemia cell 17,22–25 line, granulocytic differentiation appears to be directly complexes. RXRs act as a coregulator, enhancing the mediated by the nuclear receptor RARa. An HL-60 subline binding of RA, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3], thy- resistant to RA (HL-60 R) contains a point mutation which roid hormone, and peroxisome-activated receptors to their results in a truncation of 52 amino acids at the COOH end of responsive elements via heterodimers.22–27 Moreover, RARs RARa. Cross-talk between differentiation, clonal inhibition of may antagonize AP-1 function by either binding (directly or growth and apoptosis was studied using HL-60 WT, HL-60 R, indirectly) to c-jun/c-fos to form an inactive complex or inter- and HL-60 R infected by a retroviral vector containing RARa (LX) as targets, which were cultured with various retinoids, vit- acting with and sequestering another nuclear accessory factor that is required for AP-1-mediated transactivation.28–30 amin D3 analogs, HMBA, or DMSO.
    [Show full text]