Cytotoxic Effect of Damnacanthal, Nordamnacanthal, Zerumbone and Betulinic Acid Isolated from Malaysian Plant Sources

Total Page:16

File Type:pdf, Size:1020Kb

Cytotoxic Effect of Damnacanthal, Nordamnacanthal, Zerumbone and Betulinic Acid Isolated from Malaysian Plant Sources View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Putra Malaysia Institutional Repository International Food Research Journal 17: 711-719 (2010) Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources 1,*Alitheen, N.B., 2Mashitoh, A.R., 1Yeap, S.K., 3Shuhaimi, M., 4Abdul Manaf, A. and 2Nordin, L. 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 2Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3Department. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 4Faculty of Agriculture and Biotechnology, Universiti Darul Iman Malaysia, 20400 Kuala Terengganu, Terengganu, Malaysia Abstract: The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL- 60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively. The cell cycle analysis exhibited that damnacanthal exerted its toxicity effect towards HL-60 cells by inducing apoptosis with value of 25% after 72 hours treatment. Thus, these compounds could be the potential anticancer drug with less toxic side effect. Keywords: Betulinic acid, cytotoxic, damnacanthal, nordamnacanthal, zerumbone Introduction methoxyanthraquinone-2-carboxaldehyde (C16H10O5), occurs as pale yellow crystals with a melting point of 210-211°C whereas nordamnacanthal Malaysia is a tropical rainforest country and or 2-formyl-1,3-dihydroxyanthraquinone (C15H8O5), stores the most biologically diverse environment are orange yellow crystals with melting point of 214- in the world (Lee and Houghton, 2005). The huge 218°C. Both these naturally occurring quinone are diversity of the Malaysian forest means that we present widely in the Morinda species. Damnacanthal can expect well diverse chemical structure from and nordamnacanthal have some unique chemical their secondary metabolite and chemical diversity and biological properties. Ali et al. (2000) reported for searching the new agent or novel drug which that damnacanthal and nordamnacanthal isolated suite with the current demand particularly in curing from M. elliptica were cytotoxic towards the MCF-7 various chronic diseases. It is believed that forest (breast carcinoma) and CEM-SS (T-lymphoblastic dwellers in Southeast Asia particularly in Malaysia leukemia) cell lines. use 6,500 different plants to treat illness. These same Zerumbone is a monocyclic sesquiterpene can rain forests have supplied the western world with be found abundantly in rhizomes particularly from herbs and spices for centuries. Zingiber zerumbet Smith and Zingiber aromaticum Damnacanthal and nordamnacanthal (Murakami et al., 2002). Its molecular formula comprise a general class of athraquinone is C H O. Zerumbone is a food phytochemical derivatives. Damnacanthal or 3-hydroxy-1- 15 22 *Corresponding author. Email: [email protected] © All Rights Reserved Tel: + 603-8946 7471; Fax: +603-8946 7510 712 Alitheen, N.B., Mashitoh, A.R., Yeap, S.K., Shuhaimi, M., Abdul Manaf, A. and Nordin, L. possessing great potential for use in chemoprevention Materials and Methods and chemotherapy strategies against cancers. Based on the extensive research done previously, Cells zerumbone has shown very potent anticancer and The cancerous and non-cancerous cell lines antitumor activity. Takada et al. (2005) found that (suspension and anchorage-dependent cells) zerumbone suppressed the activation NF-KappaB were obtained from the American Type Culture and NF-KappaB-regulated gene expression induced Collection (ATCC), the National Cancer Institute by carcinogens, and reported that this inhibition (NCI) and the RIKEN Cell Bank (RCB). The may provide molecular basis for the prevention cancerous cell lines used were CEM-SS (Human and treatment of cancer. In the same year as well, T-lymphoblastic leukemia) (RCB), HL-60 (Human Huang et al. (2005) identified that zerumbone acute promyelocytic leukemia) (ATCC) and WEHI- inhibited the growth of P-388D cells and induced 3B (Mouse myelomonocyte leukemia) (NCI). The DNA fragmentation in culture and significantly non-cancerous cell line and normal cells were 3T3 prolonged the life of P-388D(1)-bearing CDF(1) (Mouse embryo fibroblast) (ATCC) and human mice. Furthermore, it also inhibited the growth of peripheral blood mononuclear cells (PBMC). PBMC human leukemia cell line (HL-60 cell) and human were kindly supplied by Mr. Yeap Swee Keong, colon cancer (HT-29) in vitro (Kirana et al., 2003). Mr. Teo Guan Young, Ms. Haszalina Md. Isa and Betulinic acid [3β-hydroxy-lup-20(19) lupean- Ms. Rohaya Ibrahim from Institute of Biosciences 28-carbonic acid] is a lupine-type triterpene which and Faculty of Biotechnology and Biomolecular was first isolated in 1948 from bark of the London Sciences, UPM. Blood (20-25mL) was taken from plane tree (Platanus acerifolia) (Jung and Duclos, four donors by using the 25 mL syringe. The blood 2006). It can be found abundantly in the bark of the sample was diluted with same volume of PBS. After white birch (Betula alba) or can also be chemically that, the diluted blood sample was carefully layered derived from betulin (Rene et al., 2006). Betulin on Ficoll-Paque Plus (Amersham Biosciences, USA) is an abundant naturally occurring triterpene and it the ratio of 2:1. The mixture was centrifuged at 400 is found predominantly in bushes and trees. Both x g for 40 minutes at 18-20oC. The undisturbed betulin and betulinic acid possess a wide spectrum lymphocyte layer was carefully transferred out. The of biological and pharmacological activities (Sami et lymphocyte was washed and pelleted down with al., 2006). Betulinic acid and its derivatives showed three volume of Phosphate buffer saline (PBS) for cytotoxicity against variety of tumor and cancer cell twice and resuspended in DMEM media (Flowlab, lines comparable to some clinically used drug. For Australia) with 100 IU/mL of penicillin, 100 µg/mL instant, Jeremias et al. (2004) found that in vitro of streptomycin (Flowlab, Australia), 10% v/v Fetal betulinic acid induced specific cell death of more Bovine Serum (FBS) (PAA, Austria). Cell counting than 75% in primary glioblastoma multiforme cells was performed to determine the PBMC cell number at substantially higher rate than established cytotoxic in equal volume of trypan blue. PBMC was used as a drugs vincristine. When betulinic acid was compared normal positive. for in vitro efficiency against several leukemia cell lines with conventionally used cytotoxic drugs, Compounds betulinic acid was more active than 9 out of standard The damnacanthal and nordamnacanthal which therapeutic such as L-asparaginase, dexamethasone, were kindly supplied by Prof. Nordin Haji Lajis from prednisolone and 6-thioguanine (Ehrhardt et al., Institute of Bioscience were isolated from the roots of 2004). Morinda elliptica (Ismail et al., 1997). The zerumbone Although the cytotoxicity of these compounds which was isolated from the rhizome of Zingiber which derived from local plant source has been zerumbet was obtained from Prof. Dr. Hasnah Siraj, studied intensively, they have not been tested and Universiti Teknology Malaysia (UTM). Betulinic compared yet. Besides, the effect of the compounds acid which was extracted from the bark of Melaleuca on the cell cycle progression of HL60 also not been cajuputi was kindly supplied by Associate Prof. fully discovered yet. Thus, this study was carried out Dr. Faujan Ahmad, from Department of Chemistry, to investigate the cytotoxicity of these compounds Faculty of Science, Universiti Putra Malaysia. All the and their effect towards the cell cycle progression of compounds were isolated from the natural resources HL60. as stated above. The powdered-form compounds (damnacanthal, nordamnacanthal, zerumbone and betulinic acid) were dissolved in dimethylsulphoxide (DMSO) (Sigma, USA) to get a stock solution of 10 International Food Research Journal 17: 711-719 Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources 713 mg/mL. The substock solution of 0.06 mg/mL was was treated for 24, 48 and 72 h with damnacanthal, prepared by diluting 6 µl of the stock solution into betulinic acid, zerumbone and doxorubicin at their 994 µL serum-free culture medium, RPMI 1640 respective IC50 value. (the percentage of DMSO in the experiment should In this study, 1 mL of HL-60 cells with a density not exceed 0.5). The stock and substock solutions 1 x 106 cells/mL, respectively were treated with 1 were both stored at 40C. Doxorubicin was used as a mL of damnacanthal, betulinic acid, zerumbone, positive control. This commercial drug was prepared doxorubicin and PWM according to their IC50 value by dissolving it with RPMI medium. The stock and (for cytotoxicity study). The treatment was carried substock solutions were prepared as above. out in the 6 well plates (Nunc) with the total working volume of 2 mL for each well. The treated cells were Cytotoxicity Assay than incubated for 24, 48 and 72 h and harvested Varying concentrations of 0.46, 0.93, 1.87, by centrifugation at 1000 rpm (200 x g) for 10 min. 3.75, 7.5, 15 and 30 µg/mL of damnacanthal, Subsequently, the treated cells were fixed with 80% nordamnacanthal, zerumbone and betulinic acid ethanol at 4oC for 2 h.
Recommended publications
  • Separation of Hydroxyanthraquinones by Chromatography
    Separation of hydroxyanthraquinones by chromatography B. RITTICH and M. ŠIMEK* Research Institute of Animal Nutrition, 691 23 Pohořelice Received 6 May 1975 Accepted for publication 25 August 1975 Chromatographic properties of hydroxyanthraquinones have been examined. Good separation was achieved using new solvent systems for paper and thin-layer chromatography on common and impregnated chromatographic support materials. Commercial reagents were analyzed by the newly-developed procedures. Было изучено хроматографическое поведение гидроксиантрахинонов. Хорошее разделение было достигнуто при использовании предложенных новых хроматографических систем: бумажная хроматография смесью уксусной кислоты и воды на простой бумаге или бумаге импрегнированной оливковым мас­ лом, тонкослойная хроматография на целлюлозе импрегнированной диметилфор- мамидом и на силикагеле без или с импрегнацией щавелевой или борной кислотами. Anthraquinones constitute an important class of organic substances. They are produced industrially as dyes [1] and occur also in natural products [2]. The fact that some hydroxyanthraquinones react with metal cations to give colour chelates has been utilized in analytical chemistry [3]. Anthraquinone and its derivatives can be determined spectrophotometrically [4—6] and by polarography [4]. The determination of anthraquinones is frequently preceded by a chromatographic separation the purpose of which is to prepare a chemically pure substance. For chromatographic separation of anthraquinone derivatives common paper [7—9] and paper impregnated with dimethylformamide or 1-bromonaphthalene has been used [10, 11]. Dyes derived from anthraquinone have also been chromatographed on thin layers of cellulose containing 10% of acetylcellulose [12]. Thin-layer chromatography on silica gel has been applied in the separation of dihydroxyanthraquinones [13], di- and trihydroxycarbox- ylic acids of anthraquinones [14] and anthraquinones occurring in nature [15].
    [Show full text]
  • Photodynamic Therapy for Cancer Role of Natural Products
    Photodiagnosis and Photodynamic Therapy 26 (2019) 395–404 Contents lists available at ScienceDirect Photodiagnosis and Photodynamic Therapy journal homepage: www.elsevier.com/locate/pdpdt Review Photodynamic therapy for cancer: Role of natural products T Behzad Mansooria,b,d, Ali Mohammadia,d, Mohammad Amin Doustvandia, ⁎ Fatemeh Mohammadnejada, Farzin Kamaric, Morten F. Gjerstorffd, Behzad Baradarana, , ⁎⁎ Michael R. Hambline,f,g, a Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran b Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran c Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran d Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark e Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA f Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA g Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA ARTICLE INFO ABSTRACT Keywords: Photodynamic therapy (PDT) is a promising modality for the treatment of cancer. PDT involves administering a Photodynamic therapy photosensitizing dye, i.e. photosensitizer, that selectively accumulates in tumors, and shining a light source on Photosensitizers the lesion with a wavelength matching the absorption spectrum of the photosensitizer, that exerts a cytotoxic Herbal medicine effect after excitation. The reactive oxygen species produced during PDT are responsible for the oxidation of Natural products biomolecules, which in turn cause cell death and the necrosis of malignant tissue. PDT is a multi-factorial process that generally involves apoptotic death of the tumor cells, degeneration of the tumor vasculature, stimulation of anti-tumor immune response, and induction of inflammatory reactions in the illuminated lesion.
    [Show full text]
  • A Modified Method for Isolation of Rhein from Senna
    www.ijpsonline.com A Modified Method for Isolation of Rhein from Senna NAMITA MEHTA AND K. S. LADDHA* Medicinal Natural Products Research Laboratory, Pharmaceutical Sciences Division, Institute of Chemical Technology, Nathalal Parikh Marg, Matunga, Mumbai-400 019, India Laddha, et al.: Isolation of Rhein from Senna A simple and efficient method for the isolation of rhein fromCassia angustifolia (senna) leaves is described in which the hydrolysis of the sennosides and extraction of the hydrolysis products (free anthraquinones) is carried out in one step. Further isolation of rhein is achieved from the anthraquinone mixture. This method reduces the number of steps required for isolation of rhein as compared to conventional methods. Key words: Sennosides, rhein, aloe-emodin, Cassia angustifolia Rhein (1,8-dihydroxyanthraquinone-3-carboxylic makes senna leaf an important source of rhein[3]. The acid) is a compound found in the free state and as a following paper describes a simple method for the glucoside in Rheum species, senna leaves; and also isolation of rhein from senna leaf. in several species of Cassia[1]. Rhein is currently a subject of interest because of its antiviral, antitumor The leaves of C. angustifolia were obtained from the and antioxidant properties. It also serves as a starting local market, Mumbai. Sodium hydrogen carbonate compound for the synthesis of diacerein (1,8-diacyl and hydrochloric acid were of analytical grade derivative, fig. 1), which has antiinflammatory effects and were purchased from S. D. Fine Chemical and is useful in the treatment of osteoarthritis. Limited, Mumbai. The leaves were powdered and the Therefore, there is a need for a simple and efficient powdered leaves used for extraction purpose.
    [Show full text]
  • Natural Hydroxyanthraquinoid Pigments As Potent Food Grade Colorants: an Overview
    Review Nat. Prod. Bioprospect. 2012, 2, 174–193 DOI 10.1007/s13659-012-0086-0 Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview a,b, a,b a,b b,c b,c Yanis CARO, * Linda ANAMALE, Mireille FOUILLAUD, Philippe LAURENT, Thomas PETIT, and a,b Laurent DUFOSSE aDépartement Agroalimentaire, ESIROI, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France b LCSNSA, Faculté des Sciences et des Technologies, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France c Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de la Réunion, France Received 24 October 2012; Accepted 12 November 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract: Natural pigments and colorants are widely used in the world in many industries such as textile dying, food processing or cosmetic manufacturing. Among the natural products of interest are various compounds belonging to carotenoids, anthocyanins, chlorophylls, melanins, betalains… The review emphasizes pigments with anthraquinoid skeleton and gives an overview on hydroxyanthraquinoids described in Nature, the first one ever published. Trends in consumption, production and regulation of natural food grade colorants are given, in the current global market. The second part focuses on the description of the chemical structures of the main anthraquinoid colouring compounds, their properties and their biosynthetic pathways. Main natural sources of such pigments are summarized, followed by discussion about toxicity and carcinogenicity observed in some cases. As a conclusion, current industrial applications of natural hydroxyanthraquinoids are described with two examples, carminic acid from an insect and Arpink red™ from a filamentous fungus.
    [Show full text]
  • Characteristics of Hybrid Pigments Made from Alizarin Dye on a Mixed Oxide Host
    materials Article Characteristics of Hybrid Pigments Made from Alizarin Dye on a Mixed Oxide Host Anna Marzec 1,* , Bolesław Szadkowski 1 , Jacek Rogowski 2, Waldemar Maniukiewicz 2 , Małgorzata Iwona Szynkowska 2 and Marian Zaborski 1 1 Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; [email protected] (B.S.); [email protected] (M.Z.) 2 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; [email protected] (J.R.); [email protected] (W.M.); [email protected] (M.I.S.) * Correspondence: [email protected] Received: 30 December 2018; Accepted: 22 January 2019; Published: 24 January 2019 Abstract: This paper describes the fabrication of a new hybrid pigment made from 1,2-dihydroxyanthraquinone (alizarin) on a mixed oxide host (aluminum-magnesium hydroxycarbonate, LH). Various tools were applied to better understand the interactions between the organic (alizarin) and inorganic (LH) components, including ion mass spectroscopy (TOF-SIMS), 27-Aluminm solid-state nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). TOF-SIMS showed that modification of the LH had been successful and revealed + − the presence of characteristic ions C14H7O4Mg and C14H6O5Al , suggesting interactions between the organic chromophore and both metal ions present in the mixed oxide host. Interactions were also observed between Al3+ ions and Alizarin molecules in 27Al NMR spectra, with a chemical shift detected in the case of the modified LH matrix.
    [Show full text]
  • Cytotoxic Effect of Damnacanthal, Nordamnacanthal, Zerumbone and Betulinic Acid Isolated from Malaysian Plant Sources
    International Food Research Journal 17: 711-719 (2010) Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources 1,*Alitheen, N.B., 2Mashitoh, A.R., 1Yeap, S.K., 3Shuhaimi, M., 4Abdul Manaf, A. and 2Nordin, L. 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 2Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3Department. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 4Faculty of Agriculture and Biotechnology, Universiti Darul Iman Malaysia, 20400 Kuala Terengganu, Terengganu, Malaysia Abstract: The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL- 60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively.
    [Show full text]
  • Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé
    Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé To cite this version: Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé. An- thraquinones. Leo M. L. Nollet; Janet Alejandra Gutiérrez-Uribe. Phenolic Compounds in Food Characterization and Analysis , CRC Press, pp.130-170, 2018, 978-1-4987-2296-4. hal-01657104 HAL Id: hal-01657104 https://hal.univ-reunion.fr/hal-01657104 Submitted on 6 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, and Laurent Dufossé CONTENTS 9.1 Introduction 9.2 Anthraquinones’ Main Structures 9.2.1 Emodin- and Alizarin-Type Pigments 9.3 Anthraquinones Naturally Occurring in Foods 9.3.1 Anthraquinones in Edible Plants 9.3.1.1 Rheum sp. (Polygonaceae) 9.3.1.2 Aloe spp. (Liliaceae or Xanthorrhoeaceae) 9.3.1.3 Morinda sp. (Rubiaceae) 9.3.1.4 Cassia sp. (Fabaceae) 9.3.1.5 Other Edible Vegetables 9.3.2 Microbial Consortia Producing Anthraquinones,
    [Show full text]
  • Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase Is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis Michelle Kinder University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Immunology and Infectious Disease Commons Recommended Citation Kinder, Michelle, "Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis" (2010). Publicly Accessible Penn Dissertations. 88. https://repository.upenn.edu/edissertations/88 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/88 For more information, please contact [email protected]. Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis Abstract Fatty acid metabolism governs critical cellular processes in multiple cell types. The goal of my dissertation was to investigate the intersection between fatty acid metabolism and hematopoiesis. Although fatty acid metabolism has been extensively studied in mature hematopoietic subsets during inflammation, in developing hematopoietic cells the role of fatty acid metabolism, in particular by 12/ 15-Lipoxygenase (12/15-LOX), was unknown. The observation that 12/15-LOX-deficient (Alox15) mice developed a myeloid leukemia instigated my studies since leukemias are often a consequence of dysregulated hematopoiesis. This observation lead to the central hypothesis of this dissertation which is that polyunsaturated fatty acid metabolism mediated by 12/15-LOX participates in hematopoietic development. Using genetic mouse models and in vitro and in vivo cell development assays, I found that 12/15-LOX indeed regulates multiple stages of hematopoiesis including the function of hematopoietic stem cells (HSC) and the differentiation of B cells, T cells, basophils, granulocytes and monocytes.
    [Show full text]
  • TR-553: Photococarcinogenesis Study of Aloe Vera[CASRN 481-72-1
    NTP TECHNICAL REPORT ON THE PHOTOCOCARCINOGENESIS STUDY OF ALOE VERA [CAS NO. 481-72-1 (Aloe-emodin)] IN SKH-1 MICE (SIMULATED SOLAR LIGHT AND TOPICAL APPLICATION STUDY) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 September 2010 NTP TR 553 NIH Publication No. 10-5894 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity and carcinogenicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure.
    [Show full text]
  • Biologically Plant-Based Pigments in Sustainable Innovations for Functional Textiles – the Role of Bioactive Plant Phytochemicals
    Heriot-Watt University Research Gateway Biologically plant-based pigments in sustainable innovations for functional textiles – The role of bioactive plant phytochemicals Citation for published version: Thakker, A & Sun, D 2021, 'Biologically plant-based pigments in sustainable innovations for functional textiles – The role of bioactive plant phytochemicals', Journal of Textile Science and Fashion Technology , vol. 8, no. 3, pp. 1-25. https://doi.org/10.33552/JTSFT.2021.08.000689 Digital Object Identifier (DOI): 10.33552/JTSFT.2021.08.000689 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Textile Science and Fashion Technology General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 ISSN: 2641-192X DOI: 10.33552/JTSFT.2021.08.000689 Journal of Textile Science & Fashion Technology Review Article Copyright © All rights are reserved by Alka Madhukar Thakker Biologically Plant-Based Pigments in Sustainable Innovations for Functional Textiles – The Role of Bioactive Plant Phytochemicals Alka Madhukar Thakker* and Danmei Sun School of Textiles and Design, Heriot-Watt University, UK *Corresponding author: Alka Madhukar Thakker, School of Textiles and Design, He- Received Date: March 29, 2021 riot-Watt University, TD1 3HF, UK.
    [Show full text]
  • Antifungal Activity of Rhein Isolated from Cassia Fistula L. Flower
    Article ID: WMC00687 ISSN 2046-1690 Antifungal activity of Rhein isolated from Cassia fistula L. flower Corresponding Author: Dr. S Ignacimuthu, Director, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034 - India Submitting Author: Dr. V Duraipandiyan, Scientist, Division of Ethnopharmacology, Entomology Research Institute, Loyola College, 600 034 - India Article ID: WMC00687 Article Type: Research articles Submitted on:20-Sep-2010, 11:14:49 AM GMT Published on: 20-Sep-2010, 05:16:23 PM GMT Article URL: http://www.webmedcentral.com/article_view/687 Subject Categories:PHARMACOLOGY Keywords:Antifungal, Cassia fistula, MIC, Rhein How to cite the article:Duraipandiyan V, Ignacimuthu S. Antifungal activity of Rhein isolated from Cassia fistula L. flower . WebmedCentral PHARMACOLOGY 2010;1(9):WMC00687 Competing Interests: We have no competing interest Additional Files: Full manuscript Cover letter WebmedCentral > Research articles Page 1 of 8 WMC00687 Downloaded from http://www.webmedcentral.com on 19-Jul-2012, 08:06:11 AM Antifungal activity of Rhein isolated from Cassia fistula L. flower Author(s): Duraipandiyan V, Ignacimuthu S Abstract amount of alkaloids have also been reported in the flowers; traces of triterpenes have been observed in both flowers and fruits [8,9]. Our preliminary evaluation of ethyl acetate extract Antifungal activity of rhein (1, 8- from Cassia fistula flowers showed significant dihydroxyanthraquinone- 3carboxylic acid) isolated antifungal activity [10]. In the present work, we report from the ethyl acetate extract of Cassia fistula flower the separation and identification of rhein from C. fistula was studied. Rhein inhibited the growth of many fungi flowers and its antifungal effect. such as Trichophyton mentagrophytes (MIC 31.25 µg/ml), Trichophyton simii (MIC 125 µg/ml), Materials and Methods Trichophyton rubrum (MIC 62.5 µg/ml) and Epidermophyton floccosum (MIC 31.25 µg/ml).
    [Show full text]
  • Hydroxyanthraquinone Dyes From
    HYDROXYANTHRAQUINONE DYES FROM PLANTS Yanis Caro, Thomas Petit, Isabelle Grondin, Mireille Fouillaud, Laurent Dufossé To cite this version: Yanis Caro, Thomas Petit, Isabelle Grondin, Mireille Fouillaud, Laurent Dufossé. HYDROXYAN- THRAQUINONE DYES FROM PLANTS. Symposium on natural colorants “Plants, Ecology and Colours”, May 2017, Antananarivo, Madagascar. 2017. hal-01518543 HAL Id: hal-01518543 https://hal.archives-ouvertes.fr/hal-01518543 Submitted on 4 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HYDROXYANTHRAQUINONE DYES FROM PLANTS Yanis CARO*,1, Thomas PETIT2, Isabelle GRONDIN1 , Mireille FOUILLAUD1 and Laurent DUFOSSE1 1 Laboratoire LCSNSA, Université de La Réunion (France); 2 UMR Qualisud, Université de La Réunion (France) Introduc)on In the plant kingdom, numerous pigments have already been iden)fied, but only a minority of them is allowed by legal regulaons for texMle dyeing, food coloring or cosmeMc and pharmaceuMcs’ purpurin physcion chrysophanol manufacturing. Anthraquinones, produced as secondary metabolites in plants, cons)tute a large structural hypericin variety of compounds among the quinone family. Anthraquinones are structurally built from an anthracene skyrin ring with a keto group on posi)on 9,10 as basic core and different func)onal groups such as -OH, -CH3, - rhein damnacanthal emodin ruberythric acid COOH, etc.
    [Show full text]