Identification of a Differentiation-Specific Cell Surface Antigen on HL60 Cells That Is Associated with Proliferation1

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Differentiation-Specific Cell Surface Antigen on HL60 Cells That Is Associated with Proliferation1 [CANCER RESEARCH 46,113-118, January 1986] Identification of a Differentiation-specific Cell Surface Antigen on HL60 Cells That Is Associated with Proliferation1 Mary B. Todd2 and Harry L. Maleen3 Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06570 ABSTRACT Studies of differentiation-associated antigens have allowed scrutiny of the relationship between maturation and proliferation. We have produced a murine IgM monoclonal antibody (Y201) Several studies have identified cell surface antigens present on that recognizes a cell surface antigen present on HL60 cells. progenitor cells but lost with maturation. For example, la-like Seventy percent of uninduced HL60 cells expressed Y201 anti antigens have been detected on human granulocy te/macrophage gen, while the remainder did not. There were no morphological progenitor cells (10-14) and erythroid progenitor cells (15-17); differences between HL60 cells that expressed Y201 antigen the common acute lymphoblastic leukemia antigen appears at and cells that did not express Y201 antigen. Cells with the an early stage of normal lymphocyte development (18, 19), and greatest number of antigenic sites were found to have greater the transferrin receptor, which is present on a variety of immature proliferative capacity in liquid culture and in soft agar than did cells and lost with differentiation, is related to proliferation (20, HL60 cells deficient in this marker. Expression or lack of expres 21). A correlation of antigenic changes with differentiation of sion of the Y201 antigen is not constant over a prolonged period progenitor cells is emerging. Surface antigens present on im in that both subpopulations ultimately reproduced the original mature cells and lost with maturation may identify structures pattern of antigenic expression when grown in liquid culture. involved in regulating differentiation and/or proliferation. The antigen identified by Y201 was lost with terminal differ In the present study, the promyelocytic human leukemia cell entiation of HL60 cells using a variety of inducers. Loss of Y201 line HL60, which can be induced to differentiate with appropriate antigen during differentiation was associated with a decrease in agents (22), was used as a model for investigating the antigenic proliferative capacity in soft agar. Loss of Y201 antigen by and functional changes associated with differentiation. We have greater than 95% of differentiated HL60 cells was associated identified a cell surface antigen recognized by a monoclonal with loss of proliferative capacity. These data suggest that HL60 antibody (Y201) that is lost as cells differentiate and that is cells are heterogeneous in regard to proliferative capacity and associated with loss of cellular proliferation. that this heterogeneity is associated with expression of the cell surface antigen identified by Y201. MATERIALS AND METHODS INTRODUCTION Cells and Cell Culture. HL60 (23), K562 (24), Molt-3 (25), and CCRF- CEM (26) were grown in RPMI 1640 medium supplemented with 10% Normal hemopoiesis involves both proliferation (self-renewal) heat-inactivated fetal bovine serum, 2 mw glutamine, 100 units of peni and differentiation (maturation). Proliferation is the controlled cillin, and streptomycin (100 /ig/ml). Normal human mononuclear cells capacity for infinite cell divisions, and it provides a mechanism were obtained from the peripheral blood of healthy donors and were for continued maintenance of stem cells. Differentiation occurs separated by centrifugation on Ficoll/sodium diatrizoate (Sigma, St. among some of the progeny of stem cells resulting in functionally Louis, MO) (27). Polymorphonuclear leukocytes were obtained from the mature but non-proliferating cells. Differentiation and proliferation erythrocyte layer of the same gradient by sedimentation of erythocytes in 3% dextran and removal of residual erythrocytes by hypotonie lysis. appear to be associated in normal hematopoiesis, since matura Mixed leukocytes were obtained from peripheral blood and separated tion is eventually associated with loss of regenerative capacity using 3% dextran sedimentation. Fetal mixed leukocytes were separated (1-3). In leukemia and possibly other cancers as well, these from cord blood obtained from healthy neonates using dextran sedimen events are abnormal, and the linkage between proliferation and tation and hypotonie lysis of erythrocytes. Bone marrow cells were differentiation less clear. There is evidence that as cells differ obtained from patients undergoing diagnostic bone marrow aspirates for entiate there is a decrease in proliferative capacity (4-6). How purposes other than this study. The mononuclear cells from bone marrow ever, in some leukemic cell lines differentiation can occur in the aspirate were purified by Ficoll/sodium diatrizoate gradient centrifugation complete absence of proliferation (7), indicating a dissociation as described above. between the two events. Proliferating leukemic cells appear to Monoclonal Antibodies. BALB/c mice (The Jackson Laboratory, Bar Harbor, ME) were immunized with HL60 cells intraperitoneally and sub- be blocked at a particular level of maturation (8). Despite the cutaneously. Spleen cells from immunized mice were fused with the non- marked increase in proliferative capacity, it appears that only a immunoglobulin-secreting, 8-azaguanine-resistant myeloma cell line X63- portion of cells in a leukemic population has the ability for self- Ag 8.653 (28) by the method originally outlined by Kohler and Milstein renewal (9). (29), with modifications according to Lemer (30). Fusion products were grown in hypoxanthine-amethopterin-thymine selective media (31), and Received 6/17/85; accepted 9/23/85. The costs of publication of this article were defrayed in part by the payment of the supemates were screened for antibody binding to fetal mixed leu page charges. This article must therefore be hereby marked advertisement in kocytes using an indirect enzyme-linked ¡mmunosorbent assay (Be- accordance with 18 U.S.C. Section 1734 solely to indicate this fact. thesda Research Laboratories, Gaithersburg, MD). Forty-six of 1500 1This work was supported by NIH grants Al 18166, Al 19768, HL 07262, and ÇA08341 and by grant IN-31-Y from the American Cancer Society. clones produced antibodies that bound to cord blood leukocytes. These 2 Swebilius Award recipient. were further screened for binding to HL60 cells and mixed leukocytes 9 To whom requests for reprints should be addressed. from adults. Strong positive binding was considered an absorbancy of CANCER RESEARCH VOL. 46 JANUARY 1986 113 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 1986 American Association for Cancer Research. DIFFERENTIATION ANTIGEN ASSOCIATED WITH PROLIFERATION at least 2Vi times background on enzyme-linked immunosorbent assay. min. Fresh frozen human serum as a source of complement was then Seven clones were found to produce antibody which demonstrated added to a final concentration of 50% for 40 min at 37°C.After incuba tion, the cells were washed twice in McCoy's 5-A medium and plated for strong binding to HL60 cells and weak or no binding to adult mixed leukocytes. One clone, Y201, was chosen for lack of binding to adult clonal growth. Colony numbers in cultures treated with antibody and mixed leukocytes and was subcloned by limiting dilution (30). Experi complement were compared to control cultures treated with medium ments were conducted using antibody obtained from culture media of alone, antibody alone, or complement alone. growing hybridomas or from ascites of BALB/c mice given injections of Correlation of Y201 Expression with Cell Cycle Analysis. HL60 hybridomas. Antibody from ascites was titrated by immunofluorescence cells were separated by centrifugal elutriation, using a Beckman J2-21, labeling. Determination of immunoglobulin subclass was done by Ouch- on the basis of velocity sedimentation for populations enriched in specific terlony analysis (32) using subclass-specific rabbit anti-mouse immuno phases of the cell cycle (43). An unseparated control and subgroups globulin and Y201 antibody concentrated about 20 times from super- chosen on the basis of cell size and cell number (43) were fixed in 95% nates of growing hybridoma cultures. ethanol, followed by indirect immunofluorescent labeling with Y201. Induction of Differentiation of HL60 Cells. Cells were suspended at These same populations were then examined for DNA distribution with 0.5 x 10e per ml in culture medium containing an inducing agent and mithramycin staining, followed by FACS analysis using a laser wave allowed to differentiate for 3-6 days. For induction of cells with charac length of 457 nM (44, 45). teristics of myeloid cells, the medium contained either 1.25% DMSO3 (22) (Fisher Scientific Co., Fairlawn, NJ), 1Q-6 M RA (33) (Sigma) or 5 x 10-4 M dbcAMP (34). For differentiation of HL60 cells with characteristics RESULTS of monocytes/macrophages the medium contained 10~8 M TRA (35). Differentiation was documented by examining changes in morphology Induction of Myelocytic or Monocytic Differentiation. Within (decreased size, increased nuclear tabulation), nitroblue tetrazolium re 3 days after the addition of DMSO or RA to HL60 cells there duction (36), and adherence to substrate (35). In addition, we examined was a slight increase in the number of myelocytes compared to expression of nonspecific esterase activity (37), appearance of formyl uninduced cells. By the sixth day of incubation,
Recommended publications
  • Cytotoxic Effect of Damnacanthal, Nordamnacanthal, Zerumbone and Betulinic Acid Isolated from Malaysian Plant Sources
    International Food Research Journal 17: 711-719 (2010) Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources 1,*Alitheen, N.B., 2Mashitoh, A.R., 1Yeap, S.K., 3Shuhaimi, M., 4Abdul Manaf, A. and 2Nordin, L. 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 2Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3Department. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 4Faculty of Agriculture and Biotechnology, Universiti Darul Iman Malaysia, 20400 Kuala Terengganu, Terengganu, Malaysia Abstract: The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL- 60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively.
    [Show full text]
  • Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase Is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis Michelle Kinder University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Immunology and Infectious Disease Commons Recommended Citation Kinder, Michelle, "Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis" (2010). Publicly Accessible Penn Dissertations. 88. https://repository.upenn.edu/edissertations/88 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/88 For more information, please contact [email protected]. Fatty Acid Metabolism Mediated by 12/15-Lipoxygenase is a Novel Regulator of Hematopoietic Stem Cell Function and Myelopoiesis Abstract Fatty acid metabolism governs critical cellular processes in multiple cell types. The goal of my dissertation was to investigate the intersection between fatty acid metabolism and hematopoiesis. Although fatty acid metabolism has been extensively studied in mature hematopoietic subsets during inflammation, in developing hematopoietic cells the role of fatty acid metabolism, in particular by 12/ 15-Lipoxygenase (12/15-LOX), was unknown. The observation that 12/15-LOX-deficient (Alox15) mice developed a myeloid leukemia instigated my studies since leukemias are often a consequence of dysregulated hematopoiesis. This observation lead to the central hypothesis of this dissertation which is that polyunsaturated fatty acid metabolism mediated by 12/15-LOX participates in hematopoietic development. Using genetic mouse models and in vitro and in vivo cell development assays, I found that 12/15-LOX indeed regulates multiple stages of hematopoiesis including the function of hematopoietic stem cells (HSC) and the differentiation of B cells, T cells, basophils, granulocytes and monocytes.
    [Show full text]
  • Cytotoxic Effect of Damnacanthal, Nordamnacanthal, Zerumbone and Betulinic Acid Isolated from Malaysian Plant Sources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Putra Malaysia Institutional Repository International Food Research Journal 17: 711-719 (2010) Cytotoxic effect of damnacanthal, nordamnacanthal, zerumbone and betulinic acid isolated from Malaysian plant sources 1,*Alitheen, N.B., 2Mashitoh, A.R., 1Yeap, S.K., 3Shuhaimi, M., 4Abdul Manaf, A. and 2Nordin, L. 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 2Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3Department. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 4Faculty of Agriculture and Biotechnology, Universiti Darul Iman Malaysia, 20400 Kuala Terengganu, Terengganu, Malaysia Abstract: The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL- 60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively.
    [Show full text]
  • HL60) Variants Insensitive to Phorbol Ester Tumor Promoters1
    [CANCER RESEARCH 44, 3280-3285, August 1984] Analysis of Human Promyelocytic Leukemia Cell (HL60) Variants Insensitive to Phorbol Ester Tumor Promoters1 Deborah W. Mascioli and Richard D. Estensen2 Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455 ABSTRACT promoter (11). It is thought that this involves "tumor progression." Thus, while kinase activation may explain short-term effects of The cells of the human promyelocytic leukemia cell line (HL60) promoters (examples of short-term effects would be enzyme stop growing and differentiate into macrophage-like cells when induction or differentiation or stimulation of cell division), long- exposed to nw concentrations of the phorbol ester tumor pro term effects which involve "tumor progression" may involve other moter 12-O-tetradecanoylphorbol-13-acetate (TPA). By exposing mechanisms such as changes in chromosomal composition. cells to the frameshift mutagen ICR-191 and subsequently se While such changes may well involve C kinase, proof may be lecting for resistance to the differentiating effects of nM amounts difficult. Isolation and analysis of cells resistant to TPA may be of TPA, we have isolated TPA-insensitive variants. These var useful in understanding the biochemistry of promotion. iants can grow in up to 320 nw TPA concentrations and do not For this study, we used the human tumor cell line HL60. HL60 differentiate into morphologically or functionally mature macro cells are a continuously proliferating human promyelocytic cell phages. The number of phorbol ester receptors, their affinity for line described by Gallagher et al. (15) derived from the peripheral phorbol dibutyrate, and the regulation of receptors are the same blood of a patient with acute promyelocytic leukemia.
    [Show full text]
  • Cloning and Characterization of a Novel Inhibitory Receptor Expressed by Myeloid Cells
    UNIVERSITAT POMPEU FABRA FACULTAT DE BIOLOGIA DEPARTAMENT DE CIÈNCIES EXPERIMENTALS I DE LA SALUT CLONING AND CHARACTERIZATION OF A NOVEL INHIBITORY RECEPTOR EXPRESSED BY MYELOID CELLS PhD Thesis Damiana Alvarez Errico Barcelona, april 2006 II CLONING AND CHARACTERIZATION OF A NOVEL INHIBITORY RECEPTOR EXPRESSED BY MYELOID CELLS Damiana Alvarez Errico To be presented for the obtention of the PhD degree from Universitat Pompeu Fabra. This work was done in the Unidad de Inmunopatología Molecular, Departament de Ciències Experimentales i de la Salut, Unitat Pompeu Fabra, with the co-direction of Dr. Miguel López- Botet and Dr. Joan Sayós Ortega, en la Dr. Miguel López-Botet Dr. Joan Sayós Ortega Co-director Co-director III DL: B.23162-2007 ISBN: 978-84-690-7817-4 IV A Huguis V VI “The truth is rarely pure, and never simple” Oscar Wilde in “The impostance of being Ernest” VII VIII AKNOWLEDGEMENTS / AGRADECIMIENTOS Desde el dia en que inicié esta tesis, hace ya cinco largos años, me imaginé este momento de sentarme a escribir “los agradecimientos”, lo que no calculé, es que seria bastante más difícil de lo habia pensado. Han pasado tantas cosas en todo este tiempo, que es difícil no ser injusto y hay que hacer un esfuerzo por que la memoria no nos juegue una de las suyas. Por supuesto, es reconfortante pensar y recordar tantísima gente a la que quiero agradecer, tantísimos que de una u otra forma han estado allí y han sido parte de esta aventura. Quizás por ello, lo primero que me ha pasado por la cabeza al empezar estos agradecimientos, fue aquella acertadísima definición de Eduardo Galeano: Recordar: del latín re cordis, “volver a pasar por el corazón”, así que vamos al lio.....
    [Show full text]
  • Pin1 Inhibition Exerts Potent Activity Against Acute Myeloid Leukemia
    Lian et al. Journal of Hematology & Oncology (2018) 11:73 https://doi.org/10.1186/s13045-018-0611-7 RESEARCH Open Access Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways Xiaolan Lian1,2,3†, Yu-Min Lin2†, Shingo Kozono2, Megan K. Herbert2, Xin Li1, Xiaohong Yuan1, Jiangrui Guo1, Yafei Guo1, Min Tang1, Jia Lin1, Yiping Huang1, Bixin Wang1, Chenxi Qiu2, Cheng-Yu Tsai2, Jane Xie2, Ziang Jeff Gao2, Yong Wu1, Hekun Liu3, Xiao Zhen Zhou2,3*, Kun Ping Lu2,3* and Yuanzhong Chen1* Abstract Background: The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. Methods: The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1
    [Show full text]
  • Epoxyeicosanoids (Eets) Promote the Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-05-21 Epoxyeicosanoids (EETs) Promote The Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation El Kadiri, Zineb El Kadiri, Z. (2014). Epoxyeicosanoids (EETs) Promote The Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25928 http://hdl.handle.net/11023/1536 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Epoxyeicosanoids (EETs) Promote The Cancer Stem Cell State by Preventing Breast Cancer Cells Differentiation by Zineb El Kadiri A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCE CALGARY, ALBERTA MAY, 2014 © Zineb El Kadiri 2014 Abstract Our goal is to examine the role of epoxyeicosatrienoic acids (EETs) – omega-6 poly-unsaturated fatty acid metabolites - in modulating breast cancer cell plasticity manifest in the discrete attractor state transitions between cancerous and differentiated states. We used an in vitro breast cancer cell differentiation system, MDA-MB231 that exhibited two quasi-discrete subpopulations representing a stem-like and a differentiated state. We found that elevated EETs suppressed the vitaminD-induced shift of the MDA-MB231 cells towards the differentiated state.
    [Show full text]
  • Representational Difference Analysis of a Committed Myeloid Progenitor Cell Line Reveals Evidence for Bilineage Potential
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10129–10133, August 1998 Medical Sciences Representational difference analysis of a committed myeloid progenitor cell line reveals evidence for bilineage potential NATHAN D. LAWSON*† AND NANCY BERLINER*‡ *Section of Hematology, Department of Internal Medicine, and †Department of Biology, Yale University School of Medicine, New Haven, CT 06510 Communicated by Sherman M. Weissman, Yale University School of Medicine, New Haven, CT, June 11, 1998 (received for review February 12, 1998) ABSTRACT In this study we have sought to characterize form of the retinoic acid receptor a (11). EML cells can be a committed myeloid progenitor cell line in an attempt to induced to undergo differentiation along the erythroid, lym- isolate general factors that may promote differentiation. We phoid, and myeloid lineages, although maturation along the used cDNA representational difference analysis (RDA), which myeloid lineage requires the presence of ATRA at superphysi- allows analysis of differential gene expression, to compare ological concentrations. A more committed myeloid progen- EML and EPRO cells. We have isolated nine differentially itor cell line can be derived from EML by inducing with ATRA expressed cDNA fragments as confirmed by slot blot, North- and interleukin 3 (IL-3) in the presence of stem cell factor then ern, and PCR analysis. Three of nine sequences appear to be culturing these cells in granulocyteymacrophage colony- novel whereas the identity of the remaining fragments sug- stimulating factor (GM-CSF) alone (11). The resulting cell gested that the EPRO cell line is multipotent. Among the line, referred to as EPRO, is composed of promyelocytes that isolated sequences were eosinophilic, monocytic, and neutro- can undergo neutrophil maturation in response to ATRA.
    [Show full text]
  • Primed Human Blood Eosinophils of September 23, 2021
    Chemoattractant-Induced Signaling via the Ras−ERK and PI3K−Akt Networks, along with Leukotriene C 4 Release, Is Dependent on the Tyrosine Kinase Lyn in IL-5− and IL-3 This information is current as −Primed Human Blood Eosinophils of September 23, 2021. Yiming Zhu and Paul J. Bertics J Immunol 2011; 186:516-526; Prepublished online 24 November 2010; doi: 10.4049/jimmunol.1000955 Downloaded from http://www.jimmunol.org/content/186/1/516 References This article cites 80 articles, 27 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/186/1/516.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Chemoattractant-Induced Signaling via the Ras–ERK and PI3K–Akt Networks, along with Leukotriene C4 Release, Is Dependent on the Tyrosine Kinase Lyn in IL-5– and IL-3–Primed Human Blood Eosinophils Yiming Zhu* and Paul J.
    [Show full text]
  • Monocyte/Macrophage
    OPEN ACCESS Freely available online nalytic A a & l B y i tr o s c i h e m m e h i s c t o r Biochemistry & Analytical Biochemistry i y B ISSN: 2161-1009 Research Article Monocyte/Macrophage - like cell differentiation induced by TPA in HL60 cells leads to loss of Histone H4 Lysine 16 Acetylation Rahul Kumar Vempati* School of Life Sciences, University of Madras, Guindy Campus, Chennai, India ABSTRACT 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a phorbol ester and induces monocyte/macrophage like cell differentiation in HL60 cells. The levels and patterns of gene expression differ greatly between differentiated and undifferentiated HL60 cells. Epigenetic histone modifications play a crucial role in transcriptional activation and alterations in the modification levels greatly affect the gene expression pattern. Acetylation of Histone H4 Lysine 16 (H4K16ac) is one such modification and has a significant role in transcriptional activation. Changes in its acetylation level either due to a physiological or pathological effect will have a dramatic effect on cellular gene expression. Here, a study was done to see the effect of TPA induced differentiation on H4K16ac levels in HL60 cells. Results obtained from flow cytometric analysis showed expression of macrophage cell surface marker CD11b on TPA differentiated HL60 cells and the western blots revealed a drastic downregulation of H4K16ac in differentiated cells. Immunoblotting and co-immunoprecipitation assay revealed DNA damage dependent enhancement of H4K16 acetylation and its co-localization with γH2AX in undifferentiated cells. Whereas, TPA differentiated cells (CD11B+ve) didn’t show any such enhancement in H4K16acetylation levels in the presence of DNA damage.
    [Show full text]
  • Actin Filament Reorganization in HL-60 Leukemia Cell Line After Treatment with G-CSF and GM-CSF
    FOLIA HISTOCHEMICA ET CYTOBIOLOGICA Vol. 45, No. 3, 2007 pp. 191-197 Actin filament reorganization in HL-60 leukemia cell line after treatment with G-CSF and GM-CSF Alina Grzanka1, Magdalena Izdebska1, Anna Litwiniec1, Dariusz Grzanka2, Barbara Safiejko-Mroczka3 Departments of: 1Histology and Embryology and 2Clinical Pathomorphology, Nicolaus Copernicus University, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland 3Department of Zoology, The University of Oklahoma, USA Abstract: Currently, information regarding the influence of growth factors on the cytoskeleton, including G-CSF and GM- CSF, remains limited. In the present study we show alterations in F-actin distribution and cell cycle progression in HL-60 promyelocytic leukemia cells, resulting from treatment with these cytokines in vitro. We found that both agents caused F- actin reorganization. Although multiple potential effects of various growth factors have been described previously, in our experimental conditions, we observed some rather subtle differences between the effects of G-CSF and GM-CSF on stud- ied cells. The presence of these cytokines in the cell environment caused not only increased F-actin labeling in the cyto- plasm, but also a weaker intensity of peripheral ring staining in comparison with control cells. In spite of the fact that HL- 60 cells exposed to G-CSF and GM-CSF contained different F-actin structures such as aggregates and F-actin network, the rate of actin polymerization was not significantly enhanced. Moreover, alterations were mainly related to considerable changes in the relative proportion of these different structures, what might be reflected by specific features of the differen- tiation process, with regard to the kind of stimulating factor used.
    [Show full text]
  • Alterations of Differentiation, Clonal Proliferation, Cell Cycle
    Leukemia (1997) 11, 393–400 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Alterations of differentiation, clonal proliferation, cell cycle progression and bcl-2 expression in RARa-altered sublines of HL-60 I Grillier1, T Umiel1, E Elstner1, SJ Collins2 and HP Koeffler1 1Division of Hematology/Oncology, Cedars-Sinai Medical Center/UCLA School of Medicine, Los Angeles, CA; and 2Fred Hutchinson Cancer Research Center, Seattle, WA, USA All-trans retinoic acid (RA) induces granulocytic differentiation bind all-trans RA as well as 9-cis RA, while RXRs bind only of acute promyelocytic leukemia cells both in vivo and in vitro. 9-cis RA.19–21 Thus, RARs heterodimerize to form RAR/RXR In the HL-60 wild-type (WT) early promyelocytic leukemia cell 17,22–25 line, granulocytic differentiation appears to be directly complexes. RXRs act as a coregulator, enhancing the mediated by the nuclear receptor RARa. An HL-60 subline binding of RA, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3], thy- resistant to RA (HL-60 R) contains a point mutation which roid hormone, and peroxisome-activated receptors to their results in a truncation of 52 amino acids at the COOH end of responsive elements via heterodimers.22–27 Moreover, RARs RARa. Cross-talk between differentiation, clonal inhibition of may antagonize AP-1 function by either binding (directly or growth and apoptosis was studied using HL-60 WT, HL-60 R, indirectly) to c-jun/c-fos to form an inactive complex or inter- and HL-60 R infected by a retroviral vector containing RARa (LX) as targets, which were cultured with various retinoids, vit- acting with and sequestering another nuclear accessory factor that is required for AP-1-mediated transactivation.28–30 amin D3 analogs, HMBA, or DMSO.
    [Show full text]