Three-Dimensional Configuration and Evolution of Coronal Mass Ejections

Total Page:16

File Type:pdf, Size:1020Kb

Three-Dimensional Configuration and Evolution of Coronal Mass Ejections Three-Dimensional Configuration and Evolution of Coronal Mass Ejections Von der Fakultät für Physik und Geowissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr.rer.nat.) genehmigte D i s s e r t a t i o n von María Hebe Cremades Fernández aus Mendoza / Argentinien Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Karl-Heinz Glaßmeier 2. Referentin oder Referent: Prof. Dr. Rainer Schwenn eingereicht am: 24.02.2005 mündliche Prüfung (Disputation) am: 10.05.2005 Copyright © Copernicus GmbH 2005 ISBN 3-936586-40-3 Copernicus GmbH, Katlenburg-Lindau Druck: Schaltungdienst Lange, Berlin Printed in Germany Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch die Mentorin oder den Mentor/die Betreuerin oder den Betreuer der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Cremades, H. and Bothmer, V., On the Three-Dimensional Configuration of Coronal Mass Ejections, A&A, 422, 307-322, 2004. Tripathi, D., Bothmer, V., and Cremades, H., The Basic Characteristics of EUV Post-Eruptive Arcades and their Role as Tracers of Coronal Mass Ejection Source Regions, A&A, 422, 337-349, 2004. Cremades, H. and Bothmer, V., Geometrical Properties of Coronal Mass Ejections, in Proc. IAU Symp. 226 on Coronal and Stellar Mass Ejections, eds. Dere, K. P., Wang, J., and Yan, Y., 48-54, 2005. Gopalswamy, N. et al., The pre-CME Sun, Report of Working Group E, in Space Science Series of ISSI, in press. Cremades, H., Bothmer, V., and Tripathi, D., Properties of Structured Coronal Mass Ejections in Solar Cycle 23, Adv. Space Res., in press. Tagungsbeiträge Cremades, H., V. Bothmer, and D. Tripathi: 3D Magnetic Field Configuration & Evolution of CMEs (Oral). Seminar at the Astrophysics and Space Sciences Section, JPL, Pasadena, CA, USA, 12 March 2003. Cremades, H., V. Bothmer, D. Tripathi, and K. -H. Glassmeier: 3D Magnetic Field Configuration & Evolution of CMEs (Oral). EGS-AGU-EUG Joint Assembly, Nice, France, 7-11 April 2003. Cremades, H., V. Bothmer, and K. -H. Glassmeier: 3D Magnetic Field Configuration & Evolution of CMEs (Oral). Seminar of the Institut für Geophysik und Meteorologie, TU Braunschweig, 28 October 2003. Cremades, H., V. Bothmer, and D. Tripathi: On the Three-Dimensional Configuration of Coronal Mass Ejections (Poster). 1st EGU General Assembly, Nice, France, 25-30 April 2004. Cremades, H., V. Bothmer, and D. Tripathi: Properties of Structured Coronal Mass Ejections in Solar Cycle 23 (Oral). 35th COSPAR Scientific Assembly, Paris, France, 18-25 July 2004. Cremades, H., V. Bothmer, and D. Tripathi: Geometric Properties of Coronal Mass Ejections (Oral). IAU Symposium 226 on Stellar and Coronal Mass Ejections, Beijing, China, 13-17 September 2004. Who loves the Sun, Who cares that it makes plants grow, Who cares that it is shining? Who cares what it does, since you broke my heart? The Velvet Underground To my family Abstract Coronal mass ejections (CMEs) are a direct consequence of the dynamic nature of the Sun. They represent fundamental powerful processes in which energy is transferred from the Sun into interplanetary space, including geospace. Their origin, three-dimensional structure, and internal magnetic field configuration are to date not well understood. The unprecedented data provided by the Solar and Heliospheric Observatory (SOHO) allow for the first time the resolution of fine structures within CMEs, which can help to deduce their three-dimensional configuration. From a detailed investigation of the full set of SOHO/LASCO (Large Angle Spectroscopic Coronagraph) observations from 1996 to the end of 2002, a set of “structured CMEs” has been identified, i.e. events which exhibit white-light fine structures, likely indicative of their internal magnetic field configuration and possible 3D structure. Their source regions in the low corona and photosphere have been inferred by means of complementary analyses of data from the EUV Imaging Telescope (EIT) and Michelson Doppler Imager (MDI) onboard SOHO, and ground-based Hα measurements. From the characteristic pattern of the CMEs’ source regions in both solar hemispheres, a generic scheme of three-dimensional configurations is deduced. According to the scheme, the projected white-light topology of a CME depends primarily on the heliographic position and orientation of the source region’s underlying neutral line that separates opposite magnetic polarities. The cylindrical geometry found in the structured CMEs implies that they are organized along an axial direction. Furthermore, the typical dimensions of structured events exhibiting extreme projections (viewed along their axis or perpendicular to it) were investigated. These events originated from limb and near-limb regions. The measured dimensions indicate that these CMEs would be better approximated by elliptic cones, rather than by the classical cone of circular cross section. The dimensions of halo CMEs originating near Sun center are expected to agree with those obtained for the structured events. In order to understand the CME topology better, an elliptical cone model was developed as an improvement to an existing circular cone model, in an effort to fit and reproduce a set of halo CMEs from LASCO. Contents Introduction 1 Chapter 1 Sun’s essentials – The solar atmosphere 5 1.1 Introduction .................................................................................................................................5 1.2 The spotted photosphere..............................................................................................................6 1.3 The jagged chromosphere..........................................................................................................10 1.4 The grand corona.......................................................................................................................13 1.5 The solar wind and its impact on Earth .....................................................................................22 Chapter 2 Instrumentation and Data 25 2.1 Introduction ...............................................................................................................................25 2.2 The SOHO Mission ...................................................................................................................25 2.2.1 LASCO Coronagraphs......................................................................................................27 2.2.2 EIT....................................................................................................................................29 2.2.3 MDI ..................................................................................................................................30 2.3 Ground-based instruments.........................................................................................................31 2.3.1 Meudon Spectroheliograph...............................................................................................31 2.3.2 Big Bear 20-cm Refractor.................................................................................................32 2.3.3 NSO/KP Spectromagnetograph ........................................................................................32 2.4 Data formats and processing......................................................................................................32 2.4.1 Structured CMEs ..............................................................................................................32 2.4.2 Source regions of the Structured CMEs............................................................................34 2.4.3 Halo CMEs .......................................................................................................................35 Chapter 3 Analysis of structured CMEs 37 3.1 Introduction ...............................................................................................................................37 3.2 Selection of events.....................................................................................................................37 3.3 Basic properties .........................................................................................................................40 3.3.1 Rate of occurrence............................................................................................................41 3.3.2 Angular widths and position angles..................................................................................41 3.3.3 Speeds...............................................................................................................................44 3.4 Source regions ...........................................................................................................................46 3.4.1 Identification.....................................................................................................................46 3.4.2 Solar location....................................................................................................................48 3.4.3 Tilt and length...................................................................................................................50
Recommended publications
  • NSF Current Newsletter Highlights Research and Education Efforts Supported by the National Science Foundation
    March 2012 Each month, the NSF Current newsletter highlights research and education efforts supported by the National Science Foundation. If you would like to automatically receive notifications by e-mail or RSS when future editions of NSF Current are available, please use the links below: Subscribe to NSF Current by e-mail | What is RSS? | Print this page | Return to NSF Current Archive Robotic Surgery Systems Shipped to Medical Research Centers A set of seven identical advanced robotic-surgery systems produced with NSF support were shipped last month to major U.S. medical research laboratories, creating a network of systems using a common platform. The network is designed to make it easy for researchers to share software, replicate experiments and collaborate in other ways. Robotic surgery has the potential to enable new surgical procedures that are less invasive than existing techniques. The developers of the Raven II system made the decision to share it as the best way to move the field forward--though it meant giving competing laboratories tools that had taken them years to develop. "We decided to follow an open-source model, because if all of these labs have a common research platform for doing robotic surgery, the whole field will be able to advance more quickly," said Jacob Rosen, Students with components associate professor of computer engineering at the University of of the Raven II surgical California-Santa Cruz. Rosen and Blake Hannaford, director of the robotics systems. Credit: University of Washington Biorobotics Laboratory, led the team that Carolyn Lagattuta built the Raven system, initially with a U.S.
    [Show full text]
  • Activity - Sunspot Tracking
    JOURNEY TO THE SUN WITH THE NATIONAL SOLAR OBSERVATORY Activity - SunSpot trAcking Adapted by NSO from NASA and the European Space Agency (ESA). https://sohowww.nascom.nasa.gov/classroom/docs/Spotexerweb.pdf / Retrieved on 01/23/18. Objectives In this activity, students determine the rate of the Sun’s rotation by tracking and analyzing real solar data over a period of 7 days. Materials □ Student activity sheet □ Calculator □ Pen or pencil bacKgrOund In this activity, you’ll observe and track sunspots across the Sun, using real images from the National Solar Observatory’s: Global Oscillation Network Group (GONG). This can also be completed with data students gather using www.helioviewer.org. See lesson 4 for instructions. GONG uses specialized telescope cameras to observe diferent layers of the Sun in diferent wavelengths of light. Each layer has a diferent story to tell. For example, the chromosphere is a layer in the lower solar atmosphere. Scientists observe this layer in H-alpha light (656.28nm) to study features such as flaments and prominences, which are clearly visible in the chromosphere. For the best view of sunspots, GONG looks to the photosphere. The photosphere is the lowest layer of the Sun’s atmosphere. It’s the layer that we consider to be the “surface” of the Sun. It’s the visible portion of the Sun that most people are familiar with. In order to best observe sunspots, scientists use photospheric light with a wavelength of 676.8nm. The images that you will analyze in this activity are of the solar photosphere. The data gathered in this activity will allow you to determine the rate of the Sun’s rotation.
    [Show full text]
  • Effect of the Solar Wind Density on the Evolution of Normal and Inverse Coronal Mass Ejections S
    A&A 632, A89 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935894 & c ESO 2019 Astrophysics Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections S. Hosteaux, E. Chané, and S. Poedts Centre for mathematical Plasma-Astrophysics (CmPA), Celestijnenlaan 200B, KU Leuven, 3001 Leuven, Belgium e-mail: [email protected] Received 15 May 2019 / Accepted 11 September 2019 ABSTRACT Context. The evolution of magnetised coronal mass ejections (CMEs) and their interaction with the background solar wind leading to deflection, deformation, and erosion is still largely unclear as there is very little observational data available. Even so, this evolution is very important for the geo-effectiveness of CMEs. Aims. We investigate the evolution of both normal and inverse CMEs ejected at different initial velocities, and observe the effect of the background wind density and their magnetic polarity on their evolution up to 1 AU. Methods. We performed 2.5D (axisymmetric) simulations by solving the magnetohydrodynamic equations on a radially stretched grid, employing a block-based adaptive mesh refinement scheme based on a density threshold to achieve high resolution following the evolution of the magnetic clouds and the leading bow shocks. All the simulations discussed in the present paper were performed using the same initial grid and numerical methods. Results. The polarity of the internal magnetic field of the CME has a substantial effect on its propagation velocity and on its defor- mation and erosion during its evolution towards Earth. We quantified the effects of the polarity of the internal magnetic field of the CMEs and of the density of the background solar wind on the arrival times of the shock front and the magnetic cloud.
    [Show full text]
  • Why Is the Corona Hotter Than It Has Any Right to Be?
    Why is the corona hotter than it has any right to be? Sam Van Kooten CU Boulder SHINE 2019 Student Day Thanks to Steve Cranmer for some slides Why the Sun is the way it is The Sun is magnetically active The Sun rotates differentially Rotation + plasma = magnetism Magnetism + rotation = solar activity That’s why the Sun is the way it is Temperature Profile of the Solar Atmosphere Photosphere (top of the convection zone) Chromosphere (forest of complex structures) Corona (magnetic domination & heating conundrum) Coronal Heating ● How do you achieve those temperatures? ● Step 1: Have energy ● Step 2: Move energy ● Step 3: Turn energy to heat ● Step 4: Retain heat ● Step 5: HOT Step 1: Have energy ● The photosphere’s kinetic energy is enough by orders of magnitude Photospheric granulation Photospheric granulation Step 2: Move energy “DC” field-line braiding → “nanoflares” “AC” MHD waves “Taylor relaxation” “IR” (twist wants to untwist, due to mag. tension) Step 3: Turn energy to heat ● Turbulence ¯\_( )_/¯ ツ Step 4: Retain heat ● Very hot → complete ionization → no blackbody radiation → very limited cooling ● Combined with low density, required heat isn’t too mind-boggling Step 5: HOT So what’s the “coronal heating problem”? Cranmer & Winebarger (2019) So what’s the “coronal heating problem”? ● The theory side is fine ● All coronal heating models occur at small scales in thin plasmas – Really hard to see! ● It’s an observational problem – Can’t observe heating happening – Can’t measure or rule out models So why is the corona hotter than it
    [Show full text]
  • Predicting the Magnetic Vectors Within Coronal Mass Ejections Arriving at Earth: 2
    Space Weather RESEARCH ARTICLE Predicting the magnetic vectors within coronal mass ejections 10.1002/2015SW001171 arriving at Earth: 1. Initial architecture Key Points: N. P.Savani1,2, A. Vourlidas1, A. Szabo2,M.L.Mays2,3, I. G. Richardson2,4, B. J. Thompson2, • First architectural design to predict A. Pulkkinen2,R.Evans5, and T. Nieves-Chinchilla2,3 a CME’s magnetic vectors (with eight events) 1 2 • Modified Bothmer-Schwenn CME Goddard Planetary Heliophysics Institute (GPHI), University of Maryland, Baltimore County, Maryland, USA, NASA 3 initiation rule to improve reliability Goddard Space Flight Center, Greenbelt, Maryland, USA, Institute for Astrophysics and Computational Sciences (IACS), of chirality Catholic University of America, Washington, District of Columbia, USA, 4Department of Astronomy, University of • CME evolution seen by remote Maryland, College Park, Maryland, USA, 5College of Science, George Mason University, Fairfax, Vancouver, USA sensing triangulation is important for forecasting Abstract The process by which the Sun affects the terrestrial environment on short timescales is Correspondence to: predominately driven by the amount of magnetic reconnection between the solar wind and Earth’s N. P. Savani, magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward [email protected] component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Citation: Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report Savani, N. P., A. Vourlidas, A. Szabo, M.L.Mays,I.G.Richardson,B.J. how, by combining a statistically robust helicity rule for a CME’s solar origin with a simplified flux rope Thompson, A.
    [Show full text]
  • Arxiv:2101.07771V4 [Stat.AP] 9 Jun 2021
    Received Jan-19-2021; Revised Jun-02-2021; Accepted XX-XX-XXX DOI: xxx/xxxx SURVEY Critical Risk Indicators (CRIs) for the electric power grid: A survey and discussion of interconnected effects Che-Castaldo, Judy P.*1 | Cousin, Rémi2 | Daryanto, Stefani3 | Deng, Grace4 | Feng, Mei-Ling E.1 | Gupta, Rajesh K.5 | Hong, Dezhi5 | McGranaghan, Ryan M.6 | Owolabi, Olukunle O.7 | Qu, Tianyi8 | Ren, Wei3 | Schafer, Toryn L. J.4 | Sharma, Ashutosh9,10 | Shen, Chaopeng9 | Sherman, Mila Getmansky8 | Sunter, Deborah A.7 | Tao, Bo3 | Wang, Lan11 | Matteson, David S.4 1Conservation & Science Department, Lincoln Park Zoo, Illinois, USA Abstract 2International Research Institute for Climate The electric power grid is a critical societal resource connecting multiple infrastruc- and Society, Earth Institute / Columbia University, New York, USA tural domains such as agriculture, transportation, and manufacturing. The electrical 3Department of Plant and Soil Sciences, grid as an infrastructure is shaped by human activity and public policy in terms of College of Agriculture, Food and Environment / University of Kentucky, demand and supply requirements. Further, the grid is subject to changes and stresses Kentucky, USA due to diverse factors including solar weather, climate, hydrology, and ecology. The 4 Department of Statistics and Data Science, emerging interconnected and complex network dependencies make such interactions Cornell University, New York, USA 5Halicioglu Data Science Institute and increasingly dynamic, posing novel risks, and presenting new challenges to manage Department of Computer Science & the coupled human-natural system. This paper provides a survey of models and meth- Engineering, University of California, San ods that seek to explore the significant interconnected impact of the electric power Diego, California, USA 6Atmosphere Space Technology Research grid and interdependent domains.
    [Show full text]
  • Cmes, Solar Wind and Sun-Earth Connections: Unresolved Issues
    CMEs, solar wind and Sun-Earth connections: unresolved issues Rainer Schwenn Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany [email protected] In recent years, an unprecedented amount of high-quality data from various spaceprobes (Yohkoh, WIND, SOHO, ACE, TRACE, Ulysses) has been piled up that exhibit the enormous variety of CME properties and their effects on the whole heliosphere. Journals and books abound with new findings on this most exciting subject. However, major problems could still not be solved. In this Reporter Talk I will try to describe these unresolved issues in context with our present knowledge. My very personal Catalog of ignorance, Updated version (see SW8) IAGA Scientific Assembly in Toulouse, 18-29 July 2005 MPRS seminar on January 18, 2006 The definition of a CME "We define a coronal mass ejection (CME) to be an observable change in coronal structure that occurs on a time scale of a few minutes and several hours and involves the appearance (and outward motion, RS) of a new, discrete, bright, white-light feature in the coronagraph field of view." (Hundhausen et al., 1984, similar to the definition of "mass ejection events" by Munro et al., 1979). CME: coronal -------- mass ejection, not: coronal mass -------- ejection! In particular, a CME is NOT an Ejección de Masa Coronal (EMC), Ejectie de Maså Coronalå, Eiezione di Massa Coronale Éjection de Masse Coronale The community has chosen to keep the name “CME”, although the more precise term “solar mass ejection” appears to be more appropriate. An ICME is the interplanetry counterpart of a CME 1 1.
    [Show full text]
  • Three-Dimensional Convective Velocity Fields in the Solar Photosphere
    Three-dimensional convective velocity fields in the solar photosphere 太陽光球大気における3次元対流速度場 Takayoshi OBA Doctor of Philosophy Department of Space and Astronautical Science, School of Physical sciences, SOKENDAI (The Graduate University for Advanced Studies) submitted 2018 January 10 3 Abstract The solar photosphere is well-defined as the solar surface layer, covered by enormous number of bright rice-grain-like spot called granule and the surrounding dark lane called intergranular lane, which is a visible manifestation of convection. A simple scenario of the granulation is as follows. Hot gas parcel rises to the surface owing to an upward buoyant force and forms a bright granule. The parcel decreases its temperature through the radiation emitted to the space and its density increases to satisfy the pressure balance with the surrounding. The resulting negative buoyant force works on the parcel to return back into the subsurface, forming a dark intergranular lane. The enormous amount of the kinetic energy deposited in the granulation is responsible for various kinds of astrophysical phenomena, e.g., heating the outer atmospheres (the chromosphere and the corona). To disentangle such granulation-driven phenomena, an essential step is to understand the three-dimensional convective structure by improving our current understanding, such as the above-mentioned simple scenario. Unfortunately, our current observational access is severely limited and is far from that objective, leaving open questions related to vertical and horizontal flows in the granula- tion, respectively. The first issue is several discrepancies in the vertical flows derived from the observation and numerical simulation. Past observational studies reported a typical magnitude relation, e.g., stronger upflow and weaker downflow, with typical amplitude of ≈ 1 km/s.
    [Show full text]
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E.
    [Show full text]
  • The Sun's Dynamic Atmosphere
    Lecture 16 The Sun’s Dynamic Atmosphere Jiong Qiu, MSU Physics Department Guiding Questions 1. What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere cool off farther away from the Sun’s center? 2. What intrinsic properties of the Sun are reflected in the photospheric observations of limb darkening and granulation? 3. What are major observational signatures in the dynamic chromosphere? 4. What might cause the heating of the upper atmosphere? Can Sound waves heat the upper atmosphere of the Sun? 5. Where does the solar wind come from? 15.1 Introduction The Sun’s atmosphere is composed of three major layers, the photosphere, chromosphere, and corona. The different layers have different temperatures, densities, and distinctive features, and are observed at different wavelengths. Structure of the Sun 15.2 Photosphere The photosphere is the thin (~500 km) bottom layer in the Sun’s atmosphere, where the atmosphere is optically thin, so that photons make their way out and travel unimpeded. Ex.1: the mean free path of photons in the photosphere and the radiative zone. The photosphere is seen in visible light continuum (so- called white light). Observable features on the photosphere include: • Limb darkening: from the disk center to the limb, the brightness fades. • Sun spots: dark areas of magnetic field concentration in low-mid latitudes. • Granulation: convection cells appearing as light patches divided by dark boundaries. Q: does the full moon exhibit limb darkening? Limb Darkening: limb darkening phenomenon indicates that temperature decreases with altitude in the photosphere. Modeling the limb darkening profile tells us the structure of the stellar atmosphere.
    [Show full text]
  • Ten Years of PAMELA in Space
    Ten Years of PAMELA in Space The PAMELA collaboration O. Adriani(1)(2), G. C. Barbarino(3)(4), G. A. Bazilevskaya(5), R. Bellotti(6)(7), M. Boezio(8), E. A. Bogomolov(9), M. Bongi(1)(2), V. Bonvicini(8), S. Bottai(2), A. Bruno(6)(7), F. Cafagna(7), D. Campana(4), P. Carlson(10), M. Casolino(11)(12), G. Castellini(13), C. De Santis(11), V. Di Felice(11)(14), A. M. Galper(15), A. V. Karelin(15), S. V. Koldashov(15), S. Koldobskiy(15), S. Y. Krutkov(9), A. N. Kvashnin(5), A. Leonov(15), V. Malakhov(15), L. Marcelli(11), M. Martucci(11)(16), A. G. Mayorov(15), W. Menn(17), M. Mergè(11)(16), V. V. Mikhailov(15), E. Mocchiutti(8), A. Monaco(6)(7), R. Munini(8), N. Mori(2), G. Osteria(4), B. Panico(4), P. Papini(2), M. Pearce(10), P. Picozza(11)(16), M. Ricci(18), S. B. Ricciarini(2)(13), M. Simon(17), R. Sparvoli(11)(16), P. Spillantini(1)(2), Y. I. Stozhkov(5), A. Vacchi(8)(19), E. Vannuccini(1), G. Vasilyev(9), S. A. Voronov(15), Y. T. Yurkin(15), G. Zampa(8) and N. Zampa(8) (1) University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence, Italy (2) INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence, Italy (3) University of Naples “Federico II”, Department of Physics, I-80126 Naples, Italy (4) INFN, Sezione di Naples, I-80126 Naples, Italy (5) Lebedev Physical Institute, RU-119991 Moscow, Russia (6) University of Bari, I-70126 Bari, Italy (7) INFN, Sezione di Bari, I-70126 Bari, Italy (8) INFN, Sezione di Trieste, I-34149 Trieste, Italy (9) Ioffe Physical Technical Institute, RU-194021 St.
    [Show full text]
  • Ground-Based Solar Physics in the Era of Space Astronomy a White Paper Submitted to the 2012 Heliophysics Decadal Survey
    Ground-Based Solar Physics in the Era of Space Astronomy A White Paper Submitted to the 2012 Heliophysics Decadal Survey T. Ayres1, D. Longcope2 (on behalf of the 2009 AURA Solar Decadal Committee) Chromosphere-Corona at eclipse Hα filtergram Photospheric spots & bright points Same area in chromospheric Ca+ 1Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309; [email protected] (corresponding author) 2Montana State University SUMMARY. A report, previously commissioned by AURA to support advocacy efforts in advance of the Astro2010 Decadal Survey, reached a series of conclusions concerning the future of ground-based solar physics that are relevant to the counterpart Heliophysics Survey. The main findings: (1) The Advanced Technology Solar Telescope (ATST) will continue U.S. leadership in large aperture, high-resolution ground-based solar observations, and will be a unique and powerful complement to space-borne solar instruments; (2) Full-Sun measurements by existing synoptic facilities, and new initiatives such as the Coronal Solar Magnetism Observatory (COSMO) and the Frequency Agile Solar Radiotelescope (FASR), will balance the narrow field of view captured by ATST, and are essential for the study of transient phenomena; (3) Sustaining, and further developing, synoptic observations is vital as well to helioseismology, solar cycle studies, and Space Weather prediction; (4) Support of advanced instrumentation and seeing compensation techniques for the ATST, and other solar telescopes, is necessary to keep ground-based solar physics at the cutting edge; and (5) Effective planning for ground-based facilities requires consideration of the synergies achieved by coordination with space-based observatories.
    [Show full text]