Metabolomics As a Tool to Study Underused Soy Parts: in Search of Bioactive Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biologically Active Molecules from Soybeans
10 Biologically Active Molecules from Soybeans Michio Kurosu Department of Pharmaceutical Sciences, University of Tennessee Health Science Center USA 1. Introduction Soybeans (Glycine max [L.] Merr.) contain an impressive array of biologically active components. People have been eating soybeans for almost 5,000 years. Unlike most plant foods, soybeans are high in protein. Researchers are interested in both the nutritional value and the potential health benefits of soybeans. Research of the health effects of soyfoods and soybean constituents has been received significant attention to support the health improvements or health risks observed clinically or in vitro experiments. This research includes a wide range of areas, such as cancer, coronary heart disease (cardiovascular disease), osteoporosis, cognitive function (memory related), menopausal symptoms, renal function, and many others. This chapter provides up-to-date coverage on biologically active and related organic molecules isolated from soy and soy products. Their biological activities are briefly summarized. Molecules discussed in this chapter are as follows: isoflavones, phytic acid, soy lipids, soy phytoalexins, soyasaponins, lectins, hemagglutinin, soy toxins, and vitamins. 2. Health benefit of soy or soy products Soy products have been considered as great source of protein for many decades. Japanese, in particular, eat a soy-based diet. Japanese monks eat soy products as their main protein source. They are known to live longer and have lower rates of chronic diseases. Because soybeans contain practically no starch, soybeans are an important part of a diabetic diet. Soybeans are 1) rich in protein (vide supra), calcium, and vitamins, and 2) high in mono- saturated fatty acids. In addition, soybeans contain several biologically interesting phytochemicals as minor components, which scientists are interested in understanding their biological functions. -
Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia Phymatum Σ54 During Symbiosis with Phaseolus Vulgaris
Research Collection Journal Article Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum σ54 During Symbiosis with Phaseolus vulgaris Author(s): Lardi, Martina; Liu, Yilei; Giudice, Gaetano; Ahrens, Christian H.; Zamboni, Nicola; Pessi, Gabriella Publication Date: 2018-04 Permanent Link: https://doi.org/10.3929/ethz-b-000258158 Originally published in: International Journal of Molecular Sciences 19(4), http://doi.org/10.3390/ijms19041049 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library International Journal of Molecular Sciences Article Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum σ54 During Symbiosis with Phaseolus vulgaris Martina Lardi 1, Yilei Liu 1, Gaetano Giudice 1, Christian H. Ahrens 2, Nicola Zamboni 3 and Gabriella Pessi 1,* ID 1 Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland; [email protected] (M.L.); [email protected] (Y.L.); [email protected] (G.G.) 2 Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland; [email protected] 3 Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-6352904 Received: 28 February 2018; Accepted: 28 March 2018; Published: 1 April 2018 Abstract: RpoN (or σ54) is the key sigma factor for the regulation of transcription of nitrogen fixation genes in diazotrophic bacteria, which include α- and β-rhizobia. -
The Pharmacologist 2 0 0 6 December
Vol. 48 Number 4 The Pharmacologist 2 0 0 6 December 2006 YEAR IN REVIEW The Presidential Torch is passed from James E. Experimental Biology 2006 in San Francisco Barrett to Elaine Sanders-Bush ASPET Members attend the 15th World Congress in China Young Scientists at EB 2006 ASPET Awards Winners at EB 2006 Inside this Issue: ASPET Election Online EB ’07 Program Grid Neuropharmacology Division Mixer at SFN 2006 New England Chapter Meeting Summary SEPS Meeting Summary and Abstracts MAPS Meeting Summary and Abstracts Call for Late-Breaking Abstracts for EB‘07 A Publication of the American Society for 121 Pharmacology and Experimental Therapeutics - ASPET Volume 48 Number 4, 2006 The Pharmacologist is published and distributed by the American Society for Pharmacology and Experimental Therapeutics. The Editor PHARMACOLOGIST Suzie Thompson EDITORIAL ADVISORY BOARD Bryan F. Cox, Ph.D. News Ronald N. Hines, Ph.D. Terrence J. Monks, Ph.D. 2006 Year in Review page 123 COUNCIL . President Contributors for 2006 . page 124 Elaine Sanders-Bush, Ph.D. Election 2007 . President-Elect page 126 Kenneth P. Minneman, Ph.D. EB 2007 Program Grid . page 130 Past President James E. Barrett, Ph.D. Features Secretary/Treasurer Lynn Wecker, Ph.D. Secretary/Treasurer-Elect Journals . Annette E. Fleckenstein, Ph.D. page 132 Past Secretary/Treasurer Public Affairs & Government Relations . page 134 Patricia K. Sonsalla, Ph.D. Division News Councilors Bryan F. Cox, Ph.D. Division for Neuropharmacology . page 136 Ronald N. Hines, Ph.D. Centennial Update . Terrence J. Monks, Ph.D. page 137 Chair, Board of Publications Trustees Members in the News . -
Protection of PC12 Cells Against Superoxide-Induced Damage by Isoflavonoids from Astragalus Mongholicus1
BIOMEDICAL AND ENVIRONMENTAL SCIENCES 22, 50-54 (2009) www.besjournal.com Protection of PC12 Cells against Superoxide-induced Damage by 1 Isoflavonoids from Astragalus mongholicus # + + #,2 DE-HONG YU , YONG-MING BAO , LI-JIA AN , AND MING YANG #The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China; +Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/ xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged by XA/XO. The activities of antioxidant enzymes, MTT, LDH, and GSH assays were used to evaluate the protection of these five isoflavonoids. Contents of Bcl-2 family proteins were determined with flow cytometry. Results Among the five isoflavonoids including formononetin, ononin, 9, 10-dimethoxypterocarpan-3-O-β-D-glucoside, calycosin and calycosin-7-O-glucoside, calycosin and calycosin-7-O-glucoside were found to inhibit XA/ XO-induced injury to PC12 cells. Their EC50 values of formononetin and calycosin were 0.05 μg/mL. Moreover, treatment with these three isoflavonoids prevented a decrease in the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while formononetin and calycosin could prevent a significant deletion of GSH. In addition, only calycosin and calycosin-7-O-glucoside were shown to inhibit XO activity in cell-free system, with an approximate IC50 value of 10 μg/mL and 50 μg/mL. Formononetin and calycosin had no significant influence on Bcl-2 or Bax protein contents. Conclusion Neuroprotection of formononetin, calycosin and calycosin-7-O-glucoside may be mediated by increasing endogenous antioxidants, rather by inhibiting XO activities or by scavenging free radicals. -
Phytoalexins: Current Progress and Future Prospects
Phytoalexins: Current Progress and Future Prospects Edited by Philippe Jeandet Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Philippe Jeandet (Ed.) Phytoalexins: Current Progress and Future Prospects This book is a reprint of the special issue that appeared in the online open access journal Molecules (ISSN 1420-3049) in 2014 (available at: http://www.mdpi.com/journal/molecules/special_issues/phytoalexins-progress). Guest Editor Philippe Jeandet Laboratory of Stress, Defenses and Plant Reproduction U.R.V.V.C., UPRES EA 4707, Faculty of Sciences, University of Reims, PO Box. 1039, 51687 Reims cedex 02, France Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Ran Dang 1. Edition 2015 MDPI • Basel • Beijing ISBN 978-3-03842-059-0 © 2015 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents About the Editor ............................................................................................................... VII List of -
ABSTRACT Title of Document: BIOLOGICAL
ABSTRACT Title of Document: BIOLOGICAL EFFICACY, MECHANISMS OF ACTIONS OF SOY-DERIVED PHYTOALEXIN GLYCEOLLINS IN PREVENTION OF CHRONIC DISEASES Haiqiu Huang, Doctor of Philosophy, 2014 Directed By: Professor Liangli (Lucy) Yu Department of Nutrition and Food Science Cardiovascular disease (CVD) is the leading cause of deaths worldwide. Prostate cancer is the most prevalent cancer in U.S. male population. Diet-induced hypercholesterolemia and chronic inflammation promote the development of both CVD and prostate cancer. Glyceollins are a group of soy phytoalexins possessing a variety of biological activities. This research project focused on characterizing glyceollins’ bioactivities in alleviating cholesterol dysregulation, prevention of prostate cancer, and regulating gut microbiome. The first part of the project aimed to evaluate glyceollins’ cholesterol- lowering effect in-vivo. Male golden Syrian hamsters were fed high-fat diet with or without glyceollins supplementation for 28 days. Glyceollins supplementation led to a significant reduction of plasma VLDL, hepatic cholesterol esters and total lipid content. Consistent with changes in circulating cholesterol, glyceollins supplementation also altered expression of the genes related to cholesterol metabolism in the liver. The second part of the study aimed to evaluate glyceollins’ effect in reducing prostate cancer tumor growth in a xenograft model. An initial delayed appearance of tumor was observed in a PC-3 xenograft model. However, no difference in tumor sizes was observed in a LNCaP xenograft model. Extrapolation analysis of tumor measurements indicated that no difference in sizes was expected for both PC-3 and LNCaP tumors. Glyceollins had no effect on the androgen responsive pathway, its proliferation, cell cycle, or on angiogenesis genes in tumor and xenobiotic metabolism, cholesterol transport, and inflammatory cytokine genes in liver. -
Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves
UC San Diego UC San Diego Previously Published Works Title Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Permalink https://escholarship.org/uc/item/5pw0t3dx Journal Metabolites, 4(3) ISSN 2218-1989 Authors Murakami, Shinichiro Nakata, Ryu Aboshi, Takako et al. Publication Date 2014-07-04 DOI 10.3390/metabo4030532 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Metabolites 2014, 4, 532-546; doi:10.3390/metabo4030532 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Article Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves Shinichiro Murakami 1, Ryu Nakata 1, Takako Aboshi 1, Naoko Yoshinaga 1, Masayoshi Teraishi 1, Yutaka Okumoto 1, Atsushi Ishihara 3, Hironobu Morisaka 1, Alisa Huffaker 2, Eric A Schmelz 2 and Naoki Mori 1,* 1 Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan; E-Mails: [email protected] (S.M.); [email protected] (R.N.); [email protected] (T.A.); [email protected] (N.Y.); [email protected] (M.T.); [email protected] (Y.O.); [email protected] (H.M.) 2 Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA; E-Mails: [email protected] (A.H.); [email protected] (E.A.S.) 3 Department of Agriculture, Tottori University, Koyama-machi 4-101, Tottori 680-8550, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-75-753-6307. -
Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia Sphacelata
Supplementary material Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC-PDA- Orbitrap-Mass Spectrometry Ruth E. Barrientos 1,†, Shakeel Ahmed 1,†, Carmen Cortés 1, Carlos Fernández-Galleguillos 1, Javier Romero-Parra 2, Mario J. Simirgiotis 1,* and Javier Echeverría 3,* 1 Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; [email protected] (R.E.B.), [email protected] (S.A.), [email protected] (C.C.), [email protected] (C.F.-G.) 2 Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago, Chile, [email protected] 3 Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170002, Chile * Correspondence: [email protected] or [email protected] (M.J.S.); [email protected] (J.E.); Tel.: +56-63-63233257 (M.J.S.); +56-2-27181154 (J.E.) † These authors contributed equally to this study Received: 03 July 2020; Accepted: 14 August 2020; Published: August 2020 Keywords: Greigia sphacelata, endemic fruits, UHPLC-PDA-Orbitrap-MS, metabolomic analysis, antioxidant, cholinesterase inhibition Figure S1 (a-v): Full MS spectra and structures of compounds 1, 3, 7, 9, 12, 13, 15, 25, 27, 28, 29, 35, 37, 42, 43, 44, 46, 48, 51, 53 and 55. Docking analyses of Greigia sphacelata main compounds Material and Methods Docking simulations were carried for those compounds (Figure S1) that turned out to be the most abundant species according to the UHPLC Chromatogram (Figure 2) obtained from the pulp and seeds of the G. -
WO 2011/094457 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date ι 4 August 2011 (04.08.2011) WO 201 1/094457 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12P 7/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/022790 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 27 January 201 1 (27.01 .201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/298,844 27 January 2010 (27.01 .2010) US (84) Designated States (unless otherwise indicated, for every 61/321,480 6 April 2010 (06.04.2010) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicants (for all designated States except US): OPX ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, BIOTECHNOLOGIES, INC. -
Appendix 1 – Protocol for Preventing Or Reversing Chronic Disease The
Appendix 1 – Protocol for Preventing or Reversing Chronic Disease The first author has developed a protocol over the past decade for preventing or reversing chronic disease based on the following systemic medical principle: “at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective”[1]. The protocol methodology refines the age-old principles of both reducing harm in addition to providing treatment, and allows better identification of factors that contribute to the disease process (so that they may be eliminated if possible). These contributing factors are expansive and may include a combination of Lifestyle choices (diet, exercise, smoking), iatrogenic and biotoxin exposures, environmental/occupational exposures, and psychosocial stressors. This strategy exploits the existing literature to identify patterns of biologic response using biomarkers from various modalities of diagnostic testing to capture a much broader list of potential contributing factors. Existing inflammatory bowel diseases (IBD) Biomarker Identification to Remove Contributing Factors and Implement Treatment The initial protocol steps are diagnostic. The main output of these diagnostics will be identification of the biomarker levels and symptoms that reflect abnormalities, and the directions of change required to eliminate these abnormalities. In the present study, hundreds of general and specific biomarkers and symptoms were identified from the core IBD literature. The highest frequency (based on numbers of record appearances) biomarkers and symptoms were extracted, and are listed in Table 1 (highest frequency items first, reading down each column before proceeding to the next column). They are not necessarily consensus biomarkers. They are biomarkers whose values were altered by a treatment or contributing factor, and reported in the core IBD literature. -
By Acid Hydrolysis and LC-MS/MS
International Conference on Food, Agriculture and Biology (FAB-2014) June 11-12, 2014 Kuala Lumpur (Malaysia) Determination of Phytoestrogenic Compounds of Chickpea (Cicer Arientinum L.) By Acid Hydrolysis and LC-MS/MS Nevzat Konar, Deryacan Aygunes, Nevzat Artik, Murat Erman, Gulay Coksari, and Ender Sinan Poyrazoglu or with ether and/or ethyl acetate for aglycone only containing Abstract—In this study, acidified hydrolysates of chickpea were samples. Enzymatic and/or acidic hydrolysis during extraction analysed to determine their contents of 13 different phytoestrogenic is sometimes employed depending on the study purpose, when compound as both free and conjugated isoflavones, lignans and only isoflavone and lignan are examined [3, 5]. coumestrol. Samples of hydrolysates were analysed by triple In this study, we analysed the amounts of free and quadrupole LC-MS/MS. Cellulase, β-glucosidase and β- conjugated isoflavones, lignans and, coumestrol in which are glucuronidase were used for acid hydrolysis. The highest the most interested phytoestrogenic compounds [6], in determined phytoestrogenic compounds content of hydrolysate was chickpeas (Cicer arientinum L.) of the Kocbasi variety secoisolariciresinol, 925.1 ± 10.9 µg/100 g. Sissotrin and glycitein which were determined as 446.8 ± 11.8 µg/100 g and 105.2 ± 9.87 samples prepared by acid hydrolysis. respectively, were the highest determined isoflavones concentration. Daidzein, daidzin, formononetin, matairesinol, apigenin, quercetin, II. MATERIALS AND METHODS ruin and coumestrol were not determined in the hydrolysates. A. Sampling and Sample Preparation Keywords—Chickpea, Coumestrol, Isoflavone, Lignan, LC- Sample of chickpea was bought in 1.0 kg amounts from the MS/MS, Phytoestrogen. local market in Ankara (Turkey) in 2012. -
Determination of Phytoestrogenic Compounds of Soybean Sprouts Grown in Antalya, Turkey
International Journal of Chemical, Environmental & Biological Sciences (IJCEBS) Volume 1, Issue 1 (2013) ISSN 2320–4087 (Online) Determination of Phytoestrogenic Compounds of Soybean Sprouts Grown in Antalya, Turkey Nevzat KONAR solvent extraction and/or enzymatic hydrolysis and acid Abstract—In this study, quantitative identifications of hydrolysis [6, 7]. phytoestrogenic compounds, such as free and conjugated isoflavones, In this study, we analysed the amounts of free and lignans, coumestrol and various bioflavonoids, on fresh soybean sprout conjugated isoflavones, lignans and, coumestrol in samples samples, grown in Antalya Turkey, by a triple quadrupole liquid of soybean sprouts grown in Antalya Turkey (Glycine max chromatography-tandem mass spectrorscopy (LC-MS/MS) technique L.) prepared by conventional extraction, acid hydrolysis, following different pretreatments, such as conventional extraction enzymatic hydrolysis and also both enzymatic and acid (CE), acid hydrolysis (AH), enzymatic hydrolysis (EH) and enzymatic and acid hydrolysis (EAH). The obtained data and levels of the hydrolysis. identified compounds significantly varied according to the sample preparation method. As example, the most effective sample preparation II. MATERIALS AND METHODS method for total isoflavone content determination was the CE. It was A. Sampling and Sample Preparation found that secoisolariciresinol (2446.0 µg/100 g, wet basis, sample prepared by EAH) was the major phytoestrogenic compound in the Fresh samples of soybean sprouts grown in Antalya, samples. Turkey region were bought in 1.0 – 1.5 kg amounts from three different local market in Ankara (Turkey) in 2011. All Keywords—Soybean sprouts, phytoestrogen, hydrolysis, LC- parts of the samples were chopped in a chopper (Fakir, MS/MS Germany).